ON THE SYNERGY OF DATA AND MODELS FOR VIRTUALIZING STRUCTURES & INFRASTRUCTURES

Prof. Dr. Eleni Chatzi

Chair of Structural Mechanics & Monitoring, ETH Zürich
Reality check: engineered systems...

- Experience motion
- Experience injury
- Experience accidents

- Are exposed to hazards
- Age & deteriorate
- Fail
Structural Health Monitoring

- **Low-cost and easily deployable sensors** for:
 - Recording & interpreting structural response
 - Diagnosing the system’s “health”
 - Optimally organize operation & maintenance actions
The SHM Chain

- Observations
- SHM Technology
- Simulation
- Performance
- Decision Support
- Time Series Analysis
- Network Level Populations
- Interpretability

SHM

Data-driven Models

Time Series Analysis

ML & Stochastic Indicators
The SHM Chain

Simulation

Performance

Decision Support

Interpretability

Network Level Populations

Multiscale FE

Data-driven Models

Nonlinear ROMs

SHM

Observations

SHM Technology

CIS Digital Twin Days
November 15-16th, 2021, EPFL
Prof. Dr. Eleni Chatzi
Inferring Models based on a purely data-driven approach
Learning from Data

Modelling Wake Effects

Motivation

- Obtain a representation of the data that is easier to manipulate and visualize
- Capture QoIs at the farm level, conditioned on operational variables

Generative Modeling

Visualization of wind deficits on individual WTs and at the farm level via Conditional Variational Autoencoders (CVAEs)

Smyth and Elliott, 2014

Mylonas, Abdalla & Chatzi, Model Validation and Uncertainty Quantification, 2019
Data is not enough

Physics-based Models

Hybrid Models
- Used for advanced SHM tasks or as Digital Twins
 - Detection, localization, quantification, prognosis
- Used on the fly for diagnostics & control
- Are explainable/interpretable

Purely data-driven representations

Simulation Paths

Hybrid

Computational toll should be low

Prognosis

Diagnosis
Reducing Uncertainty by Imposing Structure

Condition Monitoring
Challenge: Extracting robust data-driven indicators

Challenge
Non-stationary vibration response

Time-periodic dynamics
On short time intervals due to blade rotation and periodically varying excitation

Time-dependency
Over long time periods due to Environmental and Operational Variability (EOV)

Source: LPVS2019 presentation, L-D Avendano Valencia, E. Chatzi
Field Case Study

collaboration with
Repower Wind
Lübbenau GmbH
Bochum University

8 Wind Turbines
Vestas 90-2MW

Repower Wind Farm – Lübbenau Germany – Tower Monitoring
Wind Turbine Monitoring

Structural Response Data

Dertimanis, Spiridonakos, Bogoevska, Dumova, Höffer, & Chatzi

SCADA Data
Challenge: Extracting robust data-driven indicators

Hierarchical surrogate model

Coefficient model

Time-series model

Representation of short-term dynamics
- Non-parametric (PSD, FRF)
- Parametric (AR, ARMA, ARX, etc.)

Condition Assessment/Damage detection

Data – Driven Metamodels for Complex Dynamics

Nonlinear System

\[
y(t) = \sum_{i=1}^{n_d} \theta_i \cdot g_i(z(t)) + e(t), \quad e(t) \sim \text{NID}(0, \sigma^2_e[t])
\]

Discrete Wavelet Transform (Multi-Resolution Analysis)

\[
\begin{align*}
\theta_i(\xi) &= \sum_{j=1}^{p} \theta_{i,j} \phi_{d(j)}(\xi) \\
y(t) &= \begin{pmatrix} H(z) \\
G(z) \end{pmatrix} \Downarrow \rightarrow \begin{pmatrix} a^1 \\
H(z) \Downarrow \rightarrow \begin{pmatrix} a^2 \\
\vdots \Downarrow \rightarrow \begin{pmatrix} a^L \\
\end{pmatrix}
\end{pmatrix}
\end{align*}
\]

Time Varying System

\[
y(t) + a_1[t]y[t-1] + \ldots + a_n[t]y[t-n] = e[t] + c_1[t]e[t-1] + \ldots + c_n[t]e[t-n]
\]

\[
(1 - B)^\kappa a_i[t] = w_{a_i}[t], \quad w_{a_i}[t] \sim \text{NID}(0, \sigma^2_{w_{a_i}}[t])
\]

\[
(1 - B)^\kappa c_i[t] = w_{c_i}[t], \quad w_{c_i}[t] \sim \text{NID}(0, \sigma^2_{w_{c_i}}[t])
\]
K4 Vibration monitoring data
Dynamics of the WT under normal operation

TV-ARMA methods may be employed to model the non-stationary response

Model structure selection

<table>
<thead>
<tr>
<th>Method</th>
<th>BIC, stabilization (na = nc = 32)</th>
<th>BIC (na = nc = 32, v = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-TARMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenge: Extracting robust data-driven indicators

Hierarchical surrogate model

Coefficient model

Time-series model
- Representation of short-term dynamics
 - Non-parametric (PSD, FRF)
 - Parametric (AR, ARMA, ARX, etc.)

Coefficient model
- Representation of long-term variations
 - Functional Series (FS) expansion
 - Polynomial Chaos Expansions (PCE)
 - Gaussian Process Regression (GPR)

Condition Assessment/Damage detection

Long-Term Monitoring – Diagnostic Index

<table>
<thead>
<tr>
<th>Random input variables</th>
<th>Output variables</th>
<th>Polynomial Chaos basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wind direction [deg]</td>
<td>1. Standard deviation of the SP-TARMA model residuals</td>
<td>Legendre polynomials (maximum total order = 5)</td>
</tr>
<tr>
<td>2. Power [kW]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. RPM [U/min]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Yaw [rad]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational WT in Lübbenau, Germany *(collaboration with Uni. Bochum, Bogoevska et al.)*

Bogoevska, Spiridonakos, Chatzi et al. (2017)
CIS Digital Twin Days
November 15-16th 2021, EPFL
Prof. Dr. Eleni Chatzi

- observe & train
- predict & track error

Robust outlier analysis

Diagnostic Plot
What can Data Driven Diagnosis Ensure?

Detection

Localization

Mode Shape Curvatures based Damage Index
(relying on the distribution of sensors within a structural system)
What can Data Driven Diagnosis Ensure?

Detection

- Healthy - Training
- Healthy - Validation
- Extreme weather
- Damage

Localization

Diagnosis

But not prognosis

Localization

Damage Index

- Baseline mean
- 27. Nov 11:35
- 27. Nov 12:24
- 27. Nov 17:5
- 28. Nov 8:12
- 28. Nov 14:2
Real-time estimation via Fusion of Data & Physics-based models

Part I: Reduction
Reduced Order Representations relying on First Principles
ML-driven ROMs for Nonlinear Dynamics

\[\begin{bmatrix} X_1 & X_2 & \ldots & X_n \end{bmatrix} \]

Simpson, Dervilis, Chatzi (2021), On the use of Nonlinear Normal Modes for Nonlinear Reduced Order Modelling
Verification on a Nonlinear Benchmark

- 108 DOF frame structure featuring Bouc-Wen modelled hysteretic nonlinearities

Benchmark link (available in MATLAB & Python)
https://github.com/KosVla/BoucWenFrame

LSTM Tutorial for Nonlinear Sys ID
https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/Software/LSTM_demo_V2.html

Parametric Model Order Reduction

Problem statement

General nonlinear, parametric, dynamical structural system:

\[
M(p) \ddot{u}(t) + g(u(t), \dot{u}(t), p) = f(t, p)
\]

\[u(t) \in \mathbb{R}^n, M(p) \in \mathbb{R}^{n \times n}, f(t, p) \in \mathbb{R}^n, g(u(t), \dot{u}(t)) \in \mathbb{R}^n\]

Parametric dependency on \(k\) parameters denoted by:

\[p = [p_1, \ldots, p_k]^T \in \Omega \subset \mathbb{R}^k\]

Relevant notation:

- \(M\) is the system mass matrix
- \(u\) is the response time history
- \(f\) is the vector of external loads
- \(g\) are the nonlinear, state-dependent internal forces

The goal of parametric MOR is to generate a low-dimensional, equivalent system such that the underlying physics along with the parametric dependencies of interest are further retained.

\[
M_r(p_j) \ddot{u}_r(t) + g_r(u(t), \dot{u}(t), p_j) = f_r(t, p_j)
\]

\[
M_r(p_j) \in \mathbb{R}^{r \times r}, g_r(u(t), \dot{u}(t), p_j) \in \mathbb{R}^r, f_r(t, p_j) \in \mathbb{R}^r
\]

\[
u(t) = V(p_j)u_r(t)
\]

\[
f_r(p_j) = V(p_j)^T f(t, p_j)
\]

\[
M_r(p_j) = V(p_j)^T M(p_j) V(p_j)
\]

\[
g_r(p_j) = V(p_j)^T g(u(t), \dot{u}(t), p_j)
\]

\[r \ll n\]
Parametric Reduced Order Modelling
Handling Nonlinear Behaviour

Addressing Nonlinearities:
- Localized phenomena dominate response due to nonlinear terms
- Solutions span substantial different subspaces

⇒ Approximate local manifolds based on response and underlying dynamics similarity
⇒ Partitioning / Clustering strategies

Parametric Reduced Order Modelling
Handling Nonlinear Behaviour

Addressing Nonlinearities:
- Localized phenomena dominate response due to nonlinear terms
- Solutions span substantial different subspaces

$$\Rightarrow$$ Approximate local manifolds based on response and underlying dynamics similarity
$$\Rightarrow$$ Partitioning / Clustering strategies

3D Cantilever Beam

Localized nonlinear region:
Isotropic von Mises plasticity
Spanning 20% of global domain

Parametric context

Ground motion excitation:
=> Temporal & Spectral characteristics

System traits;
=> Yield Stress

Ground motion parametrization

- Gaussian noise signal (1000 components)
- Low-pass filter
 => Dependency on frequency
- Varying Amplitude coefficient

Response = Ideal + Deviatoric

Components are treated independently employing
POD projection-based reduction

→ Projection Basis V_x for the external domains
→ Projection Basis V_z for the isolated nonlinear region

Collab wth Dane Quinn (U Akron), Adam Brink (SNADIA)
ROM Performance

Example Response Approximation

Performance considerations

→ Response is reproduced accurately
→ Stress state is sufficiently captured
→ Speed-up
 ➢ Dependent on size of nonlinear domain
 ➢ Hyper-Reduction needed
→ Size of projection bases:
 ➢ Basis for external components: $r_x=4$
 ➢ Basis for internal component: $r_z=20$

Error metrics

<table>
<thead>
<tr>
<th></th>
<th>Error metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (Displacements approx.)</td>
<td>$\leq 1%$</td>
</tr>
<tr>
<td>Maximum (Displacements approx.)</td>
<td>$\leq 1%$</td>
</tr>
<tr>
<td>Median (Nodal stress approx.)</td>
<td>$4.83%$</td>
</tr>
<tr>
<td>Maximum (Nodal stress approx.)</td>
<td>$14.75%$</td>
</tr>
</tbody>
</table>
ROM Performance

Stress visualization for the High Fidelity Model

Stress visualization for the pROM approximation
Real-time estimation via Fusion of Data & Physics-based models

Part II: Data Assimilation
Real-Time Virtual Sensing under unknown inputs
Joint Input-State estimation for Fatigue Assessment

Long, Tiso, Tatsis, Chatzi et al. (2018)
Virtual Sensing

1) Uncertainty
2) Nonlinearity
3) Limited Observations
4) Large Dimensionality

unknown states
unknown parameters
a-priori model
unknown inputs

Virtual Sensors
QoI (e.g. fatigue life)

Input-state-parameter estimation of structural systems from limited output information
Hybrid Schemes: Data coupled with Models

Consider the general dynamical system described by the following nonlinear continuous state-space (process) equation

$$\dot{x} = f(x(t), u(t), w(t))$$

and the nonlinear observation equation at time $t = k\Delta t$

$$y(t) = h(x(t), v(t))$$

or in discrete form:

$$x_{k+1} = F(x_k, u_k, w_k)$$

$$y_k = H(x_k, v_k)$$

where w_k is the process noise vector with covariance matrix Q_k, v_k is the observation noise vector with corresponding covariance matrix R_k, and function F is obtained from f via numerical integration.
Tackling Uncertainty - The Optimal Bayesian Solution

Predict

Assuming the prior $p(x_0)$ is known and that the required pdf $p(x_{k-1}|y_{1:k-1})$ at time $k-1$ is available, the prior probability $p(x_k|y_{1:k-1})$ can be obtained sequentially through prediction (**Chapman-Kolmogorov equation**):

$$p(x_k|y_{1:k-1}) = \int p(x_k|x_{k-1})p(x_{k-1}|y_{1:k-1})dx_{k-1}$$

Update

Consequently, the prior (or prediction) is updated using the measurement y_k at time k, as follows (**Bayes Theorem**):

$$p(x_k|y_{1:k}) = p(x_k|y_k, y_{1:k-1}) = \frac{p(y_k|x_k)p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})}$$
Approximation via Particles – the UKF & PF

Predict Step

\[x_{k+1} = F(x_k, u_k, w_k) \]

Update Step

\[y_k = H(x_k, v_k) \]

(measurement equation)
Real-time estimation via Fusion of Data & Physics-based models

Part III: Virtual Sensing for Damage Detection
Real-Time Vibration based Crack Detection using pROMs

Case Study: Crack Detection on Fuselage
Parametric Model Order Reduction

Projection based reduction

\[
\mathbf{M}(\theta)\ddot{\mathbf{u}}(t) + \mathbf{C}(\theta)\dot{\mathbf{u}}(t) + \mathbf{K}(\theta)\mathbf{u}(t) = \mathbf{S}_p \mathbf{p}(t), \quad \mathbf{u} \in \mathbb{R}^n
\]

\[
\tilde{\mathbf{M}}(\theta)\ddot{\mathbf{q}}(t) + \tilde{\mathbf{C}}(\theta)\dot{\mathbf{q}}(t) + \tilde{\mathbf{K}}(\theta)\mathbf{q}(t) = \mathbf{V}(\theta)^T \mathbf{S}_p \mathbf{p}(t) , \quad \mathbf{q} = \mathbf{V}(\theta)\mathbf{q}(t), \quad \mathbf{q} \in \mathbb{R}^k
\]

\(\mathbf{V}(\theta)\) Reduced basis, extracted via clustering over regions of the parameter space

\[
\mathbf{V}(p_4) \equiv ... \equiv \mathbf{V}(p_7)
\]

\[
\mathbf{V}(p_1) \equiv \mathbf{V}(p_2) \equiv \mathbf{V}(p_3)
\]
Parametric Model Order Reduction
Mesh Morphing

initial mesh → flat mesh

Discrete minimal surfaces

morphed flat mesh → morphed mesh

Agathos, Tatsis, Chatzi et al. (2021)
Hierarchical state-input-parameter estimation

Hierarchical Bayesian approach

\[\hat{N}_{\text{eff}} \]

Hypothesis testing

\[F_1(\theta_1^k) \]

\[\tilde{y}_k, S_k \]

\[\tilde{x}_k, P_k \]

\[w_k^1 \]

\[\theta_2^2 \]

\[F_2(\theta_2^k) \]

\[\tilde{y}_k, S_k \]

\[\tilde{x}_k, P_k \]

\[w_k^2 \]

\[\vdots \]

\[\vdots \]

\[w_k^{n_0} \]

\[F_{n_0}(\theta_1^{n_0}) \]

\[\tilde{y}_k, S_k^{n_0} \]

\[\tilde{x}_k^{n_0}, P_k^{n_0} \]

\[w_k^{n_0} \]

\[\sum \]

\[\hat{x}_k, P_k \]

\[\hat{\theta}_k \]

Resample parameter space

Update weights

Observations \(y_k \)

PF stage

Bank of adaptive AKFs

PF stage

Tatsis, Chatzi et al. (2021, MSSP)
Hierarchical state-input-parameter estimation

Results – Crack Localization

Parameter estimation results from five different runs depicted in red, blue, green orange and grey; actual values represented via black dashed lines.

Tatsis, Chatzi et al. (2021, MSSP)
Hierarchical state-input-parameter estimation

Results – Virtual Sensing

Response estimation at unmeasured points A, B, C and D; green line represents the actual noisy signal and black dashed line depicts the predicted response.

<table>
<thead>
<tr>
<th></th>
<th>FOM1</th>
<th>FOM2</th>
<th>ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>65,730</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>elements</td>
<td>10,402</td>
<td>10,402</td>
<td>258–270</td>
</tr>
<tr>
<td>number of clusters</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>maximum error %</td>
<td>–</td>
<td>0.0000</td>
<td>1.8279</td>
</tr>
<tr>
<td>mean error %</td>
<td>–</td>
<td>0.0000</td>
<td>0.6123</td>
</tr>
<tr>
<td>solution time (s)</td>
<td>71.5291</td>
<td>22.8316</td>
<td>0.1288</td>
</tr>
<tr>
<td>speedup</td>
<td>–</td>
<td>–</td>
<td>177.2420</td>
</tr>
</tbody>
</table>

Tatsis, Chatzi et al. (2021, MSSP)
Extensions

- **Dual Kalman Filter** for Joint Input-State estimation
- **Dual Unscented Kalman Filter** for Joint Input-Parameter-State estimation
- **Discontinous “D-KF”** for non-smooth systems
Extensions

- Discontinuous “D-KF” for non-smooth systems

To introduce the computational part of the $D-$ modification, a row switching transformation matrix T_i is defined such that:

$$T_i \cdot v = \begin{cases} v^{oi} \\ v^{ui} \end{cases}$$

$$T_i \cdot A \cdot T_i^T = \begin{bmatrix} A^{oo} & (A^{uo})^T \\ A^{uo} & A^{uu} \end{bmatrix}$$
Extensions

- **Dual Kalman Filter** for Joint Input-State estimation
- **Dual Unscented Kalman Filter** for Joint Input-Parameter-State estimation
- **Discontinous “D-KF”** for non-smooth systems
- **Particle Filter with Mutation** for non-Gaussian states/noise sources

![Diagram](image_url)

Replace by the fit particles or by the prior estimate \hat{x}_i with probability p_e

$w'_k = \frac{1}{N}$

Mutate the time invariant component of the previously unfit particles, using a mutation probability p_m.

Mutated weights:

$w'_k = \frac{1}{M} \frac{1}{\| \omega \|} $
Real-time estimation via Fusion of Data & Physics-based models
Part IV: Tackling Model Discrepancy
Structured Model Inference

Physic-based stream z_{t-1}^{phy}

Inference Network

Sensor data $(x_{1:T})$

Learning stream z_{t-1}^{NN}

Prior knowledge

Fusion of knowledge $\alpha z_{t}^{phy} + (1 - \alpha) z_{t}^{NN}$

z_{t}^{phy}

z_{t}^{NN}

$1 - \alpha$
Physics Informed Deep Markov Models
Coupling Model Structure with ML for Modeling Discrepancy

Bridge/road condition monitoring (drive-by monitoring)

physics-based model

$$\alpha \mathcal{M} + (1 - \alpha) \mathcal{N}\mathcal{N}_1$$

learning-based model

$\mathbb{Z}_t \xrightarrow{\mathcal{N}\mathcal{N}_2} \mathbb{X}_t \xrightarrow{\text{sensor data}} \mathbb{Z}_{t+1} \xrightarrow{\mathcal{N}\mathcal{N}_1} \mathbb{X}_{t+1} \xrightarrow{\text{sensor data}} \mathbb{Z}_{t+2} \xrightarrow{\mathcal{N}\mathcal{N}_1} \mathbb{X}_{t+2} \rightarrow \cdots \rightarrow \mathbb{Z}_T \rightarrow \mathbb{X}_T$
Mobile Sensing

\[\alpha + (1 - \alpha) \mathcal{N}_1 \]

Collab with SMART @Create
The Silverbox Experimental Benchmark

Electronics Setup
- Models a non-linear damper
 - Linear damping
 - Nonlinear spring force
- Input – waveform representing an external force
- Output - displacement

\[m \ddot{x}(t) + d \dot{x}(t) + ax(t) + bx^3(t) = u(t) + w(t) \]
\[y(t) = x(t) + e(t) \]
The Silverbox Benchmark

Figure 14: Testing results of the Silverbox benchmark problem: (a) PgDMM; (b) DMM
Real-time estimation via Fusion of Data & Physics-based models

Part V: What Next?
Fusion of Models with Data (Hybrid approach)
Vehicle – Track Simulation Models
Hybrid Performance Indicators

Measured axle box vibration

Simplified vehicle model

Kalman filter

Contact force

\[F = k_{wf} \cdot r_f(t) \]

Forced displacement \(r_f(t) \)

Time (s)
Fractal Values as a Deterioration/Condition Indicator

- The DI decreases due to deterioration, until maintenance actions are taken.
- Actions taken in 2010 and 2011.
Identified Challenges

- Incorporate stochastic models and uncertain data, based on firm mathematical foundations
- Provide accurate assessment of system state at all times
- Optimize long-term objectives
- Uses near-real-time observations
- Allow for near-real-time optimal decision support
Sequential decision process with alternating Actions (A) & observations (Ω)

\[T = P(s' | s, a) \]
Markov Decision process

Fully Observable MDP

- Decision depends on current state, no history
- Initial state is known
- Action’s consequences are known
- World is known
- The state is fully observable

Partially Observable MDP

(Smallwood and Sondik, 1973; Sondik, 1978)
Markov Decision process

Fully Observable MDP

- Decisions depend on current state and history
- Initial state is uncertain
- Actions are uncertain
- World is known
- Observations are uncertain
- Sequential process: action \rightarrow observation \rightarrow action . . .

(Partially Observable MDP)

- Decisions depend on current state and history
- Initial state is uncertain
- Actions are uncertain
- World is known
- Observations are uncertain
- Sequential process: action \rightarrow observation \rightarrow action . . .

(Smallwood and Sondik, 1973; Sondik, 1978)
The POMDP Framework

\[O = P(o|s', a) \]

\[T = P(s'|s, a) \]

\[b(s) \]

\[b(s') \]
Use of Reinforcement Learning for Model Inference

\[O = P(o|s', a) \]

\[T = P(s'|s, a) \]
Bayesian HMM to fit the fractal values DI

- Transition Matrices
 - Strongly informative Dirichlet priors, one per each action

- Hidden States
 - Categorical Distribution, Dependent on actions

- Observation Model
 - Informative priors
 - Sampling with HMC (NUTS)

- Observations (Fractal values)
Transition matrix results: action 0 Do-nothing
Transition matrix results

minor action 1 (tamping)

major action 2 (renewal)
Use of GPR Data for Ballast Assessment

Schöbi & Chatzi (2016); Andtiotis, Papokonstantinou & Chatzi (2021)
Goals

- **Intelligent Use** of Monitoring **Data for Understanding & Tracking Dynamics**

- **Optimally fuse data & models** for improved assessment and prediction capabilities for **systems beyond LTI**

- **Explainable/Interpretable Reduced Order Models**

- Identifying **suitable performance indicators** across local/global, system/network levels

- **Getting More** out of Engineered Systems (longer-lasting, safer, more serviceable systems)
Acknowledgments

- The European Research Council via the ERC Starting Grant WINDMIL (ERC-2015-StG #679843) on the topic of Smart Monitoring, Inspection and Life-Cycle Assessment of Wind Turbines.

- H2020-MSCA-IF-2017 Grant, SiMAero, Simulation-Driven and On-line Condition Monitoring with Applications to Aerospace Proposal

- SANDIA National Labs
We welcome questions/comments/collaboration:
chatzi@ibk.baug.ethz.ch