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Eisenstein series of weight 2

Let us look once again at the Eisenstein series of weight 2.

G2(τ) = − 1

24
+
∑
n≥1

σ(n)qn

The fact that it is not modular may appear as an issue at first, but in fact it points to
some interesting directions.

G2

( aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− c(cτ + d)

4πi

E2

( aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6c(cτ + d)

πi
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Quasimodular forms

So far we did not say anything about what happens when one differentiates a modular
form.

D :=
1

2πi

d

dτ
= q

d

dq

If f is a modular form of weight k , then differentiating the transformation law we get

Df
( aτ + b

cτ + d

)
(cτ + d)−2 = Df (τ)(cτ + d)k + f (τ)

kc(cτ + d)k−1

2πi

so f ′ can be modular only for k = 0. Nevertheless, the combination

ϑk f := Df − k

12
E2f

is a modular form of weight k + 2. The operator ϑ = ϑk is called the Serre derivative.
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Quasimodular forms

Using this fact it is not hard to prove the following statement.

Theorem (Ramanujan)

We have

DE2 =
E 2

2 − E4

12
, DE4 =

E2E4 − E6

3
, DE6 =

E2E6 − E 2
4

2

Proof.

Exercise.

This means that M̃∗(Γ1) := C[E2,E4,E6] is closed under differentiation.

Let us call f a quasimodular form of weight k and depth ≤ p if it is a polynomial of
degree p in E2 with modular coefficients of homogeneous weight k .
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Quasimodular forms

Is there an intrinsic description of M̃∗(Γ1)?

Definition

A quasimodular form of depth p and weight k for PSL2(Z) is a holomorphic function
f : H→ C such that there exist functions f0, . . . , fp : H→ C (of polynomial growth at
the boundary) such that

(f |kγ)(τ) =

p∑
j=0

fj(τ)
( c

2πi(cτ + d)

)j
, γ ∈ PSL2(Z)

Quasimodular forms were introduced by Kaneko and Zagier, together with the related
concept of almost modular forms: these are functions

f (τ) =

p∑
j=0

fj(τ)(−4πy)−j

with fj holomorphic, such that f |kγ = f for all γ ∈ PSL2(Z).
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Quasimodular forms

Quasimodular forms appear naturally as components of vector-valued modular forms
for symmetric power representations.

Given a representation ρ : Γ→ GLn(C) one can consider vector valued modular forms
F : H→ Cn such that F |kγ = ρ(γ)F .

Theorem (Kaneko, Nagatomo)

Let f = (f0, . . . , fp) be a vector-valued modular form of weight k for the symmetric
power representation of SL2(Z). Then each

gm(τ) =
m∑
j=0

(−1)j
(
m

j

)
τm−j fj(τ) , 0 ≤ m ≤ p

is a quasimodular form of weight k + p − 2m and depth p −m.
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Symmetric power representation


(cτ + d)n

(aτ + b)(cτ + d)n−1

...
(aτ + b)n−1(cτ + d)

(aτ + b)n

 = ρ(γ)


1
τ
...

τn−1

τn



7 / 23



Modular integrals

Let us come back to the transformation law

G2

( aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− c(cτ + d)

4πi

once more. We can rewrite it in the form

G2(τ)− (cτ + d)−2G2

( aτ + b

cτ + d

)
=

1

4πi

c

cτ + d

or equivalently,
G2 − G2|2γ = ϕγ ,

where

ϕγ(τ) =
1

4πi

c

cτ + d
, γ =

(
a b
c d

)
∈ Γ1
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Modular integrals

Note that, since

G2 − G2|γ1γ2 = G2 − G2|γ2 + G2|γ2 + G2|γ1γ2 ,

we necessarily have

ϕγ1γ2 = ϕγ2 + ϕγ1 |kγ2 for all γ1, γ2 ∈ PSL2(Z) (*)

We call a family of holomorphic functions ϕγ that satisfies (*) a 1-cocycle for PSL2(Z).
A holomorphic function F : H→ C is called a modular integral of a 1-cocycle ϕγ if

F − F |kγ = ϕγ , γ ∈ PSL2(Z)

Usually, we require both ϕγ and F to have at most polynomial growth at the boundary.
Note that if ϕγ = 0 for all γ, then F is a modular form of weight k.
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Eichler integrals

A nontrivial construction of modular integrals is given by Eichler integrals.
A key role in this construction is played by the following elementary identity.

Theorem (Bol’s identity)

Let F : H→ C be any smooth function. Then

Dk−1(F |2−kγ) = (Dk−1F )|kγ , γ ∈ PSL2(R) .

From Bol’s identity it follows that if we take (k − 1)-st primitive of a weight k modular
form, then we obtain a modular integral of weight 2− k with a polynomial cocycle.
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Eichler integrals: example

Let us look at the Eichler integral of E4:

Ẽ4(τ) =
(2πiτ)3

1440
+
∑
n≥1

σ−3(n)qn

Then

Ẽ4 − Ẽ4|−2T = −(2πi)3

1440
(3τ2 + 3τ + 1)

Ẽ4 − Ẽ4|−2S =
π3τ

36i
+
ζ(3)

2
(τ2 − 1)

Note that the polynomials on the right must generate a 1-cocycle.
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“Magic functions” for sphere packing

Cohn and Elkies have proved that if there exists a radial function F : R8 → R such that

F (x) ≤ 0 , |x | ≥
√

2 ,

F̂ (x) ≥ 0 , x ∈ R8 ,

F (0) = f̂ (0) = 1 ,

then E8 is the optimal sphere packing in 8 dimensions.
Assuming that F (x) = f (|x |), f must also satisfy

f (
√

2n) = 0 , n ≥ 1 ,

f ′(
√

2n) = 0 , n ≥ 2 ,

f̂ (
√

2n) = 0 , n ≥ 1 ,

f̂ ′(
√

2n) = 0 , n ≥ 1 .
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“Magic functions” for sphere packing

Viazovska has found a beautiful construction of such a function using Laplace
transforms of weakly-holomorphic quasi-modular forms.

Theorem (Viazovska)

The E8 lattice is an optimal sphere packing in R8.

Using the same strategy a “magical function” was then also found in dimension 24.

Theorem (Cohn-Kumar-Miller-R.-Viazovska)

The Leech lattice gives an optimal sphere packing in R24.
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Fourier Interpolation

To prove universal optimality of the E8 lattice using LP bounds, one needs to construct
more general “magic functions” that now have prescribed values of f (

√
2n), f ′(

√
2n)

while f̂ (
√

2n) = f̂ ′(
√

2n) = 0, for n ≥ 1.

Theorem (CKMRV)

For d ∈ {8, 24} there exist two sequences of radial Schwartz functions an, bn ∈ S(Rd),
n ≥ 0 such that for any radial Schwartz function f we have

f (x) =
∑
n≥n0

an(x)f (
√

2n) +
∑
n≥n0

bn(x)f ′(
√

2n) +
∑
n≥n0

ân(x)f̂ (
√

2n) +
∑
n≥n0

b̂n(x)f̂ ′(
√

2n)

Here n0 = 1 for d = 8 and n0 = 2 for d = 24.

Theorem (CKMRV)

The E8 lattice and the Leech lattice are universally optimal.
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Fourier Interpolation: reformulation

How do modular forms appear?

We want to verify

f (x) =
∑
n≥n0

an(x)f (
√

2n) +
∑
n≥n0

bn(x)f ′(
√

2n) +
∑
n≥n0

ân(x)f̂ (
√

2n) +
∑
n≥n0

b̂n(x)f̂ ′(
√

2n)

for all Schwartz functions. Let
fτ (x) = e iπτx

2

so that
f̂τ (ξ) = τ−d/2f−1/τ (ξ)
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Fourier Interpolation: reformulation

Applying the identity to fτ (x) leads to

e iπτx
2

= F (τ) + τ−kG (−1/τ)

where

F (τ) = F (τ, x) =
∑
n≥n0

an(x)e2πinτ + (2πiτ)
∑
n≥n0

√
2nbn(x)e2πinτ ,

G (τ) = G (τ, x) =
∑
n≥n0

ân(x)e2πinτ + (2πiτ)
∑
n≥n0

√
2nb̂n(x)e2πinτ .

Equivalently, F and G satisfy

F (τ + 2)− 2F (τ + 1) + F (τ) = 0, G (τ + 2)− 2G (τ + 1) + G (τ) = 0

together with a growth condition at i∞.
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Reduction to modular integrals


F (τ + 2)− 2F (τ + 1) + F (τ) = 0 ,

G (τ + 2)− 2G (τ + 1) + G (τ) = 0 ,

F (τ) + τ−kG (−1/τ) = ϕ(τ) := e iπτx
2

To turn this into an equation for a modular integral we consider the vector F : H→ C6

F = (F , F |kT , F |kTS , G , G |kT , G |kTS) ,

in terms of which the system of equations becomes{
F(τ)− A−1

T F(τ + 1) = ψT (τ) ,

F(τ)− A−1
S τ−kF(−1/τ) = ψS(τ) .
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6D representation

AT =



0 1 0 0 0 0
−1 2 0 0 0 0
2 0 0 0 0 1
0 0 0 0 1 0
0 0 0 −1 2 0
0 0 1 2 0 0

 , AS =



0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .

ψT =



0
0

2ϕ|S − ϕ|T−1S
0
0

2ϕ− ϕ|TST

 , ψS =



ϕ
0
0
ϕ|S

0
0

 .
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Modular integrals

How to find modular integrals? To make life easier let’s look at the scalar version.{
F (τ)− F (τ + 1) = ψT (τ) ,

F (τ)− τ−kF (−1/τ) = ψS(τ) .

A solution can be written using modular Green’s functions:

F (τ) =

∫ ω

i
K (τ, z)ψS(z)dz +

∫ i∞

ω
K (τ, z)ψT (z)dz , τ ∈ D

K (τ, z) is modular of weight k in τ

K (τ, z) is modular of weight 2− k in z

K (τ, z) has simple poles only at z ∈ PSL2(Z)τ with residue 1/(2πi) at z = τ

“good behavior at the cusps”
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Modular integrals as a boundary value problem

For k = 0 we have K (τ, z) = 1
2πi

j ′(z)
j(z)−j(τ) = E14(z)/∆(z)

j(τ)−j(z)

i ω

H

j 0 1728

C

Enough to satisfy the equations for F on the closure of the fundamental domain.

Change of variable w = j(τ) gives F̃ : Cr (−∞, 1728]→ C with prescribed jumps
along (−∞, 0) and (0, 1728).

After the change of variables K (τ, z) becomes the Cauchy kernel.

The reason why the jump conditions are satisfied is the Sokhotski-Plemelj formula
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The Sokhotski-Plemelj formula

a b

C

Suppose we want to construct a holomorphic function f : Cr [a, b]→ C such that

f (z) = O(1/z) at z →∞;

f (t + iε)− f (t − iε)→ w(t) as ε→ 0+, t ∈ (a, b), where w : [a, b]→ C is given.

Then the Sokhotsky-Plemelj formula says that

f (z) =
1

2πi

∫ b

a

w(t)

t − z
dt

has the required properties.
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Vector-valued case

Going back to the vector-valued case, we need to know the space of modular forms for
the 6D representation given by AT and AS .

That representation decomposes into two 3D-subrepresentations. One of them is the
symmetric square, and thus involves quasimodular forms of depth 2.

The other is a bit harder to describe, but one can show that vector-valued modular
forms for it involve Eichler integrals of weight 2 Eisenstein series for Γ(2). These are

log λ(τ) , log(1− λ(τ))

where λ(τ) = 1− θ4((τ+1)/2)
θ4(τ/2)

is the modular lambda invariant.
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What about 2-dimensional case?

Why does this not work for the hexagonal lattice?

Instead of {
√

2n}n≥1 one needs to interpolate from {(4/3)1/4
√
a2 + ab + b2}a,b∈Z.

The set S of integers represented by a2 + ab + b2

0, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, . . .

is rather sparse, since Paul Bernays has shown that

|S ∩ [0, x ]| ∼ c
x√

log x

which is much smaller than x/2 corresponding to {
√

2n}n≥1.
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