Sign Uncertainty Principle ~ Tug-of-war

You are so Negative! You are so Positive!
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/A Sign uncertainty principle

[J LP bounds for sphere packing

(O Promise: Show why these problems are mysteri-
ous, hard and exciting.




We say f : R — R is eventually nonnegative (E.NN.) if
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f, f € L}(RY) both even and real-valued

Ay(d) =4 f(0) <0, £(0) <0
f and f E.NN.

~

r(f)r(f).

Thm (Bourgain, Clozel, Kahane, 2010)

A(d)= inf
+(d) FeAL(d)\ (0}

1 Av(d) _ 140(1)
e = vd = v

Thm (Cohn, G. 2019)

A (12) =2
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f, f € [1(RY) both even and real-valued
A(d) = {F(0) <0, ~F(0) <0

f and —f eventually nonnegative (E.NN.)

(d)=_ inf Fr(—f).
A= (R V)

Thm (Cohn, Gongalves, 2018)

L A_(d) ,
2me = Vd S (1+O(1))(E—0.079...),

A_(d) = inf{r(f) : f radial, f = —f, (0) = 0, f E.NN.}

A+(d) > v/d ~» £1 Uncertainty Principles



Thm (Gongalves, Oliveira e Silva, Steinerberger, 2016;

Cohn, Gongalves, 2018)

Existence of Optimal: 3f € A, (d) such that

r(f) = Ax(d),
we can assume f radial, f = &f and f(0) = 0.

Multiple Roots: f(|x|) has infinitely many double roots
for |x| > r(f).
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Sphere Packing Problem

What is the most dense arrangement of non-overlapping
equal spheres in R9? ~ A(d) = largest density

(Thue, 1910) (Hales, 1998)

honeycomb ~ 91% Cannonball Packing
~70%



(Viazovska, 2016) (Viazovska, et al 2016)

E8 Lattice ~ 26% Leech Lattice x4 ~ 0.2%



Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]

Let

f, f € L}(RY) radial and real-valued
Aip(d) = < F(0) = f(0) =1
f ENNN. and f > 0.
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Thm (Cohn, Elkies, 2003) [Linear Programming Bounds]
Let

f, f € L}(RY) radial and real-valued
Aip(d) = < F(0) = f(0) =1
f ENNN. and f > 0.

and A;p(d) = infrca,p(a) r(f). Then

A(d) < vol(3BY)ALp(d)?.

Viazovska showed A p(8) = /2 and A, p(24) = /4 with
a construction using modular forms.
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The Link between Sign Uncertainty and LP bounds

>

>
>

The map f € Ay p(d) — f — f € A_(d) shows
Ap(d) > A _(d).

Strong Numerical evidence that A;p(d) = A_(d).

From Viazovska's proof one can recover the functions
that show

A_(8)=V2 A_(24)= 4.
Cohn & G. (2018) showed that
A (12) = V2
and presented numerical evidence for the conjecture

Arp(d) = A_(d) ~ A(d) ~ cVd.

Recent numerical evidence in connection with modular
bootstraps for CFTs indicates ¢ = % = .31...



d Best Packing  A;p(d) A_(d) A (d)

1 Z 1 1 ??surprise
1 1

2 Honeycomb 7 =(4/3)4 7= (4/3)4 ?

8 E8 V2 V2 ?

12 ? ? ? V2

24 Leech N Va4 ?
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New Sign Uncertainty Principles
(G., Oliveira e Silva, Ramos — arXiv March 2020)

» Spherical Harmonics and Jacobi Polynomials (~
Spherical Designs and Quadrature).

» Fourier Series, Bessel-Dini Series.

> ‘Discrete Fourier and Hankel Transf..‘

» Functions of the Hamming cube (Complexity of Boolean
Functions).

» Hankel Transf., Hilbert Transf. and other Smooth Conv.
Kernels.



For f : Zg — C we define the DFT

3(@-1)

?(n):% S f(m)e ™R (Q Odd).

1
m=-3(Q-1)



For f : Zqg — C we define the DFT

. 3(@-1)
fln) = — f(m)e 2™mn/Q (Q Odd).
(n) NG 12 (m)
m=-3(Q-1)
Thm (2020)

y f, £ Zq — R both even and real-valued
A= 1 70) <0, £7(0) <0

Then
AT=[Q] = min{ k(f) k(if)} >/Q,

where k(f) = min{k >0:f(n) >0if k <n < Q}.




One expects/wishes that
DISCRETE — CONTINUOUS (Q — o).

AZ*[Q]
V@

> AL(l) (Q — o0).



Atiisc [Q]
Ve

~1=A_(1)

-1 Uncertainty
Solid = Numerical for g=5408, k=105
Dashed = Best visual match of known Optimal




0.5

Aiisc [ Q] _

\/GN\/Q—

1 2 3

R r~ 0.55 ~ 1/sqrt(2 golden ratio)

+1 Uncertainty
Solid=Numerical for q=5692, k=60



The function '
Qr— k= Ai’SC[Q]

is a stairway

Q1 Q@ Q3 Q4

So we can "invert” it k — Q)" (k)

lim Adiisc[Q] = lim k
QR—o0 \/6 k—oc0 :élmp(k)

f QU™ (K + 1) ~ QU™ (k).



It turns out that numerically...

Q™P(k) = K — 2k + 3((~1)* +5)
=5,8,13,18,25,32, ...

%(Q{fmp(k) — 1) & |(k — 1)* x golden.ratio|
— 6,14,25,40,58,79, ...




ulk] = [(k — 1) x golden.ratio |
VK] = (@™ (k) ~ 1)

k Abs[v[k]/u[k+2]-1]

k Abs[v[k]/v[k—1]-1]

k Abs[v[k]/u[k+1];1]

k Abs[v[k]/u[k]-1]

10 20 30 40




ulk] = |(k — 1)? x golden.ratio|
K = 3@ (k) 1)

k1.5 Abs[(v[k]-v[k-1])/2/k—GR]




In higher dimensions we use a Disc. Hankel Transf.

JmJ
J':7n+r17 )

Ja2(jn)?

. q Jap1
HE (1) m) — =3 £(n) 2

- [j, = n"™-zero of Jaj2-1]
q

n=1

(Hdsc =translated DFT).




In higher dimensions we use a Disc. Hankel Transf.

JmJ
J':7n+r17 )

Ja2(jn)?

. q Jap1
HE (1) m) — =3 £(n) 2

j o [j,, = nth—zero of Jd/2_1]
q

n=1

(Hdsc =translated DFT).

Let
' f, Hof : {1,...q} = R
A", q] = Hyf(0) < 0, ££(0) < 0.
and
AL<[d, q] := min{\/k(F) k(+Haf)}.
Then J'Ai“[d,q] 2 \/WCH1




JA‘:jt"sc[d,q]

vV 27 jg+1

Since g — k = A%*°[d, q] is a stairway we can define

k= q.""(d, k)



in'SC[d»q] NA (d)
V2t T

Since g — k = A%*°[d, q] is a stairway we can define

k= g™ (d, k)

7™ (2, k) ~ {MJ —4,7,11,16,21, 28,35, 43,52, 62, ..
k>4

7™ (8, k) ~ VTJ — 4.6,9,12,16,20,25, 30, 36,42, ...
k>4

7™ (24, k) ~ L%J — 4.5,8,10,13, 15, 19, 22, 26,29, ...
k>4

712, k) ~ V”zk*lj —3,5,8,11,15,19,24, 29, 35,41, ...
k>3



numerically

jA‘i"sc [d.q]

V 27qu+1

L U IS S (d=1,12)
\/27Uq+1 \/1 + /5

(%) V2, V4 (d=1,28,24)

d Best Packing  A;p(d) A (d) A (d)

1 Z 1 1 77
1 1

2 Honeycomb 7= (4/3)4 7= (4/3)4 ?

8 E8 V2 V2 ?

12 ? ? ? V2

24 Leech V4 Vb ?




