CoreNEURON

An optimized compute engine for the NEURON simulator
In order to improve performance and benefit from new computing architectures, the core functionalities of the widely used NEURON simulator have been isolated and optimized into a new simulator engine CoreNEURON. It helps existing NEURON users simulate larger models thanks to more efficient memory usage, reducing consumption to 15%–25% of the previous usage. In addition, CoreNEURON yields faster simulation times of 2–7x speed up. CoreNEURON enables scientists to better utilize computing resources and helps deliver science sooner. CoreNEURON is developed by the Blue Brain Project in collaboration with Michael Hines at Yale University.

The evolution of NEURON and the role of CoreNEURON

Plasticity Simulation Workflow

To handle large network models that cannot be built at once, the CoreNEURON workflow loads data in pieces and optimized data is written to disk. Once all the pieces have been processed, CoreNEURON can load the cached data back from disk and run the full model using substantially less memory.
CoreNEURON has been developed with the goal of minimizing memory footprint and maximizing scalability on large supercomputers. It supports graphics processing units (GPU), makes use of streamlined versions of data structures, and allows efficient use of compute hardware capabilities such as SIMD units on desktop as well as large supercomputing platforms. The memory usage is reduced by 7x and simulation time improved up to 6x. The CoreNEURON simulator handles spiking network simulations including gap junction coupling with the fixed time step method.

Latest Simulation Time (seconds)

<table>
<thead>
<tr>
<th>Model</th>
<th>BG-Q</th>
<th>Xeon</th>
<th>KNL-DRAM</th>
<th>KNL-MCDRAM</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEURON</td>
<td>20.6</td>
<td>17.2</td>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoreNEURON</td>
<td>7.6</td>
<td>6.0</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exemplar Ring Network Benchmark

- **Giuseppe Chindemi**, a scientist within the Blue Brain Project is using CoreNEURON to create plasticity simulations on MIRA as part of an INCITE grant.

 "CoreNEURON opened a whole world of new possibilities for us. We can now study complex brain dynamics, such as connectome rewiring, at a level of detail that was impossible, not long ago."

- **Oren Amsalem** who works in the Neurobiology department at the Hebrew University of Jerusalem uses CoreNEURON to simulate the somatosensory cortex with gap junctions.

 "CoreNEURON accelerated our simulations allowing us to replicate full length visual and auditory experiments. This enabled us to gain a deeper understanding of experimental results by uncovering the underlying biophysical and molecular mechanisms. CoreNEURON is extremely easy to use, the support team is responsive, helpful and friendly."
About EPFL's Blue Brain Project

The aim of the EPFL Blue Brain Project, a Swiss brain research initiative founded and directed by Professor Henry Markram, is to establish simulation neuroscience as a complementary approach alongside experimental, theoretical and clinical neuroscience to understanding the brain by building the world’s first biologically detailed digital reconstructions and simulations of the mouse brain.

CoreNEURON is available at:

As source: github.com/BlueBrain/CoreNeuron
In case of installing CoreNEURON from source, the user will also require NEURON for model building process: neuron.yale.edu/neuron/

Acknowledgements

CoreNEURON is developed in a joint collaboration between the Blue Brain Project and Yale University. Financial support was provided by the ETH Board funding to the Blue Brain Project and by the following grants: European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 604102 (HBP), European Union’s Horizon 2020 research and innovation programme under grant agreements no.720270. (HBP SGA1) and no.785907 (HBP SGA2). The Blue Brain Project would like to thank Michael Hines in particular for his on-going support and his extensive knowledge of NEURON use cases over the years which has helped prioritize the features that have gone into CoreNEURON.

For more information on CoreNEURON, please contact:

James King
Section Manager, High Performance Computing
Blue Brain Project
jamesgonzalo.king@epfl.ch

For technical information on CoreNEURON, please contact:

Pramod Kumbhar
Architect, High Performance Computing
Blue Brain Project
pramod.kumbhar@epfl.ch

Michael Hines
Senior Research Scientist
Yale University
michael.hines@yale.edu

For press enquiries, please contact:

Kate Mullins
Communications Manager
Blue Brain Project
kate.mullins@epfl.ch