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Topics for the four talks

. Sums-of-squares hierarchies for polynomial optimization
. Moment hierarchies for polynomial optimization

. Packing problems
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. Energy minimization problems



Question 1

How can we use the Lasserre hierarchy for 0/1 polynomial optimization
problems to derive a hierarchy for energy minimization on S"~1?
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For n = 3 this is the Thomson problem
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Energy minimization on {1,...,n}

Given a symmetric matrix W € R™*" find the minimum of

Z W, isPj

1<i<j<N

over all sets {p1,...,pn} of N distinct points in {1,...,n}

As a 0/1 polynomial optimization problem:

min{ Z Wi jxiz; - x € {0,1}", sz— }

1<i<j<N
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Moment hierarchy for 0/1 polynomial optimization

0/1 polynomial optimization: P = inf{p(z) : z € {0,1}", z € S(Q)}

The moment hierarchy
Po=inf { > psys :yo =1, M (y) = 0 for g € {1} UQ}
s

Optimize over vectors y indexed by subsets of {1,...,n} of size at most
2t.

Notation: p(z) = > g1,y PS [lics i
Localizing matrices:

Mtq(y)JJ/ _ ZS gs ysugus if |JU J/| <2t- deg(q),
' unspecified otherwise

for |J|,|J/| <t
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Energy minimization on {1,...,n}

Formulation as a 0/1 polynomial optimization problem:

min{ Z W, jxixy - x € {0,1}", lef }

1<i<j<N

So the hierarchy becomes

P, = inf{ Z Wi jygigy -y = 1, M (y) =0 for g € {1} U Q}

1<i<j<n

with Q = {q, —q}, q= Z?:l z;, — N

This reduces to

P= inf{ > Wigyggy tve =1, Mj(y) = 0, Mi(y) = 0}
1<i<j<N
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Localizing matrices:

Mtq(y)JJ’ _ qusly-JUJ’US if |JUJ,| < 2t7deg(q)a
' unspecified otherwise

for |J|, |J'| <t
The constraint M (y) =0 for ¢ = >, x; — N reduces to

Nys = Z YSu{i}
i=1

for all subsets S of {1,...,n} of cardinality at most 2¢t — 1



Reducing the number of constraints

Lemma Let ¢t > 1 and y € Rt If

n
yp =1 and Nyg= Zysu{j} forall S € Ip_1,
j=1

then

N .
Z ys:(i) forall 0<i <2t

Sel—;

The hierarchy reduces to

inf{ > Wisypgy v =1 M@y =0, Y ys= (‘7) for 0 <i < 2t}

1<i<j<n Sel—,;
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Finite convergence

This potentially makes the hierarchy weaker, but we can still prove finite
convergence to the optimal energy in N steps

This hierarchy can be generalized from {1,...,n} to S"~1, where it still
converges in [N steps
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Question 2

In the hierarchies for packing problems and for energy minimization we
need to optimize over positive definite kernels K € C(X x X) for some
space X

A continuous kernel K is positive definite if

Z cacy K (z,y) >0

z,yeC

for all finite C C X and ¢ € R€

We may assume K is invariant under the symmetry group of the
optimization problem



Schoenberg's theorem

If K € C(S" ! x S"~1) is an O(n)-invariant positive definite kernel, then
(o)
K(z,y) =Y P (z-y)
k=0

with ¢, > 0, where convergence is uniform absolute.



Schoenberg's theorem

If K € C(S" ! x S"~1) is an O(n)-invariant positive definite kernel, then
o0
K(z,y) =Y aP(z-y)
k=0
with ¢, > 0, where convergence is uniform absolute.

What if we wouldn't know about Schoenberg’s theorem?
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Bochner's theorem

The action of O(n) on S™~! defines an action on C(S"~1):

A space S C C(S"1) is invariant if Af € S forall A€ O(n) and f € S

An invariant space S C C(S™~!) is irreducible it cannot be written as a
direct sum of nontrival invariant subspaces

We can decompose C(S™~!) as a direct sum of irreducible subspaces Hy,

Here H), = Span{ij :j=1,...,dy} is the space of spherical harmonics
of degree k
Bochner's theorem says: K(x,y) =, ck Z ( )ij(y)

The addition formula: Z‘;’;l Y (x)Y{ (y) = PP(z - v)
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Bochner's theorem
In general we can have irreducible subspaces that are equivalent.

Then we write

My

T i=1
where
H,;,=span{er;;:j=1,...,mg}

Bochner's theorem says

K(Ivy) = Z<C7T7Z7T(x7y)>7

T

where

dx
Zrlw )i = D) et jE)ex o050}
j=1

Here C is a positive semidefinite matrix



Question 3

How do we deal with inequality constraints?



Sums-of-squares

For a polynomial optimization problem
P=inf{p(z) :2 € 5(Q)}, S(Q)={zecR":q(z)>0forqeQ}
we first need to reformulate as
P=sup{c:p(z)—c>0forzecSQ)}

to use sums-of-squares
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Sums-of-squares

The Delsarte bound:

inf {1 + f(1 Z e Pl (u
€0y Cly---yCq > 0,
1— f(u) >0 for u € [cosb, 1]}
The set [cos 6, 1] is semialgebraic, e.g.,

[cosf, 1] ={z€R:z—cosf§>0,1—x>0},or
[cosf,1] = {z € R: (z — cosb)(1 — z) > 0}



Sums-of-squares

Here we do not need Putinar's theorem, an older result by Lukacs says
p(x) >0 for x € [cos b, 1]

implies
P € Mdeg(p)—1)/2({z — cos 6, 1 — x})
if deg(p) is odd, and

JAS Mdeg(p)/Z—l({(x — COS 9)(1 - x)})

if deg(p) is even
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Semidefinite programs with semialgebraic constraints

More generally we can consider semidefinite programs where we have
polynomials
» whose coefficients depend linearly on the entries in the positive
semidefinite matrix variables, and

» which are nonnegative on semialgebraic sets

We can use Putinar's theorem to model these inequality constraints using
positive semidefinite matrices

If these polynomials have symmetries we can use symmetric
sums-of-squares which is more efficient
(see the paper by Gatermann and Parrilo)
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Computations for energy minimization

> Setup moment hierarchy by first considering energy minimization on
{1,...,n} and applying the Lasserre moment hierarchy

» Consider the dual hierarchy where we optimize over continuous, positive
definite kernels

» The first step is Yudin's bound, so consider the second step

» Use harmonic analysis to efficiently parameterize the space of positive
definite kernels by positive semidefinite matrices

> Use symmetric sums-of-squares characterizations to deal with the
polynomial inequality constraints

» Solve the resulting semidefinite program on a computer (sdpa-qd or
sdpa-gmp because we need high precision)

» The Thomson problem for 5 particles on S? was solved by Schwartz in
2015, but not using a certificate. Yudin's bound and the three-point
bound by Cohn and Woo are not sharp here.

» The second step of the hierarchy is numerically sharp (it gets at least 28
decimal digits of the ground state energy correct)
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