Optimization for lattices, packings, and coverings

Lecture 1

Frank Vallentin (Universität zu Köln)

Online summer school on optimization, interpolation and modular forms
August 24 to 28, 2020
EPF Lausanne

1. Introduction to conic optimization

WHAT IS... LP and SDP?

LP (linear programming) Maximizing/minimizing a linear functional over a polyhedron
polyhedron intersection of finitely many linear half spaces
$=\mathbb{R}_{+}^{n} \cap$ affine subspace

cuboctahedron

SDP (semidefinite programming) Maximizing/minimizing a linear functional over a spectrahedron spectrahedron $=\mathbb{S}_{+}^{n} \cap$ affine subspace

Why are LP and SDP interesting?

1. Describe a wide class of convex optimization problems
2. LP and SDP can be solved efficiently (in theory and practice)
3. Duality theory gives optimality criteria and a systematic way to prove rigorous upper/lower bounds
4. LP and SDP can be used to prove that a point configuration is optimal or near optimal
5. Lots of other applications... combinatorial optimization, global polynomial optimization, engineering, machine learning, quantum information, game theory, ...

General framework: Conic optimization

E finite-dimensional Euclidean space with inner product $\langle x, y\rangle$
$K \subseteq E$ proper convex cone

$$
\alpha K+\beta K \subseteq K \text { for } \alpha, \beta \in \mathbb{R}_{+}, K \text { full-dimensional, } K \text { closed, } K \cap(-K)=\{0\}
$$

K gives partial ordering on E by $x \succeq_{K} y \Longleftrightarrow x-y \in K$

K is the domain of nonnegative elements
primal standard form of conic program

$$
p^{*}=\sup \left\{\langle c, x\rangle: x \in E, x \geq_{K} 0,\left\langle a_{j}, x\right\rangle=b_{j}(j \in[m])\right\}
$$

x is the optimization variable

Important examples

Linear programming (LP)

$$
E=\mathbb{R}^{n}, \quad\langle x, y\rangle=x^{\top} y, \quad K=\mathbb{R}_{+}^{n}
$$

Second order cone programming (SOCP)

$$
E=\mathbb{R}^{n+1}, \quad\langle(x, s),(y, t)\rangle=x^{\top} y+s t, \quad K=\mathscr{L}^{n+1}=\left\{(x, s):\|x\|_{2} \leq s\right\}
$$

Semidefinite programming (SDP)

$$
E=\mathbb{S}^{n}, \quad\langle X, Y\rangle=\operatorname{Tr} X Y, \quad K=\mathbb{S}_{+}^{n}
$$

Determinant maximization (MAXDET)

$$
E=\mathbb{S}^{n} \times \mathbb{R}, \quad\langle(X, s),(Y, t)\rangle=\operatorname{Tr} X Y+s t, \quad K=\mathscr{D}^{n+1}=\left\{(X, s): X \in \mathbb{S}_{+}^{n}, s \geq 0,(\operatorname{det} X)^{1 / n} \geq s\right\}
$$

Polynomial optimization (POP)

$$
E=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}, \quad\langle f, g\rangle=\frac{1}{d!} f(\nabla) g, \quad K=P_{n, d}=\left\{f: f(x) \geq 0 \text { for all } x \in \mathbb{R}^{n}\right\}, \quad d \text { even }
$$

Dualization

primal standard form of conic program

$$
p^{*}=\sup \left\{\langle c, x\rangle: x \in E, x \succeq_{K} 0,\left\langle a_{j}, x\right\rangle=b_{j}(j \in[m])\right\}
$$

dual standard form of conic program

$$
d^{*}=\inf \left\{b_{1} y_{1}+\cdots+b_{m} y_{m}: y_{1}, \ldots, y_{m} \in \mathbb{R}, y_{1} a_{1}+\cdots+y_{m} a_{m} \succeq_{K^{*}} c\right\}
$$

where $K^{*}=\{y \in E:\langle x, y\rangle \geq 0$ for all $x \in K\}$ is the dual cone of K
Bipolar theorem: $\left(K^{*}\right)^{*}=K$

Important examples
self dual cones: $\quad\left(\mathbb{R}_{+}^{n}\right)^{*}=\mathbb{R}_{+}^{n}\left(\mathscr{L}^{n+1}\right)^{*}=\mathscr{L}^{n+1} \quad\left(\mathbb{S}_{+}^{n}\right)^{*}=\mathbb{S}_{+}^{n}$
Koecher-Vinberg classification of symmetric cones (real Euclidean Jordan algebras)
non self dual cones:

$$
\begin{aligned}
& \left(\mathscr{D}^{n+1}\right)^{*}=\left\{(Y, t) \in \mathbb{S}_{+}^{n} \times \mathbb{R}:(\operatorname{det} Y)^{1 / n} \geq-\frac{t}{n}\right\} \\
& \left(P_{n, d}\right)^{*}=Q_{n, d}=\left\{\left(\alpha_{1}^{\top} x\right)^{d}+\cdots+\left(\alpha_{r}^{\top} x\right)^{d}: \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}^{n}, r \in \mathbb{N}\right\} \quad \text { sums of even powers of linear forms }
\end{aligned}
$$

The dualization cheat sheet

maximize	minimize
variable $\succeq_{K} 0$	$\succeq_{K^{*}}$ constraint
variable $\preceq_{K} 0$	$\preceq_{K^{*}}$ constraint
unconstrained variable	$=$ constraint
$=$ constraint	unconstrained variable
\leq constraint	variable ≥ 0
\geq constraint	variable ≤ 0
right-hand side objective function	objective function right-hand side

Duality theory

primal $\quad p^{*}=\sup \left\{\langle c, x\rangle: x \in E, x \geq_{K} 0,\left\langle a_{j}, x\right\rangle=b_{j}(j \in[m])\right\}$
dual $\quad d^{*}=\inf \left\{b_{1} y_{1}+\cdots+b_{m} y_{m}: y_{1}, \ldots, y_{m} \in \mathbb{R}, y_{1} a_{1}+\cdots+y_{m} a_{m} \geq_{K^{*}} c\right\}$
weak duality $p^{*} \leq d^{*}$
strong duality if $d^{*}>-\infty$ and \exists strictly feasible dual solution y (i.e. $y_{1} a_{1}+\cdots+y_{m} a_{m}-c \in \operatorname{int} K^{*}$) then $\exists x^{*}$ feasible for primal with $p^{*}=\left\langle c, x^{*}\right\rangle$ and $p^{*}=d^{*}$
(similarly with primal and dual interchanged)
optimality condition / complementary slackness Suppose primal and dual are both strictly feasible, suppose x primal feasible and y dual feasible, then (x, y) is optimal iff $\left\langle x, y_{1} a_{1}+\cdots+y_{m} a_{m}-c\right\rangle=0$

