Optimization for lattices, packings, and coverings

Lecture 2

Frank Vallentin (Universität zu Köln)

Online summer school on optimization, interpolation and modular forms
August 24 to 28, 2020
EPF Lausanne

1. Introduction to conic optimization

Recap from yesterday: Conic optimization

E finite-dimensional Euclidean space with inner product $\langle x, y\rangle$
$K \subseteq E$ proper convex cone
primal standard form of conic program

$$
p^{*}=\sup \left\{\langle c, x\rangle: x \in E, x \geq_{K} 0,\left\langle a_{j}, x\right\rangle=b_{j}(j \in[m])\right\}
$$

Semidefinite programming (SDP)

$$
E=\mathbb{S}^{n}, \quad\langle X, Y\rangle=\operatorname{Tr} X Y, \quad K=\mathbb{S}_{+}^{n}
$$

Determinant maximization (MAXDET)

$$
E=\mathbb{S}^{n} \times \mathbb{R}, \quad\langle(X, s),(Y, t)\rangle=\operatorname{Tr} X Y+s t, \quad K=\mathscr{D}^{n+1}=\left\{(X, s): X \in \mathbb{S}_{+}^{n}, s \geq 0,(\operatorname{det} X)^{1 / n} \geq s\right\}
$$

Polynomial optimization (POP)

$$
E=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}, \quad\langle f, g\rangle=\frac{1}{d!} f(\nabla) g, \quad K=P_{n, d}=\left\{f: f(x) \geq 0 \text { for all } x \in \mathbb{R}^{n}\right\}, \quad d \text { even }
$$

Algorithms and complexity - bad news -

Conic programs can be difficult - NP-hard - to solve.

Polynomial time reduction from NP-complete PARTITION problem
PARTITION: Given $c \in \mathbb{N}^{n}$, does there exist $x \in\{-1,+1\}^{n}$ so that $c^{\top} x=0$?

PARTITION has a positive answer exactly when

$$
\sup \left\{t:\left(c^{\top} x\right)^{4}+n \sum_{i=1}^{n} x_{i}^{4}-\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}-t \in P_{n, 4}\right\}
$$

has $t=0$ as optimal solution.

Algorithms and complexity
 - good news -

LP, SOCP, SDP, MAXDET can be solved in polynomial time (under mild technical assumptions)

Theorem. Consider the primal semidefinite program

$$
p^{*}=\sup \left\{\langle C, X\rangle: X \in \mathbb{S}_{+}^{n},\left\langle A_{1}, X\right\rangle=b_{1}, \ldots,\left\langle A_{m}, X\right\rangle=b_{m}\right\} .
$$

with rational input C, A_{1}, \ldots, A_{m}, and b_{1}, \ldots, b_{m}. Suppose we know a rational point $X_{0} \in \mathcal{F}$ and positive rational numbers r, R so that

$$
B\left(X_{0}, r\right) \subseteq \mathcal{F} \subseteq B\left(X_{0}, R\right)
$$

where $B\left(X_{0}, r\right)$ is the ball of radius r, centered at X_{0}, in the affine subspace

$$
\mathcal{F}=\left\{X \in \mathbb{S}^{n}:\left\langle A_{j}, X\right\rangle=b_{j} \text { for } j=1, \ldots, m\right\}
$$

For every positive rational number $\epsilon>0$ one can find in polynomial time a rational matrix $X^{*} \in \mathcal{F}$ such that

Proof using ellipsoid method (Grötschel, Lovász, Schrijver, 1981)

Proof using interior point method (de Klerk, Vallentin, 2016) based on (Nesterov, Nemirovski, 1994)
where the polynomial is in $n, m, \log _{2} \frac{R}{r}, \log _{2}(1 / \epsilon)$, and the bit size of the data $X_{0}, C, A_{1}, \ldots, A_{m}$, and b_{1}, \ldots, b_{m}.

$$
\text { technical assumptions needed: } \operatorname{diag}\left(\left(\begin{array}{cc}
1 & x_{i-1} \\
x_{i-1} & x_{i}
\end{array}\right), i=1, \ldots, n\right) \in \mathbb{S}_{+}^{2 n}, x_{0}=2 \Longrightarrow x_{i} \geq 2^{2^{i}}
$$

A first SDP application
 - eigenvalue optimization -

$X \in \mathcal{S}^{n}$ symmetric matrix with (real) eigenvalues

$$
\lambda_{1}(X) \geq \lambda_{2}(X) \geq \ldots \geq \lambda_{n}(X)
$$

Finding the sum of the largest k eigenvalues is an SDP

$$
\begin{gathered}
\lambda_{1}(X)+\cdots+\lambda_{k}(X)=\max _{Y \in \mathcal{E}_{k}}\langle X, Y\rangle \\
\mathcal{E}_{k}=\left\{Y \in \mathcal{S}^{n}: I_{n} \succeq Y \succeq 0,\left\langle I_{n}, Y\right\rangle=k\right\} .
\end{gathered}
$$

This gadget can be used to show that optimizing convex functions which only depend on the eigenvalues over given affine spaces of symmetric matrices is (usually) SDP representable.

A second SDP application

- polynomial optimization and sum of squares -

Lasserre (2001) Parrilo (2003)

$$
\begin{aligned}
p_{\text {min }}=\text { minimize } & p(x) \\
& x \in K, \\
& K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
\end{aligned}
$$

where $p, g_{1}, \ldots, g_{m} \in \mathbb{R}[x]$.
Clearly,

$$
p_{\min }=\sup \{t: p-t \in \mathcal{P}(K)\}
$$

where

$$
\mathcal{P}(K)=\{f \in \mathbb{R}[x]: f(x) \geq 0 \forall x \in K\}
$$

Sum of squares relaxation

$$
p_{s o s}=\sup \left\{t: p-t \in \Sigma+g_{1} \Sigma+\cdots+g_{m} \Sigma\right\}
$$

where

$$
\Sigma=\left\{h_{1}^{2}+\cdots+h_{r}^{2}: r \in \mathbb{N}, h_{i} \in \mathbb{R}[x]\right\}
$$

cone of sum of squares polynomials.

Sum of squares and SDP

$p \in \mathbb{R}[x]_{\leq d} \cap \Sigma$ if and only if $\exists Q \in \mathcal{S}_{\geq 0}^{\left(\begin{array}{c}n+d\end{array}\right)}$:

$$
p=[x]_{d}^{\top} Q[x]_{d}, \quad \text { i.e. } \quad \sum_{\substack{\beta, \gamma \in \mathbb{N}_{\alpha}^{n} \\ \beta+\gamma=\alpha}} Q_{\beta, \gamma}=p_{\alpha} \forall \alpha \in \mathbb{N}_{2 d}^{n}
$$

Clearly
$p_{\text {min }}=\sup \{t: p-t \in \mathcal{P}(K)\} \leq p_{\text {sos }}=\sup \left\{t: p-t \in \Sigma+g_{1} \Sigma+\cdots+g_{m} \Sigma\right\}$ and generally $p_{\text {min }} \neq p_{\text {sos }}$.

Equality guaranteed for example by Putinar's theorem: If $\exists N \in \mathbb{N}$ such that $N-\sum_{i=1}^{n} x_{i}^{2} \in \Sigma+g_{1} \Sigma+\cdots+g_{m} \Sigma$. Then

$$
\forall x \in K: p(x)>0 \Longrightarrow p \in \Sigma+g_{1} \Sigma+\cdots+g_{m} \Sigma
$$

1. Extremely general and powerful result
2. Degree of Σ can be very high
3. Even for small degree: numerical instability
4. Right choice of polynomial basis poorly understood

A third SDP application
 - approximating α and χ -

$G=(V, E)$ finite graph with weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$
$I \subseteq V$ is independent if $\{x, y\} \notin E$ or all $x, y \in I$

$$
\alpha_{w}(G)=\max \left\{\sum_{x \in I} w(x): I \text { independent }\right\}
$$

weighted independence number of G.

$$
\chi(G)=\min \left\{k: \exists C_{1}, \ldots, C_{k} \text { independent }: V=\bigcup_{i=1}^{k} C_{i}\right\}
$$

chromatic number of G.

Finding α_{w} and χ is NP-hard.

Lovász' ϑ-number is an SDP relaxation for α_{w}

$$
\alpha_{w}(G) \leq \vartheta_{w}^{\prime}(G)
$$

$$
\begin{aligned}
\vartheta_{w}^{\prime}(G)=\min & M \\
& K-\left(w^{1 / 2}\right)\left(w^{1 / 2}\right)^{\top} \\
& \text { is positive semidefinite, } \\
& K(x, x) \leq M
\end{aligned} \text { for all } x \in V, y \text { for all }\{x, y\} \notin E \text { where } x \neq y,
$$

and for χ

$$
\begin{aligned}
& \chi(G) \geq \vartheta_{1}^{\prime}(\bar{G})=\max \left\{\frac{\lambda_{n}(A)-\lambda_{1}(A)}{\lambda_{n}(A)}:\right. \\
& \left.A \in \mathcal{S}^{V}, A_{x y} \geq 0, A_{x y}=0 \text { for }\{x, y\} \notin E\right\} .
\end{aligned}
$$

G.F. Voronoi (1868-1908)

2. Voronoi's lattice reduction theory

Parameter space of lattices

Lattice $L=\mathbb{Z} b_{1}+\mathbb{Z} b_{2}+\cdots+\mathbb{Z} b_{n} \subseteq \mathbb{R}^{n}$

orthogonal transformation
$A B$ with $A \in O(n)$
leaves distances invariant
lattice basis
$B=\left(b_{1}, \ldots, b_{n}\right)$

lattice basis transformation
$B T$ with $T \in G L_{n}(\mathbb{Z})$

Reduction theory of lattices

$\tilde{\mathbb{S}_{+}^{n}}=\operatorname{cone}\left\{x x^{\top}: x \in \mathbb{Z}^{n}\right\} \subset \mathbb{S}_{+}^{n}$ rational closure of \mathbb{S}_{++}^{n}
$G L_{n}(\mathbb{Z})$ acts on $\tilde{\mathbb{S}_{+}^{n}}$ by $(g, Q) \mapsto g^{\top} Q g$
reduction theory of lattices $=$ find „nice" fundamental domain for $\tilde{\mathbb{S}_{+}^{n}} / G L_{n}(\mathbb{Z})$
many constructions are known (coincide for $n=2$, but not for $n>2$)

Minkowski, Voronoi (2x), ..., LLL (Lenstra, Lenstra, Lovász)
"Best" (= most expensive): Voronoi’s second reduction theory

Voronoi's second reduction theory

properties

infinite polyhedral face-to-face tiling all triangular polyhedra $G L_{2}(\mathbb{Z})$-equivalent

Construction of Delaunay polyhedra

Empty sphere construction

Delaunay polyhedra of $Q \in \tilde{\mathbb{S}_{+}^{n}}$

$$
P=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots\right\}, v_{i} \in \mathbb{Z}^{n}, \text { where }
$$

-

there is a center $c \in \mathbb{R}^{n}$ and a radius $r>0$ so that

$$
Q\left[v_{i}-c\right]=r^{2} \text { and } Q[w-c]>r^{2} \text { for all } w \in \mathbb{Z}^{\eta} \backslash\left\{v_{1}, v_{2}, \ldots\right\}
$$

with $Q[x]=x^{\top} Q x$

