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Topics for the four talks

1. Sums-of-squares hierarchies for polynomial optimization

2. Moment hierarchies for polynomial optimization

3. Packing problems

4. Energy minimization problems



Spherical code problem as graph problem

Spherical code problem: Given a dimension n and angle θ, what is the
largest set C ⊆ Sn−1 with x · y ≤ cos θ for all distinct x, y ∈ C

This is an independent set problem in the graph with vertex set Sn−1,
where two distinct vertices x, y ∈ Sn−1 are adjacent if x · y > cos θ
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Topological packing graphs

Definition A topological packing graph is a graph whose vertex
set is a Hausdorff topological space where each finite clique is
contained in an open clique

- A clique in a graph is a subset of the vertex set where any two
distinct vertices are adjacent.

- It suffices to verify the condition for cliques of size one and two. But
if we require this for all cliques (which is equivalent to requiring this
for all maximal cliques), then the definition does really change.

- A compact topological packing graph has finite independence
number.

- Why not a metric space? We do not always have a natural metric,
for instance when we pack different objects (e.g., binary spherical
cap packings)
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Independent sets in compact topological packing graphs

Let It be the set of independent sets of cardinality at most t

It \ {∅} gets a topology by using the product topology on V t and then
the quotient topology from

q : V t → It \ {∅}, (x1, . . . , xt) 7→ {x1, . . . , xt}

To get It we add the isolated point ∅

If V has a metric, then It has the Hausdorff distance as metric

For a compact topological packing graph, the set It is compact, and the
sets It \ It−1 are both open and closed
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Moment hierachy for finite graphs
Moment hierarchy for the independent set problem in a finite graph:

Pt = sup
{ n∑
i=1

y{i} : y∅ = 1, M1
t (y) � 0, yS = 0 for S dependent

}
Here we optimize over vectors y indexed by subsets of {1, . . . , n} of
cardinality at most 2t.

This gives upper bounds: For S an independent set, the vector y given by

yR =

{
1 if R ⊆ S,
0 otherwise

for |R| ≤ 2t is feasible

∑
J,J ′

cJcJ′M1
t (y)J,J ′ =

∑
J,J ′

cJcJ′yJ∪J′ =

∑
J⊆S

cJ

2

≥ 0.

This also shows we can add the constraint that y is entrywise nonnegative
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Convergence in α(G) steps

Proposition (Lindström and Wilf) The cone of positive semidef-
inite moment matrices is

cone
{
χS(χS)T : S ⊆ {1, . . . , n}

}

Here moment matrices are matrices of the form M1
t (y) for y a vector

indexed by all subsets of {1, . . . , n}.

Laurent uses this to give a direct proof for convergence of the moment
hierarchy for 0/1 polynomial optimization problems in at most n steps.

The moment hierarchy for the independent set problem does not change
anymore for t ≥ α(G), so we get convergence in α(G) steps

Exercise 7 Use the result by Lindström and Wilf to give a
direct proof for the convergence of the moment hierachy
for the independent set problem.
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Extension to infinite graphs

P ′t = sup
{ n∑
i=1

y{i} : y∅ = 1, M1
t (y) � 0, yS = 0 for S dependent, y ≥ 0

}
For finite graphs we optimize over entrywise nonnegative vectors y
indexed by subsets of {1, . . . , n} of cardinality at most 2t with yS = 0 for
S dependent

For infinite graphs we will optimize over positive measures λ on I2t

The normalization condition becomes λ({∅}) = 1

The objective becomes λ(I1 \ {∅})

What about positive semidefiniteness of the moment matrix?
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Positive semidefinite moment matrices

M1
t (y) � 0 ⇔ 〈M1

t (y), X〉 ≥ 0 for all X � 0

With At the adjoint of M1
t we have:

M1
t (y) � 0 ⇔ 〈y,AtX〉 ≥ 0 for all X � 0

For infinite graphs we have

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J′=S

K(J, J ′)

The constraint M1
t (y) � 0 becomes

λ(AtK) ≥ 0 for all positive definite kernels K ∈ C(It × It)
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A moment hierarchy for infinite graphs

Definition (L-Vallentin 2015)

sup
{
λ(I1 \ {∅}) : λ a positive measure on I2t, λ({∅}) = 1,

λ(AtK) ≥ 0 for all positive definite kernels K ∈ C(It × It)
}

For each t we get an upper bound on the independence number: If S is
an independent set, then λ = χS :=

∑
R⊆S δR is feasible

This generalizes the Lasserre moment hierarchy for the independent set
problem; now we need to generalize Laurent’s convergence proof
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Möbius inversion

Lemma For each signed measure λ on I2t there exists a unique
signed measure σ on I2t such that λ =

∫
χS dσ(S). If λ is sup-

ported on It and satisfies λ(AtK) ≥ 0 for all positive definite kernels
K ∈ C(It × It), then σ is a positive measure supported on It.

sup
{
λ(I1 \ {∅}) : λ a positive measure on I2t, λ({∅}) = 1,

λ(AtK) ≥ 0 for all positive definite kernels K ∈ C(It × It)
}

If t equals the independence number α(G) of the graph, then It = I2t, so
we can apply the above lemma to a feasible solution λ.

Using the normalization condition the optimization problem reduces to

sup
{∫

χS(I1 \ {∅}) dσ(S) : σ ∈ P(Iα(G))
}

which is equal to α(G)
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The dual hierarchy

Conic duality shows the dual hierarchy is given by

inf
{
K(∅, ∅) : K ∈ C(It × It) positive definite,

AtK(S) ≤ −1 for S ∈ I1 \ {∅},
AtK(S) ≤ 0 for S ∈ I2t \ I1

}

For each t weak duality shows this gives an upper bound on the
corresponding problem in the moment hierarchy, and hence an upper
bound on the independence number

In fact, strong duality holds, so in principle we can solve any compact
packing problem up to any precision by solving these dual problems.
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The Lovász theta number

The Lovász theta number is an important graph parameter in
combinatorial optimization

Lovász sandwhich theorem: It upper bounds the independence number
α(G) and lower bounds the chromatic number of the complement graph

It also upper bounds the Shannon capacity of a graph

For finite graphs it is a semidefinite program

For infinite graphs the theta’ number it can be written as

inf
{
a : a ∈ R, F ∈ C(V × V ) positive definite,

F (x, x) ≤ a− 1 for x ∈ V,
F (x, y) ≤ −1 for {x, y} ∈ I=2

}
.

Using the Schur complement it follows this is the first step of the dual
hierarchy
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Delsarte bound

The theta’ number:

inf
{
a : a ∈ R, K ∈ C(Sn−1 × Sn−1) positive definite,

K(x, x) ≤ a− 1 for x ∈ V,
K(x, y) ≤ −1 for {x, y} ∈ I=2

}
.

As observed by Bachoc, Nebe, Oliveira, Vallentin the theta’ number for
the sphere reduces to the Delsarte bound

We may assume K to be O(n) invariant; that is, K(Ax,Ay) = K(x, y)
for all A ∈ O(n) and x, y ∈ Sn−1

If (a,K) is feasible, then (a, K̄) is also feasible, where

K̄(x, y) =

∫
O(n)

K(Ax,Ay) dA

(integration is over the normalized Haar measure)
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Delsarte bound

Schoenberg’s theorem If K is an O(n)-invariant, positive definite
kernel K ∈ C(Sn−1 × Sn−1), then

K(x, y) =

∞∑
k=0

ckP
n
k (x · y)

with ck ≥ 0, where convergence is uniform absolute. Here Pnk is
the ultraspherical polynomial of degree k in dimension n

This shows theta’ reduces to

inf
{
a : a ∈ R, K(x, y) =

∞∑
k=0

ckP
n
k (x · y),

c0, c1, . . . ≥ 0,

K(x, x) ≤ a− 1 for x ∈ V,
K(x, y) ≤ −1 for {x, y} ∈ I=2

}
.
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K(x, x) ≤ a− 1 for x ∈ V,
K(x, y) ≤ −1 for {x, y} ∈ I=2

}
.

Replacing x · y by u gives

inf
{
a : a ∈ R, f(u) =

∞∑
k=0

ckP
n
k (u),

c0, c1, . . . ≥ 0,

f(1) ≤ a− 1 for x ∈ V,
f(u) ≤ −1 for u ∈ [cos θ, 1]

}
.

By removing a from the problem we recover the Delsarte linear
programming bound.
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