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1. Introduction to conic optimization



Recap from yesterday: Conic optimization
 finite-dimensional Euclidean space with inner product E ⟨x, y⟩

 proper convex coneK ⊆ E

c

a
T
j x = bj

K
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primal standard form of conic program

p* = sup {⟨c, x⟩ : x ∈ E, x ⪰K 0, ⟨aj, x⟩ = bj ( j ∈ [m])}
Semidefinite programming (SDP)

E = &n, ⟨X, Y⟩ = Tr XY, K = &n
+

Polynomial optimization (POP)

E = ℝ[x1, …, xn]d, ⟨ f, g⟩ = 1
d! f(∇)g, K = Pn,d = {f : f(x) ≥ 0 for all x ∈ ℝn}, d even

E = &n × ℝ, ⟨(X, s), (Y, t)⟩ = Tr XY + st, K = +n+1 = {(X, s) : X ∈ &n
+, s ≥ 0,(det X)1/n ≥ s}

Determinant maximization (MAXDET)



Algorithms and complexity 
- bad news -

Conic programs can be difficult - NP-hard - to solve.

Polynomial time reduction from NP-complete PARTITION problem

PARTITION: Given , does there exist  so that ?c ∈ ℕn x ∈ {−1, + 1}n c.x = 0

PARTITION has a positive answer exactly when

sup t : (c.x)4 + n
n

∑
i=1

x4
i − (

n

∑
i=1

x2
i )

2

− t ∈ Pn,4

has  as optimal solution.t = 0



Algorithms and complexity 
- good news -

LP, SOCP, SDP, MAXDET can be solved in polynomial time (under mild technical assumptions)

Theorem. Consider the primal semidefinite program

p⇤ = sup{hC,Xi : X 2 Sn+, hA1, Xi = b1, . . . , hAm, Xi = bm}.

with rational input C, A1, . . . , Am, and b1, . . . , bm. Suppose we know a rational
point X0 2 F and positive rational numbers r, R so that

B(X0, r) ✓ F ✓ B(X0, R),

where B(X0, r) is the ball of radius r, centered at X0, in the a�ne subspace

F = {X 2 Sn : hAj , Xi = bj for j = 1, . . . ,m}.

For every positive rational number ✏ > 0 one can find in polynomial time a
rational matrix X⇤ 2 F such that

hC,X⇤i � p⇤  ✏,

where the polynomial is in n, m, log2
R
r , log2(1/✏), and the bit size of the data

X0, C, A1, . . . , Am, and b1, . . . , bm.

1

Proof using ellipsoid 
method (Grötschel, 
Lovász, Schrijver, 1981)

Proof using interior point 
method (de Klerk, Vallentin, 
2016) based on (Nesterov, 
Nemirovski, 1994)

technical assumptions needed: diag (( 1 xi−1
xi−1 xi ), i = 1,…, n) ∈ &2n

+ , x0 = 2 ⟹ xi ≥ 22i



A first SDP application 
- eigenvalue optimization -SDP application 1: Eigenvalue optimization

X 2 Sn symmetric matrix with (real) eigenvalues

�1(X) � �2(X) � . . . � �n(X)

Finding the sum of the largest k eigenvalues is an SDP

�1(X) + · · · + �k(X) = max
Y 2Ek

hX, Y i

Ek = {Y 2 Sn : In ⌫ Y ⌫ 0, hIn, Y i = k}.

This gadget can be used to show that optimizing convex functions which
only depend on the eigenvalues over given affine spaces of symmetric
matrices is (usually) SDP representable.



A second SDP application 
- polynomial optimization and sum of squares -SDP application 3: Polynomial optimization

pmin = minimize p(x)
x 2 K,
K = {x 2 Rn : g1(x) � 0, . . . , gm(x) � 0},

where p, g1, . . . , gm 2 R[x].

Clearly,
pmin = sup{t : p� t 2 P(K)}

where
P(K) = {f 2 R[x] : f (x) � 0 8x 2 K}

Sum of squares relaxation

psos = sup{t : p� t 2 ⌃ + g1⌃ + · · · + gm⌃},

where
⌃ = {h2

1 + · · · + h2
r : r 2 N, hi 2 R[x]}

cone of sum of squares polynomials.

Lasserre (2001) Parrilo (2003)



p 2 R[x]d \ ⌃ if and only if 9Q 2 S(
n+d
d )

⌫0 :

p = [x]TdQ[x]d, i.e.
X

�,�2Nnd
�+�=↵

Q�,� = p↵ 8↵ 2 Nn
2d

Clearly

pmin = sup{t : p�t 2 P(K)}  psos = sup{t : p�t 2 ⌃+g1⌃+· · ·+gm⌃}

and generally pmin 6= psos.

Equality guaranteed for example by Putinar’s theorem: If 9N 2 N such
that N �

Pn
i=1 x

2
i 2 ⌃ + g1⌃ + · · · + gm⌃. Then

8x 2 K : p(x) > 0 =) p 2 ⌃ + g1⌃ + · · · + gm⌃

1. Extremely general and powerful result

2. Degree of ⌃ can be very high

3. Even for small degree: numerical instability

4. Right choice of polynomial basis poorly understood

Sum of squares and SDP



A third SDP application 
- approximating  and  -α χ

↵(G) = 4
SDP application 2: Approximating ↵ and �

G = (V,E) finite graph with weight function w : V ! R�0

I ✓ V is independent if {x, y} 62 E or all x, y 2 I

↵w(G) = max

(
X

x2I
w(x) : I independent

)

weighted independence number of G.

�(G) = min

(

k : 9C1, . . . , Ck independent : V =
k[

i=1

Ci

)

chromatic number of G.

Finding ↵w and � is NP-hard.

Lovász’ #-number is an SDP relaxation for ↵w

↵w(G)  #0
w(G)

#0
w(G) = min M

K � (w1/2)(w1/2)T is positive semidefinite,
K(x, x)  M for all x 2 V ,
K(x, y)  0 for all {x, y} 62 E where x 6= y,
M 2 R, K 2 SV

and for �

�(G) � #0
1(G) = max

n�n(A)� �1(A)

�n(A)
:

A 2 SV , Axy � 0, Axy = 0 for {x, y} 62 E
o
.



2. Voronoi’s lattice reduction theory

G.F. Voronoi (1868–1908)



Parameter space of lattices

&n
++

O(n) \ GLn(ℝ) / GLn(ℤ)

lattice basis

B = (b1, …, bn)

lattice basis transformation

 with BT T ∈ GLn(ℤ)

orthogonal transformation

 with 


leaves distances invariant
AB A ∈ O(n)

b1

b2

Lattice L = ℤb1 + ℤb2 + ⋯ + ℤbn ⊆ ℝn



Reduction theory of lattices

 rational closure of  &̃n
+ = cone{xx. : x ∈ ℤn} ⊂ &n

+ &n
++

 acts on  by GLn(ℤ) &̃n
+ (g, Q) ↦ g.Qg

reduction theory of lattices = find „nice“ fundamental domain for  &̃n
+ / GLn(ℤ)

Minkowski, Voronoi (2x), …, LLL (Lenstra, Lenstra, Lovász)

many constructions are known (coincide for , but not for )n = 2 n > 2

„Best“ (= most expensive): Voronoi’s second reduction theory



Voronoi’s second reduction theory
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properties

infinite polyhedral face-to-face tiling

all triangular polyhedra -equivalentGL2(ℤ)



Construction of Delaunay polyhedra

B.N. Delaunay
= B.N. Delone
= B.N. Delone (1890–1980)

Delaunay polyhedra of Q ∈ &̃n
+

whereP = conv{v1, v2, …}, vi ∈ ℤn,

there is a center  and a radius  so thatc ∈ ℝn r > 0

Q[vi − c] = r2 and Q[w − c] > r2 for all w ∈ ℤn∖{v1, v2, …}

with Q[x] = x.Qx

Empty sphere construction

Q = I2


