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1. Introduction to conic optimization



Recap from yesterday: Conic optimization

E finite-dimensional Euclidean space with inner product (x, y)

K C E proper convex cone

primal standard form of conic program /.

p* = sup {(c,x) X EE, x>0, (a,x) =b;(j € [m])}

Semidefinite programming (SDP)
E=S", (X,Y)=TrXY, K=S"
Determinant maximization (MAXDET)

E=S"XR, (X,s),Y,))=TrXY+st, K=" ={(X,s): X e S", s >0,(detX)" > s)

Polynomial optimization (POP)

E=R[x,...x], (f,g = %f(V)g, K=P,,=1{f:f(x) >20forallx € R"}, deven
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Algorithms and complexity "{
- bad news -

Conic programs can be difficult - NP-hard - to solve. . /
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has t = 0 as optimal solution.



Algorithms and complexity

- good nhews -
LP, SOCP, SDP, MAXDET can be solved in polynomial time (under mild technical assumptions)

Theorem. Consider the primal semidefinite program

p* — SU-p{<Cv X> : X € Sill—v <A17 X> = b1,..., <Am7 X> — b’m}' Proof using ellipsoid
method (Grotschel,
Lovasz, Schrijver, 1981)

with rational input C, A1,...,A,,, and b1, ...,b,,. Suppose we know a rational
point Xy € F and positive rational numbers r, R so that

B(Xo,r) € F C B(Xo, R), Proof using interior point
method (de Klerk, Vallentin,
2016) based on (Nesterov,
Nemirovski, 1994)

where B(Xq, ) is the ball of radius r, centered at X, in the affine subspace
F:{XESn : <AJ,X> :bj for 7 = 1,...,m}.

For every positive rational number ¢ > 0 one can find in polynomial time a
rational matrix X* € F such that

<C7X*> _p* S €,

where the polynomial is in n, m, log, &, log,(1/€), and the bit size of the data
X(), C, Al,...,Am, and bl,...,bm.

. . 1 x_ : i
technical assumptions needed: diag (x ’ 1), i=1,...n | €S x,=2= x, > 2°
l

-1 A



A first SDP application
- elgenvalue optimization -

X € §" symmetric matrix with (real) eigenvalues

M(X) > A(X) > > A (X)

Finding the sum of the largest k eigenvalues is an SDP

M(X) 4+ A(X) = max(X,Y)

Ye&

E=4YeS": I,>Y >=0,(,,Y) =k}

This gadget can be used to show that optimizing convex functions which
only depend on the eigenvalues over given affine spaces of symmetric
matrices is (usually) SDP representable.



A second SDP application
- polynomial optimization and sum of squares -

Pmin = Minimize p(x)
r e K,
K={zxeR":qg,(x)>0,...,gn(x) >0},

where p, g1, ..., g, € R|z].

; Clearly,
Lasserre (2001) Parrilo (2003) Pmin = sup{t : p —t € P(K)}

where

PK)={f eRlx|: f(x) >0Vr € K}
Sum of squares relaxation

Doos =SUp{t - p—tE€X+ g+ -+ gn2},

where
Y={hi+---+h>:reN,h; €Rlz]}

cone of sum of squares polynomials.



Sum of squares and SDP
p € Rlx|, N X if and only if Q) & Sﬁ?d):

p=[x])Qlz]s ie. Z Qs =pa Vo € Ny,

ByeN]
p+y=a

Clearly
Pmin = sup{t : p—t € P(K)} < pyos = sup{t : p—t € Z+g1 X+ - -+gn2}

and generally pyin 7 Psos-

Equality guaranteed for example by Putinar’s theorem: If 3/V € N such
that N — > " 27 € X+ g2+ -+ + g2 Then

Vee K:plz) >0=peX+gX+ -+ gnx

1. Extremely general and powerful result
2. Degree of > can be very high
3. Even for small degree: numerical instability

4. Right choice of polynomial basis poorly understood



A third SDP application
- approximating a and y -

a(G) =4
G = (V, F) finite graph with weight function w : V' — Ry Lovasz’ J-number is an SDP relaxation for «,,
I C Visindependentif {z,y} € Forallz,y € I a,(G) <, (G)
W (G) =min M
a,(G) = max Z w(x) : I independent K — (w'?)(w'?)7 is positive semidefinite,
vel K(x,z) < M forallxz € V,
: : K(z,y) <0 for all {x,y} ¢ E where x # y,

weighted independence number of G. MeR K es

k and for y
X(G) = min {k - 4C, ..., ()} independent : V' = U CZ}
i=1

X(G) > 9(G) = max{)\n(Agn(_Az\l(A) :

AeS" A, >0,A,, =0for{z,y} & E}

chromatic number of (.

Finding «,, and 'y is NP-hard.



G.F. Voronoi (1868-1908)

2. Voronol’s lattice reduction theory



Parameter space of lattices

Lattice L= Zby+ Zb, + --- + Zb, C R" bl[ .
\
Siy |
r——
O(n) \ GL (R) / GL,(Z)

/N

orthogonal transformation

lattice basis lattice basis transformation

AB with A € O(n) B=b,,...b) BT with T € GL,(Z)
leaves distances invariant n



Reduction theory of lattices

S" = cone{xx' : x € Z"} C S" rational closure of S"
GL,(Z) acts on S". by (g, 0) > ¢"0g
reduction theory of lattices = find ,,nice“ fundamental domain for §1 /| GL (Z)

many constructions are known (coincide for n = 2, but not for n > 2)

Minkowski, Voronoi (2x), ..., LLL (Lenstra, Lenstra, Lovasz)

,Best® (= most expensive): Voronoi’s second reduction theory




Voronoi’s second reduction theory

[_1 _;] properties

infinite polyhedral face-to-face tiling

0
1> all triangular polyhedra GL,(Z)-equivalent
\
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Construction of Delaunay polyhedra "{

Empty sphere construction

Delaunay polyhedra of Q € S’

P = conv{v, vy, ...},v; € Z", where

B.N. Delaunay

= B.H. lenone : n . o) ) )
TN Deon so01080  there is a center ¢ € R and a radius 7 > 0 so that

Olv, —c] = r?>and Q[w —c] > r’ forallw & Z"\{v{, V5, ...}

with Q[x] = x"Ox



