
Semidefinite programming hierarchies for packing
and energy minimization (4/4)

David de Laat (TU Delft)

Summer School on Optimization, Interpolation and Modular Forms,
August 24–28, 2020, EPFL

http://www.daviddelaat.nl


Topics for the four talks

1. Sums-of-squares hierarchies for polynomial optimization

2. Moment hierarchies for polynomial optimization

3. Packing problems

4. Energy minimization problems



Question 1

How can we use the Lasserre hierarchy for 0/1 polynomial optimization
problems to derive a hierarchy for energy minimization on Sn−1?



Energy minimization on Sn−1

Find the minimum of ∑
1≤i<j≤N

1

‖pi − pj‖

over all sets {p1, . . . , pN} of N distinct points on Sn−1

For n = 3 this is the Thomson problem
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Energy minimization on {1, . . . , n}

Given a symmetric matrix W ∈ Rn×n, find the minimum of∑
1≤i<j≤N

Wpi,pj

over all sets {p1, . . . , pN} of N distinct points in {1, . . . , n}

As a 0/1 polynomial optimization problem:

min
{ ∑

1≤i<j≤N

Wi,jxixj : x ∈ {0, 1}n,
n∑
i=1

xi = N
}
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Moment hierarchy for 0/1 polynomial optimization

0/1 polynomial optimization: P = inf{p(x) : x ∈ {0, 1}n, x ∈ S(Q)}

The moment hierarchy

Pt = inf
{∑

S

pSyS : y∅ = 1, Mq
t (y) � 0 for q ∈ {1} ∪Q

}
Optimize over vectors y indexed by subsets of {1, . . . , n} of size at most
2t.

Notation: p(x) =
∑
S⊆{1,...,n} pS

∏
i∈S xi

Localizing matrices:

Mq
t (y)J,J ′ =

{∑
S qS yJ∪J′∪S if |J ∪ J ′| ≤ 2t− deg(q),

unspecified otherwise

for |J |, |J ′| ≤ t
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Energy minimization on {1, . . . , n}
Formulation as a 0/1 polynomial optimization problem:

min
{ ∑

1≤i<j≤N

Wi,jxixj : x ∈ {0, 1}n,
n∑
i=1

xi = N
}

So the hierarchy becomes

Pt = inf
{ ∑

1≤i<j≤n

Wi,jy{i,j} : y∅ = 1, Mq
t (y) � 0 for q ∈ {1} ∪Q

}
with Q =

{
q,−q}, q =

∑n
i=1 xi −N

This reduces to

Pt = inf
{ ∑

1≤i<j≤N

Wi,jy{i,j} : y∅ = 1, M1
t (y) � 0, Mq

t (y) = 0
}
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Localizing matrices:

Mq
t (y)J,J ′ =

{∑
S qS yJ∪J′∪S if |J ∪ J ′| ≤ 2t− deg(q),

unspecified otherwise

for |J |, |J ′| ≤ t

The constraint Mq
t (y) = 0 for q =

∑n
i=1 xi −N reduces to

NyS =

n∑
i=1

yS∪{i}

for all subsets S of {1, . . . , n} of cardinality at most 2t− 1
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Reducing the number of constraints

Lemma Let t ≥ 1 and y ∈ RI2t . If

y∅ = 1 and NyS =

n∑
j=1

yS∪{j} for all S ∈ I2t−1,

then ∑
S∈I=i

yS =

(
N

i

)
for all 0 ≤ i ≤ 2t.

The hierarchy reduces to

inf
{ ∑

1≤i<j≤n

Wi,jy{i,j} : y∅ = 1, M1
t (y) � 0,

∑
S∈I=i

yS =

(
N

i

)
for 0 ≤ i ≤ 2t

}



Finite convergence

This potentially makes the hierarchy weaker, but we can still prove finite
convergence to the optimal energy in N steps

This hierarchy can be generalized from {1, . . . , n} to Sn−1, where it still
converges in N steps
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Question 2

How can we optimize over positive definite kernels?



Question 2

In the hierarchies for packing problems and for energy minimization we
need to optimize over positive definite kernels K ∈ C(X ×X) for some
space X

A continuous kernel K is positive definite if∑
x,y∈C

cxcyK(x, y) ≥ 0

for all finite C ⊆ X and c ∈ RC

We may assume K is invariant under the symmetry group of the
optimization problem
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Schoenberg’s theorem

If K ∈ C(Sn−1×Sn−1) is an O(n)-invariant positive definite kernel, then

K(x, y) =

∞∑
k=0

ckP
n
k (x · y)

with ck ≥ 0, where convergence is uniform absolute.

What if we wouldn’t know about Schoenberg’s theorem?
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Bochner’s theorem

The action of O(n) on Sn−1 defines an action on C(Sn−1):

Af(x) = f(A−1x)

A space S ⊆ C(Sn−1) is invariant if Af ∈ S for all A ∈ O(n) and f ∈ S

An invariant space S ⊆ C(Sn−1) is irreducible it cannot be written as a
direct sum of nontrival invariant subspaces

We can decompose C(Sn−1) as a direct sum of irreducible subspaces Hk

Here Hk = span{Y jk : j = 1, . . . , dk} is the space of spherical harmonics
of degree k

Bochner’s theorem says: K(x, y) =
∑
k ck

∑dk
j=1 Y

j
k (x)Y

j
k (y)

The addition formula:
∑dk
j=1 Y

j
k (x)Y

j
k (y) = Pnk (x · y)
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Bochner’s theorem
In general we can have irreducible subspaces that are equivalent.

Then we write

C(X) =
⊕
π

mπ⊕
i=1

Hπ,i

where
Hπ,i = span{eπ,i,j : j = 1, . . . ,mπ}

Bochner’s theorem says

K(x, y) =
∑
π

〈Cπ, Zπ(x, y)〉,

where

Zπ(x, y)i,i′ =

dπ∑
j=1

eπ,i,j(x)eπ,i′,j(y)

Here Cπ is a positive semidefinite matrix
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Question 3

How do we deal with inequality constraints?



Sums-of-squares

For a polynomial optimization problem

P = inf
{
p(x) : x ∈ S(Q)

}
, S(Q) =

{
x ∈ Rn : q(x) ≥ 0 for q ∈ Q

}
we first need to reformulate as

P = sup
{
c : p(x)− c ≥ 0 for x ∈ S(Q)

}
to use sums-of-squares



Sums-of-squares

The Delsarte bound:

inf
{
1 + f(1) : f(u) =

d∑
k=0

ckP
n
k (u),

c0, c1, . . . , cd ≥ 0,

f(u) ≤ − 1 for u ∈ [cos θ, 1]
}
.

The set [cos θ, 1] is semialgebraic, e.g.,

[cos θ, 1] =
{
x ∈ R : x− cos θ ≥ 0, 1− x ≥ 0

}
, or

[cos θ, 1] =
{
x ∈ R : (x− cos θ)(1− x) ≥ 0

}



Sums-of-squares

The Delsarte bound:

inf
{
1 + f(1) : f(u) =

d∑
k=0

ckP
n
k (u),

c0, c1, . . . , cd ≥ 0,

f(u) ≤ − 1 for u ∈ [cos θ, 1]
}
.

The set [cos θ, 1] is semialgebraic, e.g.,

[cos θ, 1] =
{
x ∈ R : x− cos θ ≥ 0, 1− x ≥ 0

}
, or

[cos θ, 1] =
{
x ∈ R : (x− cos θ)(1− x) ≥ 0

}



Sums-of-squares

The Delsarte bound:

inf
{
1 + f(1) : f(u) =

d∑
k=0

ckP
n
k (u),

c0, c1, . . . , cd ≥ 0,

1− f(u) ≥ 0 for u ∈ [cos θ, 1]
}
.

The set [cos θ, 1] is semialgebraic, e.g.,

[cos θ, 1] =
{
x ∈ R : x− cos θ ≥ 0, 1− x ≥ 0

}
, or

[cos θ, 1] =
{
x ∈ R : (x− cos θ)(1− x) ≥ 0

}



Sums-of-squares

The Delsarte bound:

inf
{
1 + f(1) : f(u) =

d∑
k=0

ckP
n
k (u),

c0, c1, . . . , cd ≥ 0,

1− f(u) ≥ 0 for u ∈ [cos θ, 1]
}
.

The set [cos θ, 1] is semialgebraic, e.g.,

[cos θ, 1] =
{
x ∈ R : x− cos θ ≥ 0, 1− x ≥ 0

}
, or

[cos θ, 1] =
{
x ∈ R : (x− cos θ)(1− x) ≥ 0

}



Sums-of-squares

Here we do not need Putinar’s theorem, an older result by Lukács says

p(x) ≥ 0 for x ∈ [cos θ, 1]

implies
p ∈M(deg(p)−1)/2({x− cos θ, 1− x})

if deg(p) is odd, and

p ∈Mdeg(p)/2−1({(x− cos θ)(1− x)})

if deg(p) is even



Semidefinite programs with semialgebraic constraints

More generally we can consider semidefinite programs where we have
polynomials

I whose coefficients depend linearly on the entries in the positive
semidefinite matrix variables, and

I which are nonnegative on semialgebraic sets

We can use Putinar’s theorem to model these inequality constraints using
positive semidefinite matrices

If these polynomials have symmetries we can use symmetric
sums-of-squares which is more efficient
(see the paper by Gatermann and Parrilo)
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Computations for energy minimization

I Setup moment hierarchy by first considering energy minimization on
{1, . . . , n} and applying the Lasserre moment hierarchy

I Consider the dual hierarchy where we optimize over continuous, positive
definite kernels

I The first step is Yudin’s bound, so consider the second step

I Use harmonic analysis to efficiently parameterize the space of positive
definite kernels by positive semidefinite matrices

I Use symmetric sums-of-squares characterizations to deal with the
polynomial inequality constraints

I Solve the resulting semidefinite program on a computer (sdpa-qd or
sdpa-gmp because we need high precision)

I The Thomson problem for 5 particles on S2 was solved by Schwartz in
2015, but not using a certificate. Yudin’s bound and the three-point
bound by Cohn and Woo are not sharp here.

I The second step of the hierarchy is numerically sharp (it gets at least 28
decimal digits of the ground state energy correct)
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