Semidefinite programming hierarchies for packing and energy minimization (4/4)

David de Laat (TU Delft)

Summer School on Optimization, Interpolation and Modular Forms, August 24–28, 2020, EPFL

Topics for the four talks

- 1. Sums-of-squares hierarchies for polynomial optimization
- 2. Moment hierarchies for polynomial optimization
- 3. Packing problems
- 4. Energy minimization problems

How can we use the Lasserre hierarchy for 0/1 polynomial optimization problems to derive a hierarchy for energy minimization on S^{n-1} ?

Energy minimization on S^{n-1}

Find the minimum of

$$\sum_{\leq i < j \le N} \frac{1}{\|p_i - p_j\|}$$

 $\underset{1 \leq i < j \leq N}{}_{||P^i|} \xrightarrow{P^j||} p_j$ over all sets $\{p_1, \ldots, p_N\}$ of N distinct points on S^{n-1}

Energy minimization on S^{n-1}

Find the minimum of

$$\sum_{1 \le i < j \le N} \frac{1}{\|p_i - p_j\|}$$

over all sets $\{p_1,\ldots,p_N\}$ of N distinct points on S^{n-1}

For n = 3 this is the Thomson problem

Given a symmetric matrix $W \in \mathbb{R}^{n \times n}$, find the minimum of

$$\sum_{1 \le i < j \le N} W_{p_i, p_j}$$

over all sets $\{p_1, \ldots, p_N\}$ of N distinct points in $\{1, \ldots, n\}$

1

Given a symmetric matrix $W \in \mathbb{R}^{n \times n}$, find the minimum of

$$\sum_{\leq i < j \leq N} W_{p_i, p_j}$$

over all sets $\{p_1, \ldots, p_N\}$ of N distinct points in $\{1, \ldots, n\}$

As a 0/1 polynomial optimization problem:

$$\min\left\{\sum_{1 \le i < j \le N} W_{i,j} x_i x_j : x \in \{0,1\}^n, \sum_{i=1}^n x_i = N\right\}$$

0/1 polynomial optimization: $P = \inf\{p(x) : x \in \{0,1\}^n, x \in S(Q)\}$

0/1 polynomial optimization: $P = \inf\{p(x): x \in \{0,1\}^n, \, x \in S(Q)\}$

The moment hierarchy

$$P_t = \inf\left\{\sum_S p_S y_S : y_{\emptyset} = 1, \ M_t^q(y) \succeq 0 \text{ for } q \in \{1\} \cup Q\right\}$$

0/1 polynomial optimization: $P = \inf\{p(x): x \in \{0,1\}^n, \, x \in S(Q)\}$

The moment hierarchy

$$P_t = \inf \left\{ \sum_S p_S y_S : y_{\emptyset} = 1, \ M_t^q(y) \succeq 0 \text{ for } q \in \{1\} \cup Q \right\}$$

Optimize over vectors y indexed by subsets of $\{1,\ldots,n\}$ of size at most 2t.

0/1 polynomial optimization: $P = \inf\{p(x): x \in \{0,1\}^n, \, x \in S(Q)\}$

The moment hierarchy

$$P_t = \inf \left\{ \sum_S p_S y_S : y_{\emptyset} = 1, \ M_t^q(y) \succeq 0 \text{ for } q \in \{1\} \cup Q \right\}$$

Optimize over vectors y indexed by subsets of $\{1,\ldots,n\}$ of size at most 2t.

Notation: $p(x) = \sum_{S \subseteq \{1,...,n\}} p_S \prod_{i \in S} x_i$

0/1 polynomial optimization: $P = \inf\{p(x): x \in \{0,1\}^n, \, x \in S(Q)\}$

The moment hierarchy

$$P_t = \inf \left\{ \sum_S p_S y_S : y_{\emptyset} = 1, \ M_t^q(y) \succeq 0 \text{ for } q \in \{1\} \cup Q \right\}$$

Optimize over vectors y indexed by subsets of $\{1,\ldots,n\}$ of size at most 2t.

Notation: $p(x) = \sum_{S \subseteq \{1,...,n\}} p_S \prod_{i \in S} x_i$

Localizing matrices:

$$M^q_t(y)_{J,J'} = \begin{cases} \sum_S q_S \, y_{J \cup J' \cup S} & \text{if } |J \cup J'| \leq 2t - \deg(q), \\ \text{unspecified} & \text{otherwise} \end{cases}$$

for $|J|, |J'| \leq t$

Formulation as a 0/1 polynomial optimization problem:

$$\min\left\{\sum_{1 \le i < j \le N} W_{i,j} x_i x_j : x \in \{0,1\}^n, \sum_{i=1}^n x_i = N\right\}$$

Formulation as a 0/1 polynomial optimization problem:

$$\min\left\{\sum_{1 \le i < j \le N} W_{i,j} x_i x_j : x \in \{0,1\}^n, \sum_{i=1}^n x_i = N\right\}$$

So the hierarchy becomes

$$P_t = \inf\left\{\sum_{1 \le i < j \le n} W_{i,j} y_{\{i,j\}} : y_{\emptyset} = 1, \ M^q_t(y) \succeq 0 \text{ for } q \in \{1\} \cup Q\right\}$$

with $Q = \{q, -q\}$, $q = \sum_{i=1}^n x_i - N$

Formulation as a 0/1 polynomial optimization problem:

$$\min\left\{\sum_{1 \le i < j \le N} W_{i,j} x_i x_j : x \in \{0,1\}^n, \sum_{i=1}^n x_i = N\right\}$$

So the hierarchy becomes

$$P_t = \inf \left\{ \sum_{1 \le i < j \le n} W_{i,j} y_{\{i,j\}} : y_{\emptyset} = 1, \, M_t^q(y) \succeq 0 \text{ for } q \in \{1\} \cup Q \right\}$$

with $Q = \{q, -q\}, q = \sum_{i=1}^n x_i - N$

This reduces to

$$P_t = \inf \left\{ \sum_{1 \le i < j \le N} W_{i,j} y_{\{i,j\}} : y_{\emptyset} = 1, \ M_t^1(y) \succeq 0, \ M_t^q(y) = 0 \right\}$$

Localizing matrices:

$$M_t^q(y)_{J,J'} = \begin{cases} \sum_S q_S \, y_{J \cup J' \cup S} & \text{if } |J \cup J'| \le 2t - \deg(q), \\ \text{unspecified} & \text{otherwise} \end{cases}$$

for $|J|,|J'|\leq t$

Localizing matrices:

$$M_t^q(y)_{J,J'} = \begin{cases} \sum_S q_S \, y_{J \cup J' \cup S} & \text{if } |J \cup J'| \le 2t - \deg(q), \\ \text{unspecified} & \text{otherwise} \end{cases}$$

for $|J|, |J'| \leq t$

The constraint $M_t^q(y) = 0$ for $q = \sum_{i=1}^n x_i - N$ reduces to

$$Ny_S = \sum_{i=1}^n y_{S \cup \{i\}}$$

for all subsets S of $\{1,\ldots,n\}$ of cardinality at most 2t-1

Reducing the number of constraints

Lemma Let
$$t \ge 1$$
 and $y \in \mathbb{R}^{I_{2t}}$. If
 $y_{\emptyset} = 1$ and $Ny_S = \sum_{j=1}^n y_{S \cup \{j\}}$ for all $S \in I_{2t-1}$,
then
 $\sum_{S \in I_{=i}} y_S = \binom{N}{i}$ for all $0 \le i \le 2t$.

The hierarchy reduces to

$$\inf \Big\{ \sum_{1 \le i < j \le n} W_{i,j} y_{\{i,j\}} : y_{\emptyset} = 1, \, M_t^1(y) \succeq 0, \sum_{S \in I_{=i}} y_S = \binom{N}{i} \text{ for } 0 \le i \le 2t \Big\}$$

This potentially makes the hierarchy weaker, but we can still prove finite convergence to the optimal energy in ${\cal N}$ steps

This potentially makes the hierarchy weaker, but we can still prove finite convergence to the optimal energy in ${\cal N}$ steps

This hierarchy can be generalized from $\{1,\ldots,n\}$ to $S^{n-1},$ where it still converges in N steps

How can we optimize over positive definite kernels?

In the hierarchies for packing problems and for energy minimization we need to optimize over positive definite kernels $K\in \mathcal{C}(X\times X)$ for some space X

In the hierarchies for packing problems and for energy minimization we need to optimize over positive definite kernels $K\in \mathcal{C}(X\times X)$ for some space X

A continuous kernel ${\boldsymbol{K}}$ is positive definite if

x

$$\sum_{x,y \in C} c_x c_y K(x,y) \ge 0$$

for all finite $C \subseteq X$ and $c \in \mathbb{R}^C$

In the hierarchies for packing problems and for energy minimization we need to optimize over positive definite kernels $K\in \mathcal{C}(X\times X)$ for some space X

A continuous kernel \boldsymbol{K} is positive definite if

x

$$\sum_{x,y \in C} c_x c_y K(x,y) \ge 0$$

for all finite $C \subseteq X$ and $c \in \mathbb{R}^C$

We may assume K is invariant under the symmetry group of the optimization problem

Schoenberg's theorem

If $K \in \mathcal{C}(S^{n-1} \times S^{n-1})$ is an O(n)-invariant positive definite kernel, then

$$K(x,y) = \sum_{k=0}^{\infty} c_k P_k^n(x \cdot y)$$

with $c_k \ge 0$, where convergence is uniform absolute.

Schoenberg's theorem

If $K \in \mathcal{C}(S^{n-1} \times S^{n-1})$ is an O(n)-invariant positive definite kernel, then

$$K(x,y) = \sum_{k=0}^{\infty} c_k P_k^n(x \cdot y)$$

with $c_k \ge 0$, where convergence is uniform absolute.

What if we wouldn't know about Schoenberg's theorem?

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

An invariant space $S \subseteq C(S^{n-1})$ is irreducible it cannot be written as a direct sum of nontrival invariant subspaces

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

An invariant space $S \subseteq C(S^{n-1})$ is irreducible it cannot be written as a direct sum of nontrival invariant subspaces

We can decompose $\mathcal{C}(S^{n-1})$ as a direct sum of irreducible subspaces H_k

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

An invariant space $S \subseteq C(S^{n-1})$ is irreducible it cannot be written as a direct sum of nontrival invariant subspaces

We can decompose $\mathcal{C}(S^{n-1})$ as a direct sum of irreducible subspaces H_k

Here $H_k = \operatorname{span}\{Y_k^j : j = 1, \dots, d_k\}$ is the space of spherical harmonics of degree k

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

An invariant space $S \subseteq C(S^{n-1})$ is irreducible it cannot be written as a direct sum of nontrival invariant subspaces

We can decompose $\mathcal{C}(S^{n-1})$ as a direct sum of irreducible subspaces H_k

Here $H_k = \operatorname{span}\{Y_k^j : j = 1, \dots, d_k\}$ is the space of spherical harmonics of degree k

Bochner's theorem says: $K(x,y) = \sum_k c_k \sum_{j=1}^{d_k} Y_k^j(x) Y_k^j(y)$

The action of O(n) on S^{n-1} defines an action on $\mathcal{C}(S^{n-1})$:

$$Af(x) = f(A^{-1}x)$$

A space $S \subseteq \mathcal{C}(S^{n-1})$ is invariant if $Af \in S$ for all $A \in O(n)$ and $f \in S$

An invariant space $S \subseteq C(S^{n-1})$ is irreducible it cannot be written as a direct sum of nontrival invariant subspaces

We can decompose $\mathcal{C}(S^{n-1})$ as a direct sum of irreducible subspaces H_k

Here $H_k = \operatorname{span}\{Y_k^j : j = 1, \dots, d_k\}$ is the space of spherical harmonics of degree k

Bochner's theorem says: $K(x,y) = \sum_k c_k \sum_{j=1}^{d_k} Y_k^j(x) Y_k^j(y)$

The addition formula: $\sum_{j=1}^{d_k} Y_k^j(x) Y_k^j(y) = P_k^n(x \cdot y)$

In general we can have irreducible subspaces that are equivalent.

In general we can have irreducible subspaces that are equivalent.

Then we write

$$\mathcal{C}(X) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$$

where

$$H_{\pi,i} = \operatorname{span}\{e_{\pi,i,j} : j = 1, \dots, m_{\pi}\}$$

In general we can have irreducible subspaces that are equivalent.

Then we write

$$\mathcal{C}(X) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$$

where

$$H_{\pi,i} = \operatorname{span}\{e_{\pi,i,j} : j = 1, \dots, m_{\pi}\}$$

Bochner's theorem says

$$K(x,y) = \sum_{\pi} \langle C_{\pi}, Z_{\pi}(x,y) \rangle,$$

where

$$Z_{\pi}(x,y)_{i,i'} = \sum_{j=1}^{d_{\pi}} e_{\pi,i,j}(x) e_{\pi,i',j}(y)$$

In general we can have irreducible subspaces that are equivalent.

Then we write

$$\mathcal{C}(X) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$$

where

$$H_{\pi,i} = \operatorname{span}\{e_{\pi,i,j} : j = 1, \dots, m_{\pi}\}$$

Bochner's theorem says

$$K(x,y) = \sum_{\pi} \langle C_{\pi}, Z_{\pi}(x,y) \rangle,$$

where

$$Z_{\pi}(x,y)_{i,i'} = \sum_{j=1}^{d_{\pi}} e_{\pi,i,j}(x) e_{\pi,i',j}(y)$$

Here C_{π} is a positive semidefinite matrix

How do we deal with inequality constraints?

For a polynomial optimization problem

 $P = \inf \left\{ p(x) : x \in S(Q) \right\}, \quad S(Q) = \left\{ x \in \mathbb{R}^n : q(x) \ge 0 \text{ for } q \in Q \right\}$

we first need to reformulate as

$$P = \sup\left\{c: p(x) - c \ge 0 \text{ for } x \in S(Q)\right\}$$

to use sums-of-squares

The Delsarte bound:

$$\inf \left\{ 1 + f(1) : f(u) = \sum_{k=0}^{d} c_k P_k^n(u), \\ c_0, c_1, \dots, c_d \ge 0, \\ f(u) \le -1 \text{ for } u \in [\cos \theta, 1] \right\}.$$

The Delsarte bound:

$$\inf \left\{ 1 + f(1) : f(u) = \sum_{k=0}^{d} c_k P_k^n(u), \\ c_0, c_1, \dots, c_d \ge 0, \\ f(u) \le -1 \text{ for } u \in [\cos \theta, 1] \right\}.$$

The Delsarte bound:

$$\inf \left\{ 1 + f(1) : f(u) = \sum_{k=0}^{d} c_k P_k^n(u), \\ c_0, c_1, \dots, c_d \ge 0, \\ 1 - f(u) \ge 0 \text{ for } u \in [\cos \theta, 1] \right\}.$$

The Delsarte bound:

$$\inf \left\{ 1 + f(1) : f(u) = \sum_{k=0}^{d} c_k P_k^n(u), \\ c_0, c_1, \dots, c_d \ge 0, \\ 1 - f(u) \ge 0 \text{ for } u \in [\cos \theta, 1] \right\}$$

The set $[\cos\theta,1]$ is semialgebraic, e.g.,

$$[\cos \theta, 1] = \left\{ x \in \mathbb{R} : x - \cos \theta \ge 0, \ 1 - x \ge 0 \right\}, \text{ or } \\ [\cos \theta, 1] = \left\{ x \in \mathbb{R} : (x - \cos \theta)(1 - x) \ge 0 \right\}$$

Here we do not need Putinar's theorem, an older result by Lukács says

$$p(x) \ge 0$$
 for $x \in [\cos \theta, 1]$

implies

$$p \in \mathcal{M}_{(\deg(p)-1)/2}(\{x - \cos\theta, 1 - x\})$$

if $\deg(p)$ is odd, and

$$p \in \mathcal{M}_{\deg(p)/2-1}(\{(x - \cos \theta)(1 - x)\})$$

if $\deg(p)$ is even

Semidefinite programs with semialgebraic constraints

More generally we can consider semidefinite programs where we have polynomials

- whose coefficients depend linearly on the entries in the positive semidefinite matrix variables, and
- which are nonnegative on semialgebraic sets

Semidefinite programs with semialgebraic constraints

More generally we can consider semidefinite programs where we have polynomials

- whose coefficients depend linearly on the entries in the positive semidefinite matrix variables, and
- which are nonnegative on semialgebraic sets

We can use Putinar's theorem to model these inequality constraints using positive semidefinite matrices

Semidefinite programs with semialgebraic constraints

More generally we can consider semidefinite programs where we have polynomials

- whose coefficients depend linearly on the entries in the positive semidefinite matrix variables, and
- which are nonnegative on semialgebraic sets

We can use Putinar's theorem to model these inequality constraints using positive semidefinite matrices

If these polynomials have symmetries we can use symmetric sums-of-squares which is more efficient (see the paper by Gatermann and Parrilo)

Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy

- Setup moment hierarchy by first considering energy minimization on $\{1, \ldots, n\}$ and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step
- Use harmonic analysis to efficiently parameterize the space of positive definite kernels by positive semidefinite matrices

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step
- Use harmonic analysis to efficiently parameterize the space of positive definite kernels by positive semidefinite matrices
- Use symmetric sums-of-squares characterizations to deal with the polynomial inequality constraints

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step
- Use harmonic analysis to efficiently parameterize the space of positive definite kernels by positive semidefinite matrices
- Use symmetric sums-of-squares characterizations to deal with the polynomial inequality constraints
- Solve the resulting semidefinite program on a computer (sdpa-qd or sdpa-gmp because we need high precision)

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step
- Use harmonic analysis to efficiently parameterize the space of positive definite kernels by positive semidefinite matrices
- Use symmetric sums-of-squares characterizations to deal with the polynomial inequality constraints
- Solve the resulting semidefinite program on a computer (sdpa-qd or sdpa-gmp because we need high precision)
- The Thomson problem for 5 particles on S² was solved by Schwartz in 2015, but not using a certificate. Yudin's bound and the three-point bound by Cohn and Woo are not sharp here.

- ► Setup moment hierarchy by first considering energy minimization on {1,...,n} and applying the Lasserre moment hierarchy
- Consider the dual hierarchy where we optimize over continuous, positive definite kernels
- The first step is Yudin's bound, so consider the second step
- Use harmonic analysis to efficiently parameterize the space of positive definite kernels by positive semidefinite matrices
- Use symmetric sums-of-squares characterizations to deal with the polynomial inequality constraints
- Solve the resulting semidefinite program on a computer (sdpa-qd or sdpa-gmp because we need high precision)
- ▶ The Thomson problem for 5 particles on S² was solved by Schwartz in 2015, but not using a certificate. Yudin's bound and the three-point bound by Cohn and Woo are not sharp here.
- The second step of the hierarchy is numerically sharp (it gets at least 28 decimal digits of the ground state energy correct)

Advertisement

PhD position in Delft: www.daviddelaat.nl/vacancy.html Application deadline: 1 October 2020

Papers

Jean B. Lasserre, Global Optimization with Polynomials and the Problem of Moments, SIAM J. Optim., 11(3), 796–817, 2001

Monique Laurent, A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming, Math. Oper. Res. Vol. 28, No. 3 (Aug., 2003), pp. 470-496

Karin Gatermann, Pablo A. Parrilo, **Symmetry groups, semidefinite programs, and sums of squares**, Journal of Pure and Appl. Algebra, Vol. 192, No. 1-3, pp. 95-128, 2004

David de Laat, Frank Vallentin, **A semidefinite programming hierarchy for packing problems in discrete geometry**, Math. Program., Ser. B 151 (2015)

David de Laat, Moment methods in energy minimization: New bounds for Riesz minimal energy problems Trans. Amer. Math. Soc. (2019)