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Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?
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Spherical codes and variants

θ

Spherical codes:

max{|C |, C ⊂ Sn−1, x · y ≤ cos θ for all x 6= y ∈ C}
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Spherical codes and variants

θ
π
3

Kissing number:

max{|C |, C ⊂ Sn−1, x · y ≤ 1/2 for all x 6= y ∈ C}
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Spherical codes and variants

θ
π
3

Kissing number of the hemisphere:

max{|C |, C ⊂ Hn−1, x · y ≤ 1/2 for all x 6= y ∈ C}
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Spherical codes and variants

θ
π
3

R

r

Packing spheres in spheres:

max{|C | : C ⊂ B(0,R − r), ‖x − y‖ ≥ 2r for all x 6= y ∈ C}

4



Examples

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1
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c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
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Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : α0, . . . , αd ≥ 0,

f (1) ≤ M − 1,

f (u) ≤ −1 for all u ∈ [−1, cos θ]}

where

f (u) =
d∑

k=0

αkP
n
k (u).

This is a linear programming bound.
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : αk ≥ 0,Fk � 0

d∑
k=0

αk + F (1, 1, 1) ≤ M − 1,

d∑
k=0

αkP
n
k (u) + 3F (u, u, 1) ≤ −1 for all u ∈ [−1, cos θ],

F (u, v , t) ≤ 0 for all (u, v , t) ∈ ∆}

where

F (u, v , t) =
d∑

k=0

〈Fk ,Sn
k (u, v , t)〉.

This leads to semidefinite programming upper bounds using sums of

squares.
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Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.
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Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.
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Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0
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Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)
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Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d). 16



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.
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Rounding over Q: the affine conditions

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

• Solve the system by backsubstitution.

For every free variable, take a value close to the corresponding value

in x∗.

The linear system is then satisfied... But what about the PSD conditions?

18
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Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19
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Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20
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Rounding over Q: detecting kernel vectors (general case)

This is not enough in general. How to extract a nice basis from the

numerical values?

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉

21



Rounding over Q: detecting kernel vectors (general case)

Key idea: use the LLL algorithm to detect an integer linear equation

almost sastisfied by the kernel vectors...

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉
-1

3

-2

{
−u1 + 3u2 − 2u3 = 0
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Rounding over Q: detecting kernel vectors (general case)

...and another one...

ker(Bi (x∗)) ≈ 〈


0.19550004741012542//////////////////////////

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846///////////////////////////

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉 1

-3

2{
−u1 + 3u2 − 2u3 = 0

u2 − 3u3 + 2u4 = 0
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Rounding over Q: detecting kernel vectors (general case)

With enough equations, we can compute the expected kernel basis.

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉
{
−u1 + 3u2 − 2u3 = 0

u2 − 3u3 + 2u4 = 0

ker(Bi (x)) = 〈


7

3

1

0

 ,


−6

−2

0

1

〉
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Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.
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1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

7. Restart from 1. and don’t forget to save the solution.

8. Celebrate.
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Back to geometry

Once we get an exact optimal solution, we need to check that the function

F (u, v , t) gives enough information on possible optimal configurations:

• Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

• If needed compute the possible 3-point distance distribution of an

optimal code.

• Use this information and a bit of geometry to prove that the

candidate optimal configuration is unique!
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Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?
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Thank you!
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Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

• The semidefinite program is defined over Q(
√
d), namely

A = A1 +
√
dA2, b = b1 +

√
db2

where A1,A2, b1, b2 have coefficients in Q.

• We also expect a solution over Q(
√
d), so write

x = x1 +
√
dx2

and work over Q: (
A1 dA2

A2 A1

)(
x1

x2

)
=

(
b1

b2

)
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Bonus: extension to quadratic fields (finding good x∗1 ,x∗2 )

• From the numerical x∗ satisfying Ax∗ ≈ b we need to find x∗1 and x∗2
such that x∗ ≈ x∗1 +

√
dx∗2 and(
A1 dA2

A2 A1

)(
x∗1
x∗2

)
≈

(
b1

b2

)
.

• To do so, solve (in floating point) the linear system:(
A1 dA2

A2 A1

)(
y

1√
d

(x∗ − y)

)
≈

(
b1

b2

)
.
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Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉

• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2.
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