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Eisenstein series of weight 2

Let us look once again at the Eisenstein series of weight 2.
Gol7) = — 55 + Y o(n)g”
24 n>1

The fact that it is not modular may appear as an issue at first, but in fact it points to
some interesting directions.

ar + by 5 c(cT +d)
2(Grg) — (e PGl - =55
ar + by 5 6c(cT + d)
2(Grg) = (e dPEn) - ==
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Quasimodular forms

So far we did not say anything about what happens when one differentiates a modular

form.
_1d__d
= 2nidr %dq
If fis a modular form of weight k, then differentiating the transformation law we get
ar+b _ ke(er + d)k—1
Df ( )(er +d)2 = Df d)f + f(r) T
T er ) = DA (er + o) + (1)

so f' can be modular only for k = 0. Nevertheless, the combination

k
Of = Df — EE2f

is a modular form of weight k + 2. The operator ¥ = 9 is called the Serre derivative.
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Quasimodular forms

Using this fact it is not hard to prove the following statement.

Theorem (Ramanujan)
We have

E2 — E, E,E, — E
DE, = 212 . DE4:%,

Exercise. ] \

This means that M,(I'1) := C[Ex, Es, Eg) is closed under differentiation.

E2Es — E}
DE; = ——2—*

Let us call f a quasimodular form of weight k and depth < p if it is a polynomial of
degree p in E; with modular coefficients of homogeneous weight k.
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Quasimodular forms

Is there an intrinsic description of M,(I'1)?

Definition
A quasimodular form of depth p and weight k for PSLy(Z) is a holomorphic function
f: H — C such that there exist functions fy, ..., f,: H — C (of polynomial growth at

the boundary) such that

P

(Flen)(m) = > fi(r (m)j, v € PSLy(Z)
j=0

Quasimodular forms were introduced by Kaneko and Zagier, together with the related
concept of almost modular forms: these are functions

f(7) _Zf )(—4my)~

with f; holomorphic, such that f|,y = f for all v € PSLo(Z).
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Quasimodular forms

Quasimodular forms appear naturally as components of vector-valued modular forms
for symmetric power representations.

Given a representation p: ' — GL,(C) one can consider vector valued modular forms
F: H — C" such that F|xy = p(7)F.

Theorem (Kaneko, Nagatomo)

Let f = (fy,...,f,) be a vector-valued modular form of weight k for the symmetric
power representation of SLy(Z). Then each

gnlr) = > (1Y (7)rm 50, osm<p

j=0

is a quasimodular form of weight k + p — 2m and depth p — m.
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Symmetric power representation

(ct+d)" 1
(at + b)(cT +d)" 1 T
: =p(v)|

(at + b)"Y(cT + d) -1

(at + b)" "
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Modular integrals

Let us come back to the transformation law

c(cT +d)
4ri

2<aT+b

) = (et dPG() -

once more. We can rewrite it in the form

a7-+b> 1 c

&) = (er+ D& (T) = g v g

or equivalently,
G — Goloy = ¢y,

where

(=1 _°_ —(* b)er
PN = aricr+d’ T\ d 1
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Modular integrals

Note that, since
G — G172 = G2 — Go|y2 + Galy2 + Go|y172
we necessarily have

Pryrre = Pyp T Py lk72 for all 71,72 € PSL2(Z) (*)

We call a family of holomorphic functions ., that satisfies (*) a 1-cocycle for PSL>(Z).
A holomorphic function F: H — C is called a modular integral of a 1-cocycle ¢, if

F—F|k’y:(p7, ")/EPSLQ(Z)

Usually, we require both ¢, and F to have at most polynomial growth at the boundary.
Note that if ¢, = 0 for all 7, then F is a modular form of weight k.
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Eichler integrals

A nontrivial construction of modular integrals is given by Eichler integrals.
A key role in this construction is played by the following elementary identity.

Theorem (Bol's identity)

Let F: H — C be any smooth function. Then

DY (Flo—kv) = (D*1F) i, v € PSL>(R) .

From Bol’s identity it follows that if we take (k — 1)-st primitive of a weight k modular
form, then we obtain a modular integral of weight 2 — k with a polynomial cocycle.
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Eichler integrals: example

Let us look at the Eichler integral of Ey:

~ (2miT)3

E. = _ n
4(7) 1420 +n§>:10 3(n)q

Then
U (@2 hE
Ey — Ef|l »T =
4 4| 2 1440 (3 + 37 + )
7 ((3)
Er—Ei| 05 =21 4882
4 — Ea| 2S5 = YT (72 - 1)

Note that the polynomials on the right must generate a 1-cocycle.
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“Magic functions” for sphere packing

Cohn and Elkies have proved that if there exists a radial function F: R® — R such that

F(x) <0, |x|>V2,
F(x)>0, xcR®,
F(0) = f(0) =1,

then Eg is the optimal sphere packing in 8 dimensions.
Assuming that F(x) = f(|x|), f must also satisfy

f(vV2n)=0, n>1,
f'(vV2n) =0, n>2,
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“Magic functions” for sphere packing

Viazovska has found a beautiful construction of such a function using Laplace
transforms of weakly-holomorphic quasi-modular forms.

Theorem (Viazovska)

The Eg lattice is an optimal sphere packing in RE.

Using the same strategy a “magical function” was then also found in dimension 24.

Theorem (Cohn-Kumar-Miller-R.-Viazovska)

The Leech lattice gives an optimal sphere packing in R?*.
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Fourier Interpolation

To prove universal optimality of the Eg lattice using LP bounds, one needs to construct
more general “magic functions” that now have prescribed values of f(v2n), f'(v/2n)
while f(v/2n) = f'(v/2n) =0, for n > 1.

Theorem (CKMRV)

For d € {8,24} there exist two sequences of radial Schwartz functions a,, b, € S(RY),
n > 0 such that for any radial Schwartz function f we have

F(x) =Y an()f(V2n)+ D" ba(x)F'(V2n)+ > &(x)F(V2n)+ Y ba(x)F'(v2n)

n>ng n>ng n>ng n>ng

Here ng =1 for d = 8 and ng = 2 for d = 24.

Theorem (CKMRV)

The Eg lattice and the Leech lattice are universally optimal.
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Fourier Interpolation: reformulation

How do modular forms appear?

We want to verify

F(x) =D an()F(V2n)+ D ba(x)F'(vV20)+ Y an(x)F(v2n)+ Y ba(x)F(V2n)

n>ng n>ng n>ng

for all Schwartz functions. Let

so that
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Fourier Interpolation: reformulation

Applying the identity to f-(x) leads to

el — F(r)+ TﬁkG(—l/T)

where

F(r)=F(r,.x) = > an(x)e®™™ + (2mit) Y V2nby(x)e>™ ™,

n>ng n>ng
G(r) = G(r.x) = Y _ ap(x)e*™™ + (2mit) > v/2nby(x)e*™ .
n>ng n>ng

Equivalently, F and G satisfy
F(r+2)—2F(r+ 1)+ F(r)=0, G(t4+2)—-2G(t+1)+G(r)=0

together with a growth condition at ioo.
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Reduction to modular integrals

F(r+2)—2F(t+1)+F(r)=0,
G(tr+2)—-2G(t+1)+ G(r)=0,
F(r) + 77 5G(~1/7) = o(7) := €™

2

To turn this into an equation for a modular integral we consider the vector F: H — C°
‘F:(Fv F‘kTa F|kTS> Ga G|kT7 G‘kTS)7

in terms of which the system of equations becomes

{f(ﬂ—ATlf(TH) = r(r),
F(r)— Ang_k}"(—l/T) = ¥s(7).
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Modular integrals

How to find modular integrals? To make life easier let's look at the scalar version.

{F(T)— Fir+1) = 4r(n),
F(r) - KF(=1/7) = s(r).

A solution can be written using modular Green's functions:

F(r)= /w K(r,z)ys(z)dz + /IOO K(r,z)y7(z)dz, TeD

m K(7,z) is modular of weight k in 7

m K(7,z) is modular of weight 2 — k in z

m K(7,z) has simple poles only at z € PSLy(Z)7 with residue 1/(2xi) at z= 171
m “good behavior at the cusps”
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Modular integrals as a boundary value problem

1 _Jj(z) _ Eu(z)/A(z)
For k = 0 we have K(, z) 27”1(2) =0 = 040
C
j 0 1728
w _

m Enough to satisfy the equations for F on the closure of the fundamental domain.

m Change of variable w = j(7) gives F: C . (—00,1728] — C with prescribed jumps
along (—o0,0) and (0, 1728).

m After the change of variables K(7, z) becomes the Cauchy kernel.

m The reason why the jump conditions are satisfied is the Sokhotski-Plemelj formula
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The Sokhotski-Plemelj formula

C

Suppose we want to construct a holomorphic function f: C \ [a, b] — C such that

m f(z) =0(1/z) at z — oo;

m f(t+ie)—f(t—ic) — w(t) ase — 0+, t € (a,b), where w: [a, b] — C is given.
Then the Sokhotsky-Plemelj formula says that

flz) = /b w(t) 4y

2 t—2z

has the required properties.
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Vector-valued case

Going back to the vector-valued case, we need to know the space of modular forms for
the 6D representation given by At and As.

That representation decomposes into two 3D-subrepresentations. One of them is the
symmetric square, and thus involves quasimodular forms of depth 2.

The other is a bit harder to describe, but one can show that vector-valued modular
forms for it involve Eichler integrals of weight 2 Eisenstein series for ['(2). These are

log A(T), log(1 — A(7))
where \(7) =1 — PUr1)/2) i the modular lambda invariant.

04(7/2)
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What about 2-dimensional case?

Why does this not work for the hexagonal lattice?

Instead of {v/2n},>1 one needs to interpolate from {(4/3)}/4\/a2 + ab + b2}, hez.
The set S of integers represented by a® + ab + b?

0,1,3,4,7,9,12,13,16,19, 21, 25,27,28, 31, 36, 37,39, ...

is rather sparse, since Paul Bernays has shown that

X

Vlog x

which is much smaller than x/2 corresponding to {v/2n}>1.

ISN[0,x]| ~ ¢

23/23



