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“A Digital Twin is a set of virtual information constructs
that mimics the structure, context, and behavior of an
individual/unique physical asset, is dynamically updated

with data from its physical twin throughout its lifecycle,
and informs decisions that realize value”

- AIAA Institute Position Paper, 2020
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Figure credit: NASA



Digital twins have the potential to revolutionize
decision-making across science, technology & society
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To move from the one-off expert-driven digital twin
Implementation to accessible robust digital twin
iImplementations at scale requires many things,

iIncluding computing and data infrastructure,
software, standards, partnerships, ...



To move from the one-off expert-driven digital twin
iImplementation to accessible robust digital twin

implementations at scale requires rigorous and
scalable mathematical foundations.



IS not enough.

DIGITAL TWINS must incorporate the ,
, and of physics-based models.



1 Physics-based Modeling

A predictive window on the future

Mathematical &

computational 2  Reduced-order Modeling

fO.UPdatIOI.'IS fOl' Blending physics-based modeling & machine
Dlgltal Twins learning to accelerate predictive computations

3 Probabilistic Graphical Model

An integrated framework for calibration,
data assimilation, planning & control



1 Physics-based Modeling

A predictive window on the future

Mathematical &
computational
foundations for
Digital Twins



What is a physics-based model?

A representation of the In solving the governing equations
governing laws of nature that of the system, we constrain the
innately embeds the concepts of predictions to lie on the solution
time, space, and causality manifold defined by the laws of nature
. 2 a mathematical
Exam_Ple- 0 0"u _ do n do +F  e= l[Vu + (Tw)T] o =C:e  *boundary conditions | model of how solid
equations at?> dx dy + initial conditions objects deform,
: lati t
of Ilnggr equation’ of motion strain-displacement constitutive :r:irg;ir:;zgément
elasticity (Newton’s 2" |aw) equations equations u, and loading F

Solving a physics-based model:

Given initial conditions, boundary conditions > //'
loading conditions, and system parameters | /%» / A predictive
==y window on

Compute solution trajectories a(x,y,t),e(x,y,t), ulx,y,t), ... the future



PHYSICS-BASED MODELS are POWERFUL
and bring PREDICTIVE CAPABILITIES

but they can be
COMPUTATIONALLY
EXPENSIVE '



Mathematical &
computational 2  Reduced-order Modeling

fo_updatlor)s for Blending physics-based modeling & machine
Dlgltal Twins learning to accelerate predictive computations




Reduced-order models are critical enablers
for Predictive Digital Twins

high-fidelity physics-based simulation projection-based reduced-order model
= +
dimension 103 — 10° dimension 10! — 103
solution time ~minutes / hours solution time ~seconds / minutes

1 Train: Solve governing eq. to generate training data (snapshots)
2 ldentify structure: Compute a low-dimensional basis
3 Reduce: Project PDE model onto the low-dimensional subspace

14



Reduced-order modeling leads to
low-cost physics-based models
that enable predictive digital twins

[Kapteyn et al. IUNME 2020]
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Finite element model

multiple material types (carbon fiber, carbon rod,
plywood, foam) & multiple element types (solid,
shell, beam); ~55 seconds per structural analysis

.

i e T
B )by TATIONAL
ODEN ENGINEERING &

SCIENCES

i MIT
6 AEROASTRO

Reduced-order model
static condensation
reduced basis element
(SCRBE) method;
~0.03 seconds per
structural analysis
(1000x speedup)
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Mathematical &
computational
foundations for
Digital Twins

3 Probabilistic Graphical Model

An integrated framework for calibration,
data assimilation, planning & control



MATHEMATICAL ABSTRACTION

of an asset-twin system

Control inputs:
Actions or decisions that
influence the physical asset

Ut

Physical State:
Parametrized state of the
physical asset

al

Observational data:
Available information describing
the state of the physical asset

14



MATHEMATICAL ABSTRACTION

of an asset-twin system

Control inputs:
Actions or decisions that
influence the physical asset

Uy

Physical State:
Parametrized state of the
physical asset

Digital State:
Parameters (model inputs) that

define the computational models
comprising the digital twin

\

Observational data:
Available information describing
the state of the physical asset

Reward:
@ Quantifies overall
performance of the

asset-twin system

Quantities of Interest:

Quantities describing the asset,
estimated via model outputs

Image adapted from Kapteyn et al.,

Nature Comp. Sci., Vol. 1, No. 5, 2021.
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PREDICTIVE

U Control inputs:
t | Actions or decisions that

influence the physical asset

Physical State:
Parametrized state of the
physical asset

Digital State:
Parameters (model inputs) that

define the computational models
comprising the digital twin

\

Observational data:
Available information describing
the state of the physical asset

Reward:
@ Quantifies overall
performance of the

asset-twin system

Quantities of Interest:

Quantities describing the asset,
estimated via model outputs
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Physical Space

Digital Space

p(D¢ |D¢—1,0¢)

22



Digital Space p(U{ |Dy)

ﬂ; Dy D1 @

p(D¢ [De_q,Ut_1,0¢)
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Graph represents joint
probability distribution: p (DO’ oL Dtp' Qo, -+ Qtp' Ro, ..., Rtp» Ute+1s o Utp ‘ Og) -++» Ot Ugy -+, utc)

26



Conditional independence structure
defined by the graph admits a factorization:

P (Do, s Deyy Qos e Qs Ros oes Rey Uggts s Uy | 00, e, 0 gy o, )

dynamics I
1_[ [d) y 30 eval] 1_[¢a551m 1_[ (pcontrol
/ \ t=t.+1

quantity of interest
thl = p(0Q, | D;) assimilation

a551m control
— P(Ot | D )
control __

4 _ digital state transition t = p(U;¢ | D¢, Q¢)
namics
ty =pD¢ | Dt—1, Up—q = up—q)

reward function
eval =p(R¢ | Dy, Q, Uy = uy, O = 0 )

Physics-based (reduced) models underpin the

graphical model and bring predictive capability
27



Representing a Digital Twin as a probabilistic graphical
model gives an integrated framework for calibration,
data aSSiMilatiOn, plan“i“g al‘ld COIItI'Ol [Kapteyn, Pretorius, W. Nature Comp. Sci. 2021]

Automatic monitoring, virtual inspections,

, : TN Data assimilation: ?(Dt.,@t., Rt | wo, ... uz,, 00, ...0t,)
simulation-based certification

Elc;r:rc‘:?nss;mg, predictive maintenance, Prediction: P(D:,.Q:,, R, | uo,. ..U, ,00,...0¢,)

Operations: Tradeoff between

. . . evaluation __
- Favorable asset state Multi-objective  ¢; = p(Ll | Dy, Qr, Ut, Or)

- Digital twin accuracy optimization: o
« Required control effort N ma%, . Z E[R,]
* Observation acquisition cost T=te
i . dynamics
Learn from historical data, Learning: " =p(Dy | Di—1,Uy)
transfer insights to similar assets assimilation _ () | D,)



Creating and evolving a structural digital twin
for an unmanned aerial vehicle

Baseli Ny
aseline 117
@)

model

calibrate
geometry, g

calibrate
U, | = “measure geometry” material properties, e

=§= [i, Eroot s C tip] = “load-displacement test” Calibrated

dd i Dynamic
= 9= Il Croots Crip) . .2 and damping, m, @, digital twin """ . ——3 data-driven
: | E[D1] — E[Ds o] | =k=1J/z Us | = “nitial condition test” dynamic estimation of ~ digital twin

I SN post-process a2 t t 1h lth, 2
= Var(Dy) — Var(Dzloy, 02) = {he0)} ——— {8, G} structural hea
= lwir G € {2g,3g}

: IE(Qs) —os | H

health control error
: [Rt , Ry , Ry }

t Zl

zZ9

calibrate mass
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The hardware
. . Jessara
Customized 12ft Telemaster aircraft s Qdurora

A BOEING COMPANY

Custom sensor suite
Fuselage mount

Ailerons

Access panel

structure

*Willcox has a family member who is co-founder of Jessara. Purchase of the sensors for use in the research was reviewed
and approved in compliance with all applicable MIT policies and procedures. 30



The structural model

Finite element model + reduced-order model

0%u 00+00+F 1[\7 (v )T] C
= c=—1Vu u O=~.L:E&
Patz ~ax T ay 2
force/displacement strain-displacement constitutive
equation of motion equations equations
top skin shear

root top skin web

a_ileron
linkages

Finite element model

multiple material types (carbon fiber, carbon rod, plywood,
foam) & multiple element types (solid, shell, beam);

~55 seconds per structural analysis
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+ boundary conditions
+ initial conditions

Reduced-order model
static condensation reduced
basis element (SCRBE)
method; ~0.03 seconds

per structural analysis
(1000x speedup)
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} vector of geometric parameters
} Young’s modulus scale factor

g } vector of added point masses

} Rayleigh damping coeflicients

N TR S oW

} vector of structural health parameters

[mm] [mm] [mm] [-1 [g] [s7'] [s]

Prior /\ /\ /\ /\ 2mse,~vo—|—mm-tot =472

information _ 0 0
N(435.6,1.3)  N(261.1,1.3)  N(1828.8,13)  N(1.0,0.026)  eervorMpiter=0




Baseline

model

calibrate
geometry, g

S
|

“measure geometry”

- g = |:i7 éroota ét’ip]
=g= [la Croot Ctip]
= IE[D1] — E[Dy]oy] |

3x 1/4"-20 T-nut pressed into rib

—
- T\\
_— ~
— ~

Observation

C-channel spar
8ply cap foam

core
3ply web \ /\
aileron cross-section

Croot Ctip l

[mm] [mm] [mm]

Prior
information

Posterior
estimate

VA NYA AN

N (435.6,1.3) N(261.1,1.3)  N(1828.8,1.3)

433 260 1828
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‘@\
calibrate

material properties, e

Us | = “load-displacement test”
= {f, 2}

=k=f/x

: Var(D2) — Var(Dz|o1, 02)

10 B — 40
= 95% credible
tip force, f - p(e)
[N] prior \ .
D ( Dg) posterior
51 == likelihood 20 p(Dzo2)
p(02|D2)
- (shown for each
measurement)

0 ' - - - 0!

0 4 8 12 16 0.8 1 1.2

observed tip displacement, £ [mm] Young’s modulus scale factor, e [ - |
Croot Ctip [ €
[mm] [mm] [mm] [-]
prior | /\_ AN yaN aN
information
N (435.6,1.3) N(261.1,1.3) N (1828.8,1.3) N (1.0,0.026)
Posterior
estimate
433 260 1828 1.0073 (0.0103)
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Experimental datasets

n 0.025 - Two mode fit
t
calibrate mass > S
. = i 3 Ime (S
and damping, m, «, 3 £0
7]
Us | = “initial condition test”
~ post-process o R ) N
S E0) (1,6
= wi, G
: || ]E(Q3) — 03 || Croot Ctip [ e Mservo o g
[mm] [mm] [mm] [-] [g] [s7] [s]
Prior /\ /\ /\ f E 2MiservotMpitor =472
information - Mopsror >0 0 0
N(435.6,1.3) N(261.1,1.3) N(1828.8,1.3) N(1.0,0.026) s P
Posterior
estimate
433 260 1828 1.0073(0.0103) 169.1(3.9) 1.030(0.001)  7.66x10™* (6.18x10~
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Calibrated digital twin reflects geometry, material

properties, and structural properties of the physical UAV,
along with estimates of our uncertainty

‘

Basehne mzp
1

model -\
calibrate

geometry, 9

= Q = [i, éT‘OOta étip]
=g = [l7 Croot Ctip]
: |E[D1] — E[D o] |

Uy | = “measure geometry”

:

calibrate

<1
material properties, e )
“load-displacement test” .
dcghbrafce mass Calibrated Dynamic

and damping, m, «, . . .
={f, &} ping p digital twm ----- .—) data-driven
=k=f/z Us | = “initial condition test” dynamic estimation of digital twin

_ (7 2(§)) Postprocess . 2 structural health, =z

Var(D3) — Var(Dz|o1, 02) = {6,¢(0)} s, G}

: [wi, Gl © {Zg %)

: | E(Q3) — o3|
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Dynamic evolution and decision-making

using the digital twin
21 — Aggressive flight path
22 - == Conservative flight path

Dynamic * Aircraft undergoes in-flight

- e T structural health degradation

dynamic estimation of digital twin _ |
structural health, 2 « 24 wing-mounted sensors r | Ue
€ {28, 3¢} provide noisy strain data P ghhR
=14 + Digital twin is dynamically f’
@)=1{} updated and used to drive -
= Ry, R, BT mission re-planning TheRa g
» Scenarios are simulated |
in ROS f
p(D D, ,0Q 0, ,R R. U U o 0r U 1_[[¢dynam1cs Qol eval] 1_[¢3551m 1_[ (pcontrol
07> tp' 07> tp' 07> tp' tc+1,..., tp 0 =) tC' Q) **- t t

t=t.+1



=== Aggressive flight path
== Conservative flight path

Uy

60 -

®

60
0 = o -

_estimation prediction\

a) Structural health parameters [%)]

4
~

. . uE
b) Normalized strain [M]
SENnsors:

1500 1 _ 9 = (&
observed. & estimated, €’
e m— =51
. . L N L. . e . . N — ! - ° " j =16
500- . L ] . L] [ ] N L]
C) Control lnputs [7] / deCiSiOIlS informed by dlgital thIl
32100009000 000000000000000000000000
Zg] \\ ______________ U
optimal decisions under ground truth
d) Reward functions [ |
—_———— —— R ——— Rhealth
RcontTol
N = RerTor
4 35 t.=40 tp, =50

Timestep, ¢



FROM AIRCRAFT
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. : U, | Control inputs
Ditelzl Vel St.ate : MRI studies, biopsies, .
Tumor dynamics, mechanics )

treatment regimens

N

1 s
Y PA

TN N
5, 10 20
0 10 20 0
time (d) Physical State

Anatomy & morphology,
mechanical & physiological state

Reward
Patient outcomes:

treatment efficacy, toxicity

@ Observational data

outcome

Anatomy, perfusion, permeability,
cell density, metabolism

Standard regimen

dose - chedule -

QEL"E @ Quantities of Interest
% ¥ Distribution of therapies,
" Reglmen B (3 dose) .
'. .¢° ONCOLOGY f‘é{;& ff 3 R TR
40
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Cancer Patient Digital Twin

ONCOLOGY
Collaboration with Oden Institute Center for Computational Oncology (T. Yankeelov)

baseline 1 month 3 months 5 months

..‘,g I A ) 1 \

v

| | =l
—————— ——— {
L | B e =7
- ==

[true glioma properties | ( So
MRI,

O

0

¢(t) = est. cell count D
0 = model parameters °

[est. glioma properties]




Challenges for
PREDICTIVE
DIGITAL TWINS
for complex
systems across
science, medicine
& engineering

Predictive modeling for complex systems at scale
Decisions demand a predictive window on the future

Validation, verification & uncertainty quantification

Achieving the levels of reliability and robustness needed for
certified high-consequence decision-making

Data, models and decisions across multiple scales

An integrated framework for calibration, data assimilation,
uncertainty quantification, optimization, planning & control

Scalable algorithms for updating, prediction & control

Incorporating physics-based modeling, data-driven learning &
state-of-the-art computational science

Optimal sensing strategies

Integrated sensor design, optimal experimental design (active

learning), intelligent adaptive data acquisition
42



decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems
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