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e Packing problems: What kind of problems?
e Semidefinite programming bounds: Applications of David's lectures.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?
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Kissing number of the hemisphere:

max{|C|, CcH"™! x.y<1/2forallx+#yec C}



Spherical codes and variants

Packing spheres in spheres:

max{|C|: C C B(0O,R—r),||x —y|| > 2r forall x # y € C}
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e The square antiprism, the unique optimal #-spherical code in
dimension 3 with cos @ = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986). 3

e For the Hemisphere in dimension 8: the Eg lattice provides an optimal
configuration (Bachoc-Vallentin, 2008). What about uniqueness?
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Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.
e Upper bounds: Hierarchies of semidefinite upper bounds (see David's
lectures). In particular, for spherical codes:

e 2-point bound (Delsarte-Goethals-Seidel 1977)
e 3-point bound (Bachoc-Vallentin 2008).
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Recall the two main ingredients:

e Up to symmetry, a couple x, y of points in a #-spherical code is

uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

e The normalized Gegenbauer polynomials P](u) (with P7(1) = 1),
satisfying:

For every X C S" ! finite, Z Pl(x-y)>0.
x,yeX
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d
0< Y (Y Pilxy))= > flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)
k=0 x,yeC x,yeC XF£y
So
IC| < f(1) +1
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where ;
f(u) = arPf(u).
k=0

This is a linear programming bound.
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

e Up to symmetry, a triple of points x, y, z in a f-spherical code is

uniquely determined by
u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,1,1)} i—y 2
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e Up to symmetry, a triple of points x, y, z in a f-spherical code is

uniquely determined by
u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,1,1)} i—y 2
AO:{(uauyl):Ue[—l,COSQ]} X;é_y:z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv? —v? —t*> >0}
e Matrix polynomials S](u, v, t) satisfying:
For every X C S" finite, Z SP(x-y,x-z,y-t)-0.
x,y,zeX
10



3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d > 0, the size of a #-spherical code is at most

min{fM e R: a) >0,F, =0
d
> ap+F(1,1,1) <M -1,
k=0

ZakPk )+ 3F(u,u,1) < —1 for all u e [—1,cosb)],

F(u, v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) ZFk,Sk(uvt)
k=0
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d > 0, the size of a #-spherical code is at most

min{fM e R: a) >0,F, =0
d
> ap+F(1,1,1) <M -1,
k=0

ZakPk )+ 3F(u,u,1) < —1 for all u e [—1,cosb)],

F(u, v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) ZFk,Sk(uvt)
k=0

This leads to semidefinite programming upper bounds using sums of

squares.
q 11
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Less symmetry makes it harder

e These bounds work for spherical codes.

e They rely on the action of the orthogonal group @(n) on S" 1.

e For spherical codes in spherical caps, the symmetry group is O(n—1).
e Delsarte linear programming bound does not apply anymore!

e Nevertheless, one can still compute the 2-point bound for these
problems.

e These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12
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Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

e Geometry: Sharp bounds provide additional information on optimal
configurations, leading to uniqueness proofs.

13
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Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

d
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14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

= forall x,y € C,x-y €{0,£1/2, £1}

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

=forall x,y € C,x-y €{0,£1/2,£1} = C=(

14
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Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

e F£g gives an optimal configuration on the hemisphere in dimension 8
(Bachoc-Vallentin 2009)
— Uniqueness (Dostert-de Laat-M 2020)
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Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).
e Our context: The problems provide a candidate field to round over,

either Q or Q(\/d). 16
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Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

e Use symmetries to reduce the number of variables.
(110376 — 37651 for the Hemisphere in dimension 8)

e Solve the SDP numerically in high precision (SDPA-GMP),
— get an approximate solution x*:
e Ax* =~ b
e The blocks B;(x*) might have negative near zero eigenvalues.

17
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Rounding over QQ: the affine conditions

We want to find a solution x close to x* and such that

Ax = b.

e Put the system into reduced row echelon form in rational arithmetic,
(use Hecke in Julia, the system can be big)

e Solve the system by backsubstitution.
For every free variable, take a value close to the corresponding value

in x*.

The linear system is then satisfied... But what about the PSD conditions?

18
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Rounding over Q: the PSD conditions

e If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e If the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

e Sometimes not. How to force all these constraints?
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Rounding over Q: detecting kernel vectors (one dimension)

We expect a solution over QQ.

Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.

First example: one dimensional kernel.

0.859374473300157 —15.19999999999925
—0.429687236650083 . 7.5999999999997
—0.2713814126211060 4.79999999999982
—0.056537794296065 1.0

Then B;(x)v = 0 provides new linear constraints on x!
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Rounding over Q: detecting kernel vectors (general case)

This is not enough in general. How to extract a nice basis from the
numerical values?

0.19550004741012542 —0.8676883652023846
ker(B:(x")) ~ ( —0.10616756374846323 —0.4321427618192919 >
' V| —0.25700180101766007 |’ | —0.2143699892153049

—0.33241916014721035 —0.1054836185183479
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Rounding over Q: detecting kernel vectors (general case)

Key idea: use the LLL algorithm to detect an integer linear equation
almost sastisfied by the kernel vectors...

0.19550004741012542 —0.8676883652023846\ -1
ker(Bi(x*)) ~ ( —0.10616756374846323 7 —0.4321427618192919 >3

—0.25700180101766007 —0.2143699892153049 | -2

—0.33241916014721035 —0.1054836185183479

{—Ul +3u, —2u3 =0
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Rounding over Q: detecting kernel vectors (general case)

...and another one...

O/ARBEUN0ATAVIL B2 110 B8 TOBGROPRORSEAS

ker(Bi(x*)) =~ ( —0.10616756374846323 —0.4321427618192919 >1
—0.25700180101766007 | | —0.2143699892153049 | -3
—0.33241916014721035 —0.1054836185183479/ 2

—u1 + 3u, — 2u3 =0
up —3uz +2us =0

21



Rounding over Q: detecting kernel vectors (general case)

With enough equations, we can compute the expected kernel basis.

0.19550004741012542 —0.8676883652023846
ker(Bi(x*)) ~ ( —0.10616756374846323 7 —0.4321427618192919 >

—0.25700180101766007 —0.2143699892153049

—0.33241916014721035 —0.1054836185183479

—uy +3u, — 2u3 =0
up —3uz +2us =0
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Rounding over Q: the complete procedure

1. Compute an approximate solution x*.
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1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

o & = W

Check that the blocks of the rounded solution are indeed PSD.
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1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

3. Include the new linear constraints in the linear system Ax = b.
4. Row reduce the linear system.

5. Solve it with backsubstitution using x*.

6. Check that the blocks of the rounded solution are indeed PSD.
7. Celebrate.
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1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

Check that the blocks of the rounded solution are indeed PSD.

éléhhavé/ Restart from 1. and don't forget to save the
solution.
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Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

=

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

Check that the blocks of the rounded solution are indeed PSD.

Restart from 1. and don’t forget to save the solution.

@ =N & @l > W

Celebrate.

22



Back to geometry

Once we get an exact optimal solution, we need to check that the function
F(u, v, t) gives enough information on possible optimal configurations:
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Back to geometry

Once we get an exact optimal solution, we need to check that the function

F(u, v, t) gives enough information on possible optimal configurations:

e Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).
e |f needed compute the possible 3-point distance distribution of an
optimal code.

e Use this information and a bit of geometry to prove that the
candidate optimal configuration is unique!

23



Generalizations (done or to be done)
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Generalizations (done or to be done)

e We extended our rounding procedure to quadratic fields (needed for
the square antiprism).

e Besides spherical codes, we could apply our method for packing
spheres in spheres (here also quadratic fields are needed).

e There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

e What about other applications?

24



Thank you!




Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):
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where A1, Ay, b1, by have coefficients in Q.
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Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

e The semidefinite program is defined over Q(v/d), namely
A:Al—i—\/gAg, b:b1+\fdb2

where A1, Ay, b1, by have coefficients in Q.

e We also expect a solution over (@(\/3) so write
X =x1+ \Fdxz

and work over Q:

26



Bonus: extension to quadratic fields (finding good x;,x})

e From the numerical x* satisfying Ax* ~ b we need to find x; and x3
such that x* ~ x} +v/dx3 and

A1 dA2 Xf - b1
Ay AL \x)  \ )
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Bonus: extension to quadratic fields (finding good x;,x})

e From the numerical x* satisfying Ax* ~ b we need to find x; and x3
such that x* ~ x} +v/dx3 and

A1 dA2 Xf - b1
Ay AL \x)  \ )
e To do so, solve (in floating point) the linear system:

A1 dA> y - by
Ay AL\ B =y)) T\ k)

27



Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

uy uj
ker(Bi(x*)) = (| i [+ | 1 ]
uj uf
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Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

1 r
L L
B2 ~
ker(Bi(x")) = ( oeea | 0|0
uj uj
e Look for integer relations in
1 r
Ul ul )\]_
1 r /
uj uj

Vdul |7 Vduf |

Vduj vduf)

e Compute the expected kernel over Q and add the corresponding
constraints on x; and x». 28



