
Exact semidefinite programming bounds

for packing problems

Philippe Moustrou, UiT The Arctic University of Norway

Joint work with M. Dostert (EPFL) and D. de Laat (TU Delft).

Online Summer School on Optimization, Interpolation and Modular Forms

August 28, 2020



Tromsø: the Paris of the North

2



Tromsø: the Paris of the North

2



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Menu

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Applications of David’s lectures.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

3



Spherical codes and variants

θ

Spherical codes:

max{|C |, C ⊂ Sn−1, x · y ≤ cos θ for all x 6= y ∈ C}

4



Spherical codes and variants

θ
π
3

Kissing number:

max{|C |, C ⊂ Sn−1, x · y ≤ 1/2 for all x 6= y ∈ C}

4



Spherical codes and variants

θ
π
3

Kissing number of the hemisphere:

max{|C |, C ⊂ Hn−1, x · y ≤ 1/2 for all x 6= y ∈ C}

4



Spherical codes and variants

θ
π
3

R

r

Packing spheres in spheres:

max{|C | : C ⊂ B(0,R − r), ‖x − y‖ ≥ 2r for all x 6= y ∈ C}

4



Examples

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

5



Examples

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

5



Examples

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

5



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



Graph formulation

Let G = (V ,E ) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds: Hierarchies of semidefinite upper bounds (see David’s
lectures). In particular, for spherical codes:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

• 3-point bound (Bachoc-Vallentin 2008).

6



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Recall the two main ingredients:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤

d∑
k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y)

= |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : α0, . . . , αd ≥ 0,

f (1) ≤ M − 1,

f (u) ≤ −1 for all u ∈ [−1, cos θ]}

where

f (u) =
d∑

k=0

αkP
n
k (u).

This is a linear programming bound.

9



2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : α0, . . . , αd ≥ 0,

f (1) ≤ M − 1,

f (u) ≤ −1 for all u ∈ [−1, cos θ]}

where

f (u) =
d∑

k=0

αkP
n
k (u).

This is a linear programming bound.

9



3-point bound for spherical codes (Bachoc-Vallentin 2008)

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10



3-point bound for spherical codes (Bachoc-Vallentin 2008)

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10



3-point bound for spherical codes (Bachoc-Vallentin 2008)

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10



3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : αk ≥ 0,Fk � 0

d∑
k=0

αk + F (1, 1, 1) ≤ M − 1,

d∑
k=0

αkP
n
k (u) + 3F (u, u, 1) ≤ −1 for all u ∈ [−1, cos θ],

F (u, v , t) ≤ 0 for all (u, v , t) ∈ ∆}

where

F (u, v , t) =
d∑

k=0

〈Fk ,Sn
k (u, v , t)〉.

This leads to semidefinite programming upper bounds using sums of

squares.

11



3-point bound for spherical codes (Bachoc-Vallentin 2008)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : αk ≥ 0,Fk � 0

d∑
k=0

αk + F (1, 1, 1) ≤ M − 1,

d∑
k=0

αkP
n
k (u) + 3F (u, u, 1) ≤ −1 for all u ∈ [−1, cos θ],

F (u, v , t) ≤ 0 for all (u, v , t) ∈ ∆}

where

F (u, v , t) =
d∑

k=0

〈Fk ,Sn
k (u, v , t)〉.

This leads to semidefinite programming upper bounds using sums of

squares.
11



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Less symmetry makes it harder

• These bounds work for spherical codes.

• They rely on the action of the orthogonal group O(n) on Sn−1.

• For spherical codes in spherical caps, the symmetry group is O(n− 1).

• Delsarte linear programming bound does not apply anymore!

• Nevertheless, one can still compute the 2-point bound for these

problems.

• These bounds look like the 3-point bound for spherical codes. In

particular they are semidefinite programming bounds.

12



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

13



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1

⇒ M = 240

Now if C is an optimal configuration,

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)≤|C |f (1)+
∑
x 6=y

f (x ·y) = |C |(M − |C |)

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

0=
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)=|C |f (1)+
∑
x 6=y

f (x ·y) = |C |(M − |C |)

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

0=
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)=|C |f (1)+
∑
x 6=y

f (x ·y) = |C |(M − |C |)

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1}

⇒ C = C0

14



Example: Kissing number in dimension 8 (Bannai-Sloane 1981)

The E8 lattice provides a configuration C0 with 240 points.

min{M ∈ R : αk ≥ 0, f (1) ≤ M − 1, f (u) ≤ −1 for all u ∈ [−1, cos θ]}

Take

f (u) =
320

3
(u + 1)(u + 1/2)2u2(u − 1/2)− 1 ⇒ M = 240

Now if C is an optimal configuration,

0=
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)=|C |f (1)+
∑
x 6=y

f (x ·y) = |C |(M − |C |)

⇒ for all x , y ∈ C , x · y ∈ {0,±1/2,±1} ⇒ C = C0

14



Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

15



Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

15



Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

15



Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

15



Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

15



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

16



Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d). 16



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: Preliminary steps

• Once we know the optimal value, we can include the objective as a

linear constraint.

→ Feasibility problem.

• Use symmetries to reduce the number of variables.

(110376 → 37651 for the Hemisphere in dimension 8)

• Solve the SDP numerically in high precision (SDPA-GMP),
→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

17



Rounding over Q: the affine conditions

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

• Solve the system by backsubstitution.

For every free variable, take a value close to the corresponding value

in x∗.

The linear system is then satisfied... But what about the PSD conditions?

18



Rounding over Q: the affine conditions

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

• Solve the system by backsubstitution.

For every free variable, take a value close to the corresponding value

in x∗.

The linear system is then satisfied... But what about the PSD conditions?

18



Rounding over Q: the affine conditions

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

• Solve the system by backsubstitution.

For every free variable, take a value close to the corresponding value

in x∗.

The linear system is then satisfied... But what about the PSD conditions?

18



Rounding over Q: the affine conditions

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

(use Hecke in Julia, the system can be big)

• Solve the system by backsubstitution.

For every free variable, take a value close to the corresponding value

in x∗.

The linear system is then satisfied... But what about the PSD conditions?

18



Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19



Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19



Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19



Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19



Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. How to force all these constraints?

19



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065



→


−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0



→ v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0



• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (one dimension)

• We expect a solution over Q.

• Intuition: There are some structural reasons for the zero eigenvalues.

So the kernels should have nice rational bases.

• Take a block Bi (x∗) of the approximate solution and compute its

kernel in floating point with high precision.

• First example: one dimensional kernel.
0.859374473300157

−0.429687236650083

−0.2713814126211060

−0.056537794296065

 →

−15.19999999999925

7.5999999999997

4.79999999999982

1.0

 → v =


−15.2

7.6

4.8

1.0


• Then Bi (x)v = 0 provides new linear constraints on x!

20



Rounding over Q: detecting kernel vectors (general case)

This is not enough in general. How to extract a nice basis from the

numerical values?

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉

21



Rounding over Q: detecting kernel vectors (general case)

Key idea: use the LLL algorithm to detect an integer linear equation

almost sastisfied by the kernel vectors...

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉
-1

3

-2

{
−u1 + 3u2 − 2u3 = 0

21



Rounding over Q: detecting kernel vectors (general case)

...and another one...

ker(Bi (x∗)) ≈ 〈


0.19550004741012542//////////////////////////

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846///////////////////////////

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉 1

-3

2{
−u1 + 3u2 − 2u3 = 0

u2 − 3u3 + 2u4 = 0

21



Rounding over Q: detecting kernel vectors (general case)

With enough equations, we can compute the expected kernel basis.

ker(Bi (x∗)) ≈ 〈


0.19550004741012542

−0.10616756374846323

−0.25700180101766007

−0.33241916014721035

 ,


−0.8676883652023846

−0.4321427618192919

−0.2143699892153049

−0.1054836185183479

〉
{
−u1 + 3u2 − 2u3 = 0

u2 − 3u3 + 2u4 = 0

ker(Bi (x)) = 〈


7

3

1

0

 ,


−6

−2

0

1

〉
21



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

7. Celebrate.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

7. ////////////Celebrate. Restart from 1. and don’t forget to save the

solution.

22



Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

7. Restart from 1. and don’t forget to save the solution.

8. Celebrate.

22



Back to geometry

Once we get an exact optimal solution, we need to check that the function

F (u, v , t) gives enough information on possible optimal configurations:

• Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

• If needed compute the possible 3-point distance distribution of an

optimal code.

• Use this information and a bit of geometry to prove that the

candidate optimal configuration is unique!

23



Back to geometry

Once we get an exact optimal solution, we need to check that the function

F (u, v , t) gives enough information on possible optimal configurations:

• Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

• If needed compute the possible 3-point distance distribution of an

optimal code.

• Use this information and a bit of geometry to prove that the

candidate optimal configuration is unique!

23



Back to geometry

Once we get an exact optimal solution, we need to check that the function

F (u, v , t) gives enough information on possible optimal configurations:

• Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

• If needed compute the possible 3-point distance distribution of an

optimal code.

• Use this information and a bit of geometry to prove that the

candidate optimal configuration is unique!

23



Back to geometry

Once we get an exact optimal solution, we need to check that the function

F (u, v , t) gives enough information on possible optimal configurations:

• Check that the only possible inner products are the ones in the

candidate optimal configuration (use Sturm sequences).

• If needed compute the possible 3-point distance distribution of an

optimal code.

• Use this information and a bit of geometry to prove that the

candidate optimal configuration is unique!

23



Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?

24



Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?

24



Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?

24



Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?

24



Generalizations (done or to be done)

• We extended our rounding procedure to quadratic fields (needed for

the square antiprism).

• Besides spherical codes, we could apply our method for packing

spheres in spheres (here also quadratic fields are needed).

• There are natural related problems where this approach can be

promising (energy minimization, codes in complex projective space,...)

• What about other applications?

24



Thank you!

25



Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

• The semidefinite program is defined over Q(
√
d), namely

A = A1 +
√
dA2, b = b1 +

√
db2

where A1,A2, b1, b2 have coefficients in Q.

• We also expect a solution over Q(
√
d), so write

x = x1 +
√
dx2

and work over Q: (
A1 dA2

A2 A1

)(
x1

x2

)
=

(
b1

b2

)

26



Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

• The semidefinite program is defined over Q(
√
d), namely

A = A1 +
√
dA2, b = b1 +

√
db2

where A1,A2, b1, b2 have coefficients in Q.

• We also expect a solution over Q(
√
d), so write

x = x1 +
√
dx2

and work over Q: (
A1 dA2

A2 A1

)(
x1

x2

)
=

(
b1

b2

)

26



Bonus: extension to quadratic fields (reformulation)

Multiply (but still conquer):

• The semidefinite program is defined over Q(
√
d), namely

A = A1 +
√
dA2, b = b1 +

√
db2

where A1,A2, b1, b2 have coefficients in Q.

• We also expect a solution over Q(
√
d), so write

x = x1 +
√
dx2

and work over Q: (
A1 dA2

A2 A1

)(
x1

x2

)
=

(
b1

b2

)

26



Bonus: extension to quadratic fields (finding good x∗1 ,x∗2 )

• From the numerical x∗ satisfying Ax∗ ≈ b we need to find x∗1 and x∗2
such that x∗ ≈ x∗1 +

√
dx∗2 and(
A1 dA2

A2 A1

)(
x∗1
x∗2

)
≈

(
b1

b2

)
.

• To do so, solve (in floating point) the linear system:(
A1 dA2

A2 A1

)(
y

1√
d

(x∗ − y)

)
≈

(
b1

b2

)
.

27



Bonus: extension to quadratic fields (finding good x∗1 ,x∗2 )

• From the numerical x∗ satisfying Ax∗ ≈ b we need to find x∗1 and x∗2
such that x∗ ≈ x∗1 +

√
dx∗2 and(
A1 dA2

A2 A1

)(
x∗1
x∗2

)
≈

(
b1

b2

)
.

• To do so, solve (in floating point) the linear system:(
A1 dA2

A2 A1

)(
y

1√
d

(x∗ − y)

)
≈

(
b1

b2

)
.

27



Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉

• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2.

28



Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉
• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2.

28



Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉
• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2.

28



Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉
• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2.

28



Bonus: extension to quadratic fields (kernel detection)

• Compute the approximate kernel of Bi (x∗)

ker(Bi (x∗)) ≈ 〈

u11
...

u1l

 , . . . ,

ur1
...

url

〉
• Look for integer relations in

u11
...

u1l√
du11
...√
du1l


, . . . ,



ur1
...

url√
dur1
...√
durl



λ1
...

λl

µ1
...

µrl

→
l∑

i=1

(λi +
√
dµi )ui = 0

• Compute the expected kernel over Q and add the corresponding

constraints on x1 and x2. 28


