Exact semidefinite programming bounds
for packing problems

Philippe Moustrou, UiT The Arctic University of Norway
Joint work with M. Dostert (EPFL) and D. de Laat (TU Delft).

Online Summer School on Optimization, Interpolation and Modular Forms
August 28, 2020

the Paris of the No

o m I F H

e de Barent
Tromso
Paris, France
Ajouter une destination
oPTIONS
TromseQ
v ge o
Nonége
® viaEa 652h
.
Islande
DETAILS
)) A Finlande
' m-41152m
o) Ver et Estonie
4 Lettonie. Moscou
Mockea
: Lituanie ©
Royaume-Uni
IHande Pologne | Bidlorussie
Londres /
Allemagne
-4 9~ brague
éhiauie
e dot Ui
Aurich Moldavie
- Hongrie Y
Roumanie
Crostie
serbie
o MerNoire
aarcgone oome Bulgarie
Portugal Vegd Mer stanbut
Espagne i Gréce Turquie
i Google
Mer Données cartodradhial

Tromsg: the Paris of the North

semidefinite programming bounds for packing problems

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

e Semidefinite programming bounds: Applications of David's lectures.

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?
e Semidefinite programming bounds: Applications of David's lectures.

° : Why do we want exact bounds?

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?
e Semidefinite programming bounds: Applications of David's lectures.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?
e Semidefinite programming bounds: Applications of David's lectures.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

Spherical codes and variants

Ao)

Spherical codes:

max{|C|, CcS™' x.y<coshforall x#yc C}

Spherical codes and variants

Kissing number:

max{|C|, CcS" ! x.y<1/2forallx+#yec C}

Spherical codes and variants

Kissing number of the hemisphere:

max{|C|, CcH"™! x.y<1/2forallx+#yec C}

Spherical codes and variants

Packing spheres in spheres:

max{|C|: C C B(0O,R—r),||x —y|| > 2r forall x # y € C}

We are interested in special rigid structures, like:

We are interested in special rigid structures, like:

e The square antiprism, the unique optimal #-spherical code in
dimension 3 with cos @ = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986). 3

We are interested in special rigid structures, like:

e The square antiprism, the unique optimal #-spherical code in
dimension 3 with cos @ = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986). 3

e For the Hemisphere in dimension 8: the Eg lattice provides an optimal
configuration (Bachoc-Vallentin, 2008). What about uniqueness?

>183

240

Graph formulation

Let G = (V, E) be the graph where:

Graph formulation

Let G = (V, E) be the graph where:

o V=251 (or H™ 1),

Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.

Graph formulation

Let G = (V, E) be the graph where:
o V=251 (or H™ 1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.

e Upper bounds: Hierarchies of semidefinite upper bounds (see David's
lectures). In particular, for spherical codes:

Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.

e Upper bounds: Hierarchies of semidefinite upper bounds (see David's
lectures). In particular, for spherical codes:

e 2-point bound (Delsarte-Goethals-Seidel 1977)

Graph formulation

Let G = (V, E) be the graph where:

o V=5"1(or H™1),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.
e Upper bounds: Hierarchies of semidefinite upper bounds (see David's
lectures). In particular, for spherical codes:

e 2-point bound (Delsarte-Goethals-Seidel 1977)
e 3-point bound (Bachoc-Vallentin 2008).

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

e Up to symmetry, a couple x, y of points in a #-spherical code is
uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

e Up to symmetry, a couple x, y of points in a #-spherical code is

uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

e The normalized Gegenbauer polynomials P](u) (with P7(1) = 1),
satisfying:

For every X C S" ! finite, Z Pl(x-y)>0.
x,yeX

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

> flxy)

x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

Yoa(D] Pilxey)) = D flxy)

k=0 x,yeC x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< > a(Y Pilxy))= D flxy)

k=0 x,yeC x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< Y (Y Pilxy))= D flxy) < ICIF(L)+)_ F(xy)

k=0 x,yeC x,yeC XF£y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< D aw(Y Pilxy)) = Y flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)

k=0 x,yeC x,yeC XF£y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d
0< Y (Y Pilxy))= > flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)
k=0 x,yeC x,yeC XF£y
So
IC| < f(1) +1

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where

d
f(u) = arPf(u).
k=0

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where ;
f(u) = arPf(u).
k=0

This is a linear programming bound.

3-point bound for spherical codes (Bachoc-Vallentin 2008)

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

e Up to symmetry, a triple of points x, y, z in a f-spherical code is

uniquely determined by
u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,1,1)} i—y 2
AO:{(uauyl):Ue[—l,COSQ]} X;é_y:z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv? —v? —t*> >0}

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

e Up to symmetry, a triple of points x, y, z in a f-spherical code is

uniquely determined by
u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,1,1)} i—y 2
AO:{(uauyl):Ue[—l,COSQ]} X;é_y:z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv? —v? —t*> >0}
e Matrix polynomials S](u, v, t) satisfying:
For every X C S" finite, Z SP(x-y,x-z,y-t)-0.
x,y,zeX
10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d > 0, the size of a #-spherical code is at most

min{fM e R: a) >0,F, =0
d
> ap+F(1,1,1) <M -1,
k=0

ZakPk)+ 3F(u,u,1) < —1 for all u e [—1,cosb)],

F(u, v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) ZFk,Sk(uvt)
k=0

11

3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d > 0, the size of a #-spherical code is at most

min{fM e R: a) >0,F, =0
d
> ap+F(1,1,1) <M -1,
k=0

ZakPk)+ 3F(u,u,1) < —1 for all u e [—1,cosb)],

F(u, v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) ZFk,Sk(uvt)
k=0

This leads to semidefinite programming upper bounds using sums of

squares.
q 11

Less symmetry makes it harder

e These bounds work for spherical codes.

12

Less symmetry makes it harder

e These bounds work for spherical codes.

e They rely on the action of the orthogonal group @(n) on S" 1.

12

Less symmetry makes it harder

e These bounds work for spherical codes.
e They rely on the action of the orthogonal group @(n) on S" 1.

e For spherical codes in spherical caps, the symmetry group is O(n—1).

12

Less symmetry makes it harder

These bounds work for spherical codes.

They rely on the action of the orthogonal group O(n) on ™1,

For spherical codes in spherical caps, the symmetry group is O(n—1).

Delsarte linear programming bound does not apply anymore!

12

Less symmetry makes it harder

These bounds work for spherical codes.

They rely on the action of the orthogonal group O(n) on ™1,

For spherical codes in spherical caps, the symmetry group is O(n—1).

Delsarte linear programming bound does not apply anymore!

Nevertheless, one can still compute the 2-point bound for these
problems.

12

Less symmetry makes it harder

e These bounds work for spherical codes.

e They rely on the action of the orthogonal group @(n) on S" 1.

e For spherical codes in spherical caps, the symmetry group is O(n—1).
e Delsarte linear programming bound does not apply anymore!

e Nevertheless, one can still compute the 2-point bound for these
problems.

e These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

13

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

13

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

13

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

13

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

13

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

e Geometry: Sharp bounds provide additional information on optimal
configurations, leading to uniqueness proofs.

13

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
F(u) = 3§O(u—|—l)(u+l/2)2 P(u—1/2) - 1

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take

F(u) = 3§O(U—i-l)(u+l/2)2 Pu—1/2)—1 = M =240

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

d
0<d a(D Pilxy))= D flxy)<ICIF(L)+) fixy) =[CI(M—|C])

k=0 x,y€C x,yeC XAy

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

= forall x,y € C,x-y €{0,£1/2, £1}

14

Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The Eg lattice provides a configuration Cp with 240 points.
min{M e R: a, >0,f(1) <M —1,f(u) < —1 for all u € [-1,cosb]}
Take
320 2
f(u) = 3 —(w+D(u+1/2)v(v—1/2)—1 = M =240

Now if C is an optimal configuration,

0= Zak(z Pi(x-y)) = Y flx-y)=ICIF(1)+>_ f(xy) = |C|(M—|C|)

x,yeC x,yeC Xy

=forall x,y € C,x-y €{0,£1/2,£1} = C=(

14

Many examples of exact sharp LP bounds ...

15

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

15

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

15

Many examples of exact sharp LP bounds ...
But very few cases in which SDP bound is proven to be sharp while LP is

not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

15

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

e F£g gives an optimal configuration on the hemisphere in dimension 8
(Bachoc-Vallentin 2009)
— Uniqueness (Dostert-de Laat-M 2020)

15

Solving an SDP: Rage against the machine precision

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).

16

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).
e Our context: The problems provide a candidate field to round over,

either Q or Q(\/d). 16

Rounding over Q: Preliminary steps

17

Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

17

Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

e Use symmetries to reduce the number of variables.
(110376 — 37651 for the Hemisphere in dimension 8)

17

Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

e Use symmetries to reduce the number of variables.
(110376 — 37651 for the Hemisphere in dimension 8)

e Solve the SDP numerically in high precision (SDPA-GMP),
— get an approximate solution x*:

17

Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

e Use symmetries to reduce the number of variables.
(110376 — 37651 for the Hemisphere in dimension 8)

e Solve the SDP numerically in high precision (SDPA-GMP),
— get an approximate solution x*:
e Ax* = b

17

Rounding over Q: Preliminary steps

e Once we know the optimal value, we can include the objective as a
linear constraint.
— Feasibility problem.

e Use symmetries to reduce the number of variables.
(110376 — 37651 for the Hemisphere in dimension 8)

e Solve the SDP numerically in high precision (SDPA-GMP),
— get an approximate solution x*:
e Ax* =~ b
e The blocks B;(x*) might have negative near zero eigenvalues.

17

Rounding over QQ: the affine conditions

We want to find a solution x close to x* and such that

Ax = b.

18

Rounding over QQ: the affine conditions

We want to find a solution x close to x* and such that

Ax = b.

e Put the system into reduced row echelon form in rational arithmetic,
(use Hecke in Julia, the system can be big)

18

Rounding over QQ: the affine conditions

We want to find a solution x close to x* and such that

Ax = b.

e Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

e Solve the system by backsubstitution.
For every free variable, take a value close to the corresponding value

in x*.

18

Rounding over QQ: the affine conditions

We want to find a solution x close to x* and such that

Ax = b.

e Put the system into reduced row echelon form in rational arithmetic,
(use Hecke in Julia, the system can be big)

e Solve the system by backsubstitution.
For every free variable, take a value close to the corresponding value

in x*.

The linear system is then satisfied... But what about the PSD conditions?

18

Rounding over Q: the PSD conditions

19

Rounding over Q: the PSD conditions

e If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be
positive definite.

19

Rounding over Q: the PSD conditions

e If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be
positive definite.

e If the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

19

Rounding over Q: the PSD conditions

e If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e If the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

19

Rounding over Q: the PSD conditions

e If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e If the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

e Sometimes not. How to force all these constraints?

19

Rounding over Q: detecting kernel vectors (one dimension)

20

Rounding over Q: detecting kernel vectors (one dimension)

e We expect a solution over Q.

20

Rounding over Q: detecting kernel vectors (one dimension)

e We expect a solution over Q.

e Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

20

Rounding over Q: detecting kernel vectors (one dimension)

e We expect a solution over Q.

e Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

e Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.

20

Rounding over Q: detecting kernel vectors (one dimension)

We expect a solution over QQ.

Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.
First example: one dimensional kernel.

0.859374473300157

—0.429687236650083

—0.2713814126211060
—0.056537794296065

20

Rounding over Q: detecting kernel vectors (one dimension)

We expect a solution over QQ.

Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.

First example: one dimensional kernel.

0.859374473300157 —15.19999999999925
—0.429687236650083 . 7.5999999999997
—0.2713814126211060 4.79999999999982
—0.056537794296065 1.0

20

Rounding over Q: detecting kernel vectors (one dimension)

We expect a solution over QQ.

Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.

First example: one dimensional kernel.

0.859374473300157 —15.19999999999925
—0.429687236650083 . 7.5999999999997
—0.2713814126211060 4.79999999999982
—0.056537794296065 1.0

20

Rounding over Q: detecting kernel vectors (one dimension)

We expect a solution over QQ.

Intuition: There are some structural reasons for the zero eigenvalues.
So the kernels should have nice rational bases.

Take a block B;(x*) of the approximate solution and compute its
kernel in floating point with high precision.

First example: one dimensional kernel.

0.859374473300157 —15.19999999999925
—0.429687236650083 . 7.5999999999997
—0.2713814126211060 4.79999999999982
—0.056537794296065 1.0

Then B;(x)v = 0 provides new linear constraints on x!

20

Rounding over Q: detecting kernel vectors (general case)

This is not enough in general. How to extract a nice basis from the
numerical values?

0.19550004741012542 —0.8676883652023846
ker(B:(x")) ~ (—0.10616756374846323 —0.4321427618192919 >
' V| —0.25700180101766007 |’ | —0.2143699892153049

—0.33241916014721035 —0.1054836185183479

21

Rounding over Q: detecting kernel vectors (general case)

Key idea: use the LLL algorithm to detect an integer linear equation
almost sastisfied by the kernel vectors...

0.19550004741012542 —0.8676883652023846\ -1
ker(Bi(x*)) ~ (—0.10616756374846323 7 —0.4321427618192919 >3

—0.25700180101766007 —0.2143699892153049 | -2

—0.33241916014721035 —0.1054836185183479

{—Ul +3u, —2u3 =0

21

Rounding over Q: detecting kernel vectors (general case)

...and another one...

O/ARBEUN0ATAVIL B2 110 B8 TOBGROPRORSEAS

ker(Bi(x*)) =~ (—0.10616756374846323 —0.4321427618192919 >1
—0.25700180101766007 | | —0.2143699892153049 | -3
—0.33241916014721035 —0.1054836185183479/ 2

—u1 + 3u, — 2u3 =0
up —3uz +2us =0

21

Rounding over Q: detecting kernel vectors (general case)

With enough equations, we can compute the expected kernel basis.

0.19550004741012542 —0.8676883652023846
ker(Bi(x*)) ~ (—0.10616756374846323 7 —0.4321427618192919 >

—0.25700180101766007 —0.2143699892153049

—0.33241916014721035 —0.1054836185183479

—uy +3u, — 2u3 =0
up —3uz +2us =0

21

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

3. Include the new linear constraints in the linear system Ax = b.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

3. Include the new linear constraints in the linear system Ax = b.
4. Row reduce the linear system.

5. Solve it with backsubstitution using x*.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

o & = W

Check that the blocks of the rounded solution are indeed PSD.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

3. Include the new linear constraints in the linear system Ax = b.
4. Row reduce the linear system.

5. Solve it with backsubstitution using x*.

6. Check that the blocks of the rounded solution are indeed PSD.
7. Celebrate.

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

Check that the blocks of the rounded solution are indeed PSD.

éléhhavé/ Restart from 1. and don't forget to save the
solution.

ool B

22

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

=

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)’s.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

Check that the blocks of the rounded solution are indeed PSD.

Restart from 1. and don’t forget to save the solution.

@ =N & @l > W

Celebrate.

22

Back to geometry

Once we get an exact optimal solution, we need to check that the function
F(u, v, t) gives enough information on possible optimal configurations:

23

Back to geometry

Once we get an exact optimal solution, we need to check that the function
F(u, v, t) gives enough information on possible optimal configurations:

e Check that the only possible inner products are the ones in the
candidate optimal configuration (use Sturm sequences).

23

Back to geometry

Once we get an exact optimal solution, we need to check that the function

F(u, v, t) gives enough information on possible optimal configurations:

e Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

e |f needed compute the possible 3-point distance distribution of an
optimal code.

23

Back to geometry

Once we get an exact optimal solution, we need to check that the function

F(u, v, t) gives enough information on possible optimal configurations:

e Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).
e |f needed compute the possible 3-point distance distribution of an
optimal code.

e Use this information and a bit of geometry to prove that the
candidate optimal configuration is unique!

23

Generalizations (done or to be done)

24

Generalizations (done or to be done)

e We extended our rounding procedure to quadratic fields (needed for
the square antiprism).

24

Generalizations (done or to be done)

e We extended our rounding procedure to quadratic fields (needed for
the square antiprism).

e Besides spherical codes, we could apply our method for packing
spheres in spheres (here also quadratic fields are needed).

24

Generalizations (done or to be done)

e We extended our rounding procedure to quadratic fields (needed for
the square antiprism).

e Besides spherical codes, we could apply our method for packing
spheres in spheres (here also quadratic fields are needed).

e There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

24

Generalizations (done or to be done)

e We extended our rounding procedure to quadratic fields (needed for
the square antiprism).

e Besides spherical codes, we could apply our method for packing
spheres in spheres (here also quadratic fields are needed).

e There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

e What about other applications?

24

Thank you!

Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

26

Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

e The semidefinite program is defined over Q(v/d), namely
A:Al—i—\/gAg, b:b1+\fdb2

where A1, Ay, b1, by have coefficients in Q.

26

Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

e The semidefinite program is defined over Q(v/d), namely
A:Al—i—\/gAg, b:b1+\fdb2

where A1, Ay, b1, by have coefficients in Q.

e We also expect a solution over (@(\/3) so write
X =x1+ \Fdxz

and work over Q:

26

Bonus: extension to quadratic fields (finding good x;,x})

e From the numerical x* satisfying Ax* ~ b we need to find x; and x3
such that x* ~ x} +v/dx3 and

A1 dA2 Xf - b1
Ay AL \x) \)

27

Bonus: extension to quadratic fields (finding good x;,x})

e From the numerical x* satisfying Ax* ~ b we need to find x; and x3
such that x* ~ x} +v/dx3 and

A1 dA2 Xf - b1
Ay AL \x) \)
e To do so, solve (in floating point) the linear system:

A1 dA> y - by
Ay AL\ B =y)) T\ k)

27

Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

uy uj
ker(Bi(x*)) = (| i [+ | 1]
uj uf

28

Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

L L
ker(Bi(x*)) = ([: |,---»| = |)
uj uj
e Look for integer relations in
uj uj
uj uj
Vdul |7 Vdug
ﬂu} \/Eu,r

28

Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

uy uj
ker(Bi(x")) = (e | 2 D
uj uj
e Look for integer relations in

ui up \ M1

u} uy Al

Vdul |7 Vduf |

Vduj vduf)

28

Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

ufll uy
ker(Bi(x*)) = ([: |,---»| = |)
uj uj
e Look for integer relations in
ui up \ M1
ut Q; P va
ye e — A+ Vduj)up =0
Vdul Vdul | E(! i)y
Vduj vduf)

28

Bonus: extension to quadratic fields (kernel detection)

e Compute the approximate kernel of B;(x*)

1 r
L L
B2 ~
ker(Bi(x")) = (oeea | 0|0
uj uj
e Look for integer relations in
1 r
Ul ul)\]_
1 r /
uj uj

Vdul |7 Vduf |

Vduj vduf)

e Compute the expected kernel over Q and add the corresponding
constraints on x; and x». 28

