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“A Digital Twin is a set of virtual information constructs
that mimics the structure, context, and behavior of an 
individual/unique physical asset, is dynamically updated 
with data from its physical twin throughout its lifecycle, 
and informs decisions that realize value”

- AIAA Institute Position Paper, 2020
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Figure credit: NASA



Digital twins have the potential to revolutionize
decision-making across science, technology & society
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To move from the one-off expert-driven digital twin 
implementation to accessible robust digital twin 
implementations at scale requires many things, 
including computing and data infrastructure, 
software, standards, partnerships, …
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To move from the one-off expert-driven digital twin 
implementation to accessible robust digital twin 
implementations at scale requires rigorous and 
scalable mathematical foundations.



BIG DATA alone
is not enough.

DIGITAL TWINS must incorporate the predictive power, 
interpretability, and domain knowledge of physics-based models.



Mathematical & 
computational 
foundations for 
Digital Twins

1

Probabilistic Graphical Model

An integrated framework for calibration, 
data assimilation, planning & control

2

Physics-based Modeling

A predictive window on the future

3

Reduced-order Modeling

Blending physics-based modeling & machine 
learning to accelerate predictive computations
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Example:
equations 
of linear 
elasticity

Solving a physics-based model:
Given initial conditions, boundary conditions,
loading conditions, and system parameters
Compute solution trajectories  𝜎𝜎 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , 𝜀𝜀 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , u 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , …

The unreasonable effectiveness of physics-based models [Wigner, 1960]

A representation of the 
governing laws of nature that 
innately embeds the concepts of 
time, space, and causality

In solving the governing equations
of the system, we constrain the 
predictions to lie on the solution 
manifold defined by the laws of nature

𝜀𝜀 =
1
2
𝛻𝛻𝑢𝑢 + 𝛻𝛻𝑢𝑢 ⊤ + boundary conditions

+ initial conditions
𝜎𝜎 = 𝐶𝐶: 𝜀𝜀

equation of motion
(Newton’s 2nd law)

𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

=
𝜕𝜕𝜎𝜎
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜎𝜎
𝜕𝜕𝑦𝑦

+ 𝐹𝐹

strain-displacement 
equations

constitutive 
equations

a mathematical 
model of how solid 
objects deform, 
relating stress 𝜎𝜎, 
strain 𝜀𝜀, displacement 
𝑢𝑢, and loading 𝐹𝐹

What is a physics-based model?

A predictive 
window on 
the future



PHYSICS-BASED MODELS are POWERFUL 
and bring PREDICTIVE CAPABILITIES

but they can be 
COMPUTATIONALLY 
EXPENSIVE
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Reduced-order models are critical enablers 
for Predictive Digital Twins

1 Train: Solve governing eq. to generate training data (snapshots)
2 Identify structure: Compute a low-dimensional basis
3 Reduce: Project PDE model onto the low-dimensional subspace

= +

dimension 103 − 109
solution time ~minutes / hours

dimension 101 − 103
solution time ~seconds / minutes

+=

high-fidelity physics-based simulation projection-based reduced-order model
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Reduced-order modeling leads to 
low-cost physics-based models 
that enable predictive digital twins
[Kapteyn et al. IJNME 2020]

Reduced-order model
static condensation 
reduced basis element 
(SCRBE) method;
~0.03 seconds per 
structural analysis
(1000x speedup)

Finite element model
multiple material types (carbon fiber, carbon rod, 
plywood, foam) & multiple element types (solid, 
shell, beam); ~55 seconds per structural analysis
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MATHEMATICAL ABSTRACTION 
of an asset-twin system
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Image adapted from Kapteyn et al.,
Nature Comp. Sci., Vol. 1, No. 5, 2021.

MATHEMATICAL ABSTRACTION 
of an asset-twin system



PREDICTIVE
DIGITAL TWINS
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𝑝𝑝 𝑆𝑆𝑡𝑡 𝑆𝑆𝑡𝑡−1)
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𝑝𝑝 𝐷𝐷𝑡𝑡 𝐷𝐷𝑡𝑡−1)
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𝑝𝑝 𝑄𝑄𝑡𝑡 𝐷𝐷𝑡𝑡)

𝑝𝑝 𝑈𝑈𝑡𝑡 𝐷𝐷𝑡𝑡 ,𝑄𝑄𝑡𝑡)

𝑝𝑝 𝑂𝑂𝑡𝑡 𝑆𝑆𝑡𝑡)
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𝑝𝑝 𝑅𝑅𝑡𝑡 𝐷𝐷𝑡𝑡,𝑈𝑈𝑡𝑡,𝑂𝑂𝑡𝑡,𝑄𝑄𝑡𝑡)
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𝑝𝑝 𝐷𝐷0, … ,𝐷𝐷𝑡𝑡𝑝𝑝 ,𝑄𝑄0, … ,𝑄𝑄𝑡𝑡𝑝𝑝 ,𝑅𝑅0, … ,𝑅𝑅𝑡𝑡𝑝𝑝 ,𝑈𝑈𝑡𝑡𝑐𝑐+1, … ,𝑈𝑈𝑡𝑡𝑝𝑝 𝑜𝑜0, … , 𝑜𝑜𝑡𝑡𝑐𝑐 ,𝑢𝑢0, … ,𝑢𝑢𝑡𝑡𝑐𝑐
Graph represents joint 
probability distribution: 
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𝑈𝑈𝑡𝑡

𝑆𝑆𝑡𝑡

𝑂𝑂𝑡𝑡

𝐷𝐷𝑡𝑡

𝑄𝑄𝑡𝑡
𝑅𝑅𝑡𝑡 ∝�

𝑡𝑡=0

𝑡𝑡𝑝𝑝

𝜙𝜙𝑡𝑡
dynamics 𝜙𝜙𝑡𝑡

QoI 𝜙𝜙𝑡𝑡eval �
𝑡𝑡=0

𝑡𝑡𝑐𝑐

𝜙𝜙𝑡𝑡assim �
𝑡𝑡=𝑡𝑡𝑐𝑐+1

𝑡𝑡𝑝𝑝

𝜙𝜙𝑡𝑡control

𝜙𝜙𝑡𝑡
dynamics = 𝑝𝑝(𝐷𝐷𝑡𝑡 ∣ 𝐷𝐷𝑡𝑡−1,𝑈𝑈𝑡𝑡−1 = 𝑢𝑢𝑡𝑡−1)

𝜙𝜙𝑡𝑡
QoI = 𝑝𝑝 𝑄𝑄𝑡𝑡 ∣ 𝐷𝐷𝑡𝑡

𝜙𝜙𝑡𝑡eval = 𝑝𝑝 𝑅𝑅𝑡𝑡 𝐷𝐷𝑡𝑡 ,𝑄𝑄𝑡𝑡 ,𝑈𝑈𝑡𝑡 = 𝑢𝑢𝑡𝑡 ,𝑂𝑂𝑡𝑡 = 𝑜𝑜𝑡𝑡

Conditional independence structure 
defined by the graph admits a factorization:

reward function

digital state transition

quantity of interest

𝜙𝜙𝑡𝑡control = 𝑝𝑝 𝑈𝑈𝑡𝑡 ∣ 𝐷𝐷𝑡𝑡 ,𝑄𝑄𝑡𝑡
control𝜙𝜙𝑡𝑡assim = 𝑝𝑝 𝑜𝑜𝑡𝑡 ∣ 𝐷𝐷𝑡𝑡

assimilation

Physics-based (reduced) models underpin the 
graphical model and bring predictive capability



Predictive Digital Twin
Use-case

Mathematical Formulation via
Probabilistic Graphical Model

Automatic monitoring, virtual inspections, 
simulation-based certification Data assimilation:

Forecasting, predictive maintenance, 
planning Prediction:

Operations: Tradeoff between
• Favorable asset state
• Digital twin accuracy
• Required control effort
• Observation acquisition cost

Multi-objective
optimization:

Learn from historical data,
transfer insights to similar assets

Learning:

Representing a Digital Twin as a probabilistic graphical 
model gives an integrated framework for calibration,
data assimilation, planning and control [Kapteyn, Pretorius, W. Nature Comp. Sci. 2021]

28



29

Creating and evolving a structural digital twin 
for an unmanned aerial vehicle



*Willcox has a family member who is co-founder of Jessara. Purchase of the sensors for use in the research was reviewed 
and approved in compliance with all applicable MIT policies and procedures.

Custom sensor suite

Internal 
structure

30

The hardware
Customized 12ft Telemaster aircraft

Access panel

Fuselage mount

Ailerons
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The structural model
Finite element model + reduced-order model

Reduced-order model
static condensation reduced 
basis element (SCRBE) 
method; ~0.03 seconds
per structural analysis
(1000x speedup)
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Finite element model
multiple material types (carbon fiber, carbon rod, plywood, 
foam) & multiple element types (solid, shell, beam);
~55 seconds per structural analysis

𝜀𝜀 =
1
2
𝛻𝛻𝑢𝑢 + 𝛻𝛻𝑢𝑢 ⊤ + boundary conditions

+ initial conditions
𝜎𝜎 = 𝐶𝐶: 𝜀𝜀

force/displacement
equation of motion

𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2 =

𝜕𝜕𝜎𝜎
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜎𝜎
𝜕𝜕𝑦𝑦

+ 𝐹𝐹

strain-displacement
equations

constitutive 
equations
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𝑈𝑈𝑡𝑡

𝑆𝑆𝑡𝑡

𝑂𝑂𝑡𝑡

𝐷𝐷𝑡𝑡

𝑄𝑄𝑡𝑡
𝑅𝑅𝑡𝑡

Digital State 𝐷𝐷𝑡𝑡

𝐷𝐷𝑡𝑡
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𝐷𝐷𝑡𝑡

ObservationPrior



34

• Gaussian prior
• Likelihood (non-Gaussian) 

estimated by sampling + 
kernel density estimation

• Bayesian update via a 
particle filter

𝐷𝐷𝑡𝑡
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𝐷𝐷𝑡𝑡

Two mode fit

Experimental datasets



36

Calibrated digital twin reflects geometry, material 
properties, and structural properties of the physical UAV, 
along with estimates of our uncertainty
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Aggressive flight path
Conservative flight path

• Aircraft undergoes in-flight 
structural health degradation

• 24 wing-mounted sensors 
provide noisy strain data

• Digital twin is dynamically 
updated and used to drive 
mission re-planning

• Scenarios are simulated
in ROS

Dynamic evolution and decision-making 
using the digital twin

𝑈𝑈𝑡𝑡

𝑝𝑝 𝐷𝐷0, … ,𝐷𝐷𝑡𝑡𝑝𝑝 ,𝑄𝑄0, … ,𝑄𝑄𝑡𝑡𝑝𝑝 ,𝑅𝑅0, … ,𝑅𝑅𝑡𝑡𝑝𝑝 ,𝑈𝑈𝑡𝑡𝑐𝑐+1, … ,𝑈𝑈𝑡𝑡𝑝𝑝 𝑜𝑜0, … , 𝑜𝑜𝑡𝑡𝑐𝑐 ,𝑢𝑢0, … ,𝑢𝑢𝑡𝑡𝑐𝑐 ∝�
𝑡𝑡=0

𝑡𝑡𝑝𝑝

𝜙𝜙𝑡𝑡
dynamics 𝜙𝜙𝑡𝑡

QoI 𝜙𝜙𝑡𝑡eval �
𝑡𝑡=0

𝑡𝑡𝑐𝑐

𝜙𝜙𝑡𝑡assim �
𝑡𝑡=𝑡𝑡𝑐𝑐+1

𝑡𝑡𝑝𝑝

𝜙𝜙𝑡𝑡control

𝑂𝑂𝑡𝑡



𝑂𝑂𝑡𝑡

𝐷𝐷𝑡𝑡

Aggressive flight path
Conservative flight path

𝑈𝑈𝑡𝑡

𝑆𝑆𝑡𝑡



FROM AIRCRAFT 
TO CANCER PATIENTS
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Reward
Patient outcomes:
treatment efficacy, toxicity

Control inputs
MRI studies, biopsies, 
treatment regimens

Physical State
Anatomy & morphology, 
mechanical & physiological state

Quantities of Interest
Distribution of therapies, 
tumor shape, cell density

Observational data
Anatomy, perfusion, permeability,
cell density, metabolism

Digital Twin State
Tumor dynamics, mechanics

[d
ru

g]
 

𝑂𝑂𝑡𝑡

𝐷𝐷𝑡𝑡 𝑈𝑈𝑡𝑡

𝑆𝑆𝑡𝑡

𝑄𝑄𝑡𝑡

𝑅𝑅𝑡𝑡



𝐷𝐷0 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3

3 months1 monthbaseline 5 months

𝑂𝑂0 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3

𝑄𝑄0 𝑄𝑄1 𝑄𝑄2 𝑄𝑄3

𝑀𝑀𝑀𝑀𝐼𝐼0

est. glioma properties

𝑀𝑀𝑀𝑀𝐼𝐼1

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝜙𝜙;𝜽𝜽)
𝜙𝜙 𝑡𝑡 = est. cell count
𝜽𝜽 = model parameters 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝜙𝜙;𝜽𝜽) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝜙𝜙;𝜽𝜽)

𝑀𝑀𝑀𝑀𝐼𝐼2 𝑀𝑀𝑀𝑀𝐼𝐼3

𝑆𝑆0 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3

𝑈𝑈0 𝑈𝑈1 𝑈𝑈2
RT0 RT1 𝑅𝑅𝑇𝑇2

true glioma properties

t

Cancer Patient Digital Twin
Collaboration with Oden Institute Center for Computational Oncology (T. Yankeelov)



Challenges for 
PREDICTIVE 
DIGITAL TWINS
for complex 
systems across
science, medicine 
& engineering

42

1

Scalable algorithms for updating, prediction & control
Incorporating physics-based modeling, data-driven learning & 
state-of-the-art computational science 

2

Data, models and decisions across multiple scales
An integrated framework for calibration, data assimilation, 
uncertainty quantification, optimization, planning & control

3

Validation, verification & uncertainty quantification
Achieving the levels of reliability and robustness needed for 
certified high-consequence decision-making

Optimal sensing strategies
Integrated sensor design, optimal experimental design (active 
learning), intelligent adaptive data acquisition

Predictive modeling for complex systems at scale
Decisions demand a predictive window on the future

4

5



Data-driven decisions
building the mathematical foundations and computational methods to 
enable design of the next generation of engineered systems

K I W I . O D E N . U T E X A S . E D U
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