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1. Introduction to conic optimization



WHAT IS… LP and SDP?

LP (linear programming) Maximizing/minimizing a linear functional over a polyhedron

SDP (semidefinite programming) Maximizing/minimizing a linear functional over a spectrahedron

polyhedron intersection of finitely many linear half spaces

= ℝn
+ ∩ affine subspace

spectrahedron = 𝕊n
+ ∩ affine subspace
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+
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Why are LP and SDP interesting?

3. Duality theory gives optimality criteria and a systematic way to prove rigorous upper/lower bounds

2. LP and SDP can be solved efficiently (in theory and practice)

4. LP and SDP can be used to prove that a point configuration is optimal or near optimal

1. Describe a wide class of convex optimization problems

5. Lots of other applications… combinatorial optimization, global polynomial optimization, engineering, machine 
learning, quantum information, game theory, … 



General framework: Conic optimization
 finite-dimensional Euclidean space with inner product E ⟨x, y⟩

 proper convex coneK ⊆ E

αK + βK ⊆ K for α, β ∈ ℝ+, K full-dimensional, K closed, K ∩ (−K) = {0}

 gives partial ordering on  by K E x ⪰K y ⟺ x − y ∈ K

 is the domain of nonnegative elementsK
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primal standard form of conic program

p* = sup {⟨c, x⟩ : x ∈ E, x ⪰K 0, ⟨aj, x⟩ = bj ( j ∈ [m])}
 is the optimization variablex
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2 ≤ t}



Important examples

Linear programming (LP)

E = ℝn, ⟨x, y⟩ = x𝖳y, K = ℝn
+

Second order cone programming (SOCP)

E = ℝn+1, ⟨(x, s), (y, t)⟩ = x𝖳y + st, K = ℒn+1 = {(x, s) : ∥x∥2 ≤ s}

Semidefinite programming (SDP)

E = 𝕊n, ⟨X, Y⟩ = Tr XY, K = 𝕊n
+

Polynomial optimization (POP)

E = ℝ[x1, …, xn]d, ⟨ f, g⟩ =
1
d!

f(∇)g, K = Pn,d = {f : f(x) ≥ 0 for all x ∈ ℝn}, d even

E = 𝕊n × ℝ, ⟨(X, s), (Y, t)⟩ = Tr XY + st, K = 𝒟n+1 = {(X, s) : X ∈ 𝕊n
+, s ≥ 0,(det X)1/n ≥ s}

Determinant maximization (MAXDET)



Dualization
primal standard form of conic program

p* = sup {⟨c, x⟩ : x ∈ E, x ⪰K 0, ⟨aj, x⟩ = bj ( j ∈ [m])}
dual standard form of conic program

d* = inf {b1y1 + ⋯ + bmym : y1, …, ym ∈ ℝ, y1a1 + ⋯ + ymam ⪰K* c}
where  is the dual cone of K* = {y ∈ E : ⟨x, y⟩ ≥ 0 for all x ∈ K} K Bipolar theorem: (K*)* = K

Important examples

(ℝn
+)* = ℝn

+ (ℒn+1)* = ℒn+1self dual cones: (𝕊n
+)* = 𝕊n

+

Koecher-Vinberg classification of symmetric cones (real Euclidean Jordan algebras)

non self dual cones:

(𝒟n+1)* = {(Y, t) ∈ 𝕊n
+ × ℝ : (det Y)1/n ≥ −

t
n }

(Pn,d)* = Qn,d = {(α𝖳
1 x)d + ⋯ + (α𝖳

r x)d : α1, …, αr ∈ ℝn, r ∈ ℕ} sums of even powers of linear forms



The dualization cheat sheet
Useful table to determine duals

maximize minimize
variable ⌫K 0 ⌫K⇤ constraint
variable �K 0 �K⇤ constraint
unconstrained variable = constraint
= constraint unconstrained variable
 constraint variable � 0
� constraint variable  0
right-hand side objective function
objective function right-hand side



Duality theory

weak duality p* ≤ d*

strong duality if  and  strictly feasible dual solution  (i.e. )d* > − ∞ ∃ y y1a1 + ⋯ + ymam − c ∈ int K*
then  feasible for primal with  and ∃x* p* = ⟨c, x*⟩ p* = d*
(similarly with primal and dual interchanged)

optimality condition / complementary slackness Suppose primal and dual are both strictly feasible,

suppose  primal feasible and  dual feasible,

then  is optimal iff  

x y
(x, y) ⟨x, y1a1 + ⋯ + ymam − c⟩ = 0

p* = sup {⟨c, x⟩ : x ∈ E, x ⪰K 0, ⟨aj, x⟩ = bj ( j ∈ [m])}
d* = inf {b1y1 + ⋯ + bmym : y1, …, ym ∈ ℝ, y1a1 + ⋯ + ymam ⪰K* c}

primal

dual


