Semidefinite programming hierarchies for packing and energy minimization $(2 / 4)$

David de Laat (TU Delft)

Summer School on Optimization, Interpolation and Modular Forms, August 24-28, 2020, EPFL

Topics for the four talks

1. Sums-of-squares hierarchies for polynomial optimization
2. Moment hierarchies for polynomial optimization
3. Packing problems
4. Energy minimization problems

Yesterday

$$
\begin{aligned}
P & =\inf \{p(x): x \in S(Q)\} \\
& =\sup \{M \in \mathbb{R}: p(x)-M \geq 0 \text { for } x \in S(Q)\} \\
& \geq \sup \left\{M \in \mathbb{R}: p-M \in \mathcal{M}_{t}(Q)\right\}=P_{t}
\end{aligned}
$$

Semialgebraic set:

$$
S(Q)=\left\{x \in \mathbb{R}^{n}: q(x) \geq 0 \text { for } q \in Q\right\}
$$

Quadratic module:

$$
\mathcal{M}(Q)=\operatorname{cone}\left\{q s^{2}: q \in\{1\} \cup Q, s \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

Truncated quadratic module:

$$
\mathcal{M}_{t}(Q)=\operatorname{cone}\left\{q s^{2}: q \in\{1\} \cup Q, s \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}\left(q s^{2}\right) \leq 2 t\right\}
$$

Convexification

Let $\mathcal{P}(S(Q))$ be the set of probability measures supported on $S(Q)$.

Convexification

Let $\mathcal{P}(S(Q))$ be the set of probability measures supported on $S(Q)$.

Write the polynomial optimization problem

$$
P=\inf \{p(x): x \in S(Q)\}
$$

as

$$
\inf \left\{\int_{S(Q)} p(x) d \mu(x): \mu \in \mathcal{P}(S(Q))\right\} .
$$

Moment and localizing matrices

Notation: $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$

Moment and localizing matrices

Notation: $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$
Define the localizing matrices

$$
M^{q}(\mu)_{\alpha, \beta}=\int_{S(Q)} x^{\alpha+\beta} q(x) d \mu(x)
$$

For $q=1$ this is called the moment matrix

Moment and localizing matrices

Notation: $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$
Define the localizing matrices

$$
M^{q}(\mu)_{\alpha, \beta}=\int_{S(Q)} x^{\alpha+\beta} q(x) d \mu(x)
$$

For $q=1$ this is called the moment matrix

Lemma If $\mu \in \mathcal{P}(S(Q))$, then $M^{q}(\mu) \succeq 0$ for every $q \in\{1\} \cup Q$.

Moment and localizing matrices

Notation: $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$
Define the localizing matrices

$$
M^{q}(\mu)_{\alpha, \beta}=\int_{S(Q)} x^{\alpha+\beta} q(x) d \mu(x)
$$

For $q=1$ this is called the moment matrix

Lemma If $\mu \in \mathcal{P}(S(Q))$, then $M^{q}(\mu) \succeq 0$ for every $q \in\{1\} \cup Q$. Proof For C a finite set of exponend vectors and $c \in \mathbb{R}^{C}$,

$$
\begin{gathered}
\sum_{\alpha, \beta \in C} c_{\alpha} c_{\beta} M^{q}(\mu)_{\alpha, \beta}=\sum_{\alpha, \beta \in C} c_{\alpha} c_{\beta} \int_{S(Q)} x^{\alpha+\beta} q(x) d \mu(x) \\
=\int_{S(Q)}\left(\sum_{\alpha} c_{\alpha} x^{\alpha}\right)^{2} q(x) d \mu(x) \geq 0
\end{gathered}
$$

Relaxations

Let y be a real vector indexed by exponent vectors α with $|\alpha| \leq 2 t$.

Relaxations

Let y be a real vector indexed by exponent vectors α with $|\alpha| \leq 2 t$.

For $q \in Q$ we write $q(x)=\sum_{\gamma} q_{\gamma} x^{\gamma}$

Relaxations

Let y be a real vector indexed by exponent vectors α with $|\alpha| \leq 2 t$.

For $q \in Q$ we write $q(x)=\sum_{\gamma} q_{\gamma} x^{\gamma}$

Define

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\alpha+\beta+\gamma}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Relaxations

Let y be a real vector indexed by exponent vectors α with $|\alpha| \leq 2 t$.

For $q \in Q$ we write $q(x)=\sum_{\gamma} q_{\gamma} x^{\gamma}$

Define

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\alpha+\beta+\gamma}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Exercise 5

Define y by $y_{\alpha}=\int_{S(Q)} x^{\alpha} d \mu(x)$ for $|\alpha| \leq 2 t$. Show that

$$
M_{t}^{q}(y)_{\alpha, \beta}=M^{q}(\mu)_{\alpha, \beta}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Relaxations

The Lasserre moment hierarchy:

$$
P_{t}=\inf \left\{\sum_{\alpha} p_{\alpha} y_{\alpha}: y_{0}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\}
$$

Here the optimization variable is the real vector y indexed by the exponent vectors α with $|\alpha| \leq 2 t$

Relaxations

The Lasserre moment hierarchy:

$$
P_{t}=\inf \left\{\sum_{\alpha} p_{\alpha} y_{\alpha}: y_{0}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\}
$$

Here the optimization variable is the real vector y indexed by the exponent vectors α with $|\alpha| \leq 2 t$

```
Lemma
If t\geq\lceil\\operatorname{deg}(h)/2\rceil for }h\in{p}\cupQ\mathrm{ , then }\mp@subsup{P}{t}{}\leqP\mathrm{ .
Proof
For }x\inS(Q)\mathrm{ , define }y\mathrm{ by }\mp@subsup{y}{\alpha}{}=\mp@subsup{x}{}{\alpha}\mathrm{ for }|\alpha|\leq2t
```


Semidefinite programming duality

Primal and dual semidefinite programs:

$$
\begin{aligned}
P_{t} & =\inf \left\{\sum_{\alpha} p_{\alpha} y_{\alpha}: y_{0}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\} \\
P_{t}^{\mathrm{sos}} & =\sup \left\{c \in \mathbb{R}: p-c \in \mathcal{M}_{t}(Q)\right\}
\end{aligned}
$$

Semidefinite programming duality

Primal and dual semidefinite programs:

$$
\begin{aligned}
P_{t} & =\inf \left\{\sum_{\alpha} p_{\alpha} y_{\alpha}: y_{0}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\} \\
P_{t}^{\mathrm{sos}} & =\sup \left\{c \in \mathbb{R}: p-c \in \mathcal{M}_{t}(Q)\right\}
\end{aligned}
$$

Weak duality:

$$
\begin{aligned}
c & =\sum_{\alpha}(c-p)_{\alpha} y_{\alpha}+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =\sum_{\alpha}-\left(\sum_{q} q(x)\left\langle A_{q}, m(x) m(x)^{\boldsymbol{\top}}\right\rangle\right)_{\alpha} y_{\alpha}+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =-\sum_{q}\left\langle A_{q}, \sum_{\alpha}\left(q(x) m(x) m(x)^{\mathbf{T}}\right)_{\alpha} y_{\alpha}\right\rangle+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =-\sum_{q}\left\langle A_{q}, M_{t}^{q}(y)\right\rangle+\sum_{\alpha} p_{\alpha} y_{\alpha} \leq \sum_{\alpha} p_{\alpha} y_{\alpha} .
\end{aligned}
$$

Semidefinite programming duality

Primal and dual semidefinite programs:

$$
\begin{aligned}
P_{t} & =\inf \left\{\sum_{\alpha} p_{\alpha} y_{\alpha}: y_{0}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\} \\
P_{t}^{\mathrm{sos}} & =\sup \left\{c \in \mathbb{R}: p-c \in \mathcal{M}_{t}(Q)\right\}
\end{aligned}
$$

Weak duality:

$$
\begin{aligned}
c & =\sum_{\alpha}(c-p)_{\alpha} y_{\alpha}+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =\sum_{\alpha}-\left(\sum_{q} q(x)\left\langle A_{q}, m(x) m(x)^{\top}\right\rangle\right)_{\alpha} y_{\alpha}+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =-\sum_{q}\left\langle A_{q}, \sum_{\alpha}\left(q(x) m(x) m(x)^{\top}\right)_{\alpha} y_{\alpha}\right\rangle+\sum_{\alpha} p_{\alpha} y_{\alpha} \\
& =-\sum_{q}\left\langle A_{q}, M_{t}^{q}(y)\right\rangle+\sum_{\alpha} p_{\alpha} y_{\alpha} \leq \sum_{\alpha} p_{\alpha} y_{\alpha} .
\end{aligned}
$$

If $S(Q)$ is full dimensional, then strong duality holds: $P_{t}=P_{t}^{\text {sos }}$

Asymptotic convergence

Strong duality shows $P_{t} \rightarrow P$ holds whenever $\mathcal{M}(Q)$ is archimedean (since we know $P_{t}^{\text {sos }} \rightarrow P$ by Putinar's theorem)

Asymptotic convergence

Strong duality shows $P_{t} \rightarrow P$ holds whenever $\mathcal{M}(Q)$ is archimedean (since we know $P_{t}^{\text {sos }} \rightarrow P$ by Putinar's theorem)

Is there a direct proof?

Asymptotic convergence

Strong duality shows $P_{t} \rightarrow P$ holds whenever $\mathcal{M}(Q)$ is archimedean (since we know $P_{t}^{\text {sos }} \rightarrow P$ by Putinar's theorem)

Is there a direct proof?
Yes, we first show $P_{t} \rightarrow P_{\infty}$ as $t \rightarrow \infty$, and then we show $P_{\infty}=P$

Asymptotic convergence

Strong duality shows $P_{t} \rightarrow P$ holds whenever $\mathcal{M}(Q)$ is archimedean (since we know $P_{t}^{\text {sos }} \rightarrow P$ by Putinar's theorem)

Is there a direct proof?
Yes, we first show $P_{t} \rightarrow P_{\infty}$ as $t \rightarrow \infty$, and then we show $P_{\infty}=P$
Note that $P_{t} \leq P_{t+1} \leq \ldots \leq P$

Asymptotic convergence

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{t} \rightarrow P_{\infty}$.
Proof sketch

Asymptotic convergence

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{t} \rightarrow P_{\infty}$.
Proof sketch
Fix $\epsilon>0$ and let y^{t} be feasible for P_{t} with $\sum_{\alpha} p_{\alpha} y_{\alpha}^{t} \leq P_{t}+\epsilon$. Since $\mathcal{M}(Q)$ is archimedean, there is a C with $C-\sum_{i=1}^{n} x_{i}^{2} \in \mathcal{M}(Q)$. Since $M_{t}^{q}(y) \succeq 0$ for all $q \in\{1\} \cup Q$, we get $\sum_{\alpha} h_{\alpha} y_{\alpha}^{t} \geq 0$ for all $h \in \mathcal{M}_{t}(Q)$. From this we get $y_{\alpha}^{t} \leq C^{|\alpha| / 2} y_{0}=C^{|\alpha| / 2}$.

Asymptotic convergence

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{t} \rightarrow P_{\infty}$.
Proof sketch
Fix $\epsilon>0$ and let y^{t} be feasible for P_{t} with $\sum_{\alpha} p_{\alpha} y_{\alpha}^{t} \leq P_{t}+\epsilon$. Since $\mathcal{M}(Q)$ is archimedean, there is a C with $C-\sum_{i=1}^{n} x_{i}^{2} \in \mathcal{M}(Q)$. Since $M_{t}^{q}(y) \succeq 0$ for all $q \in\{1\} \cup Q$, we get $\sum_{\alpha} h_{\alpha} y_{\alpha}^{t} \geq 0$ for all $h \in \mathcal{M}_{t}(Q)$. From this we get $y_{\alpha}^{t} \leq C^{|\alpha| / 2} y_{0}=C^{|\alpha| / 2}$.
Define the linear functional L^{t} on $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
L^{t}\left(x^{\alpha}\right)= \begin{cases}y_{\alpha}^{t} / C^{|\alpha| / 2} & \text { if }|\alpha| \leq 2 t \\ 0 & \text { otherwise }\end{cases}
$$

Asymptotic convergence

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{t} \rightarrow P_{\infty}$.

Proof sketch

Fix $\epsilon>0$ and let y^{t} be feasible for P_{t} with $\sum_{\alpha} p_{\alpha} y_{\alpha}^{t} \leq P_{t}+\epsilon$. Since $\mathcal{M}(Q)$ is archimedean, there is a C with $C-\sum_{i=1}^{n} x_{i}^{2} \in \mathcal{M}(Q)$. Since $M_{t}^{q}(y) \succeq 0$ for all $q \in\{1\} \cup Q$, we get $\sum_{\alpha} h_{\alpha} y_{\alpha}^{t} \geq 0$ for all $h \in \mathcal{M}_{t}(Q)$. From this we get $y_{\alpha}^{t} \leq C^{|\alpha| / 2} y_{0}=C^{|\alpha| / 2}$.
Define the linear functional L^{t} on $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
L^{t}\left(x^{\alpha}\right)= \begin{cases}y_{\alpha}^{t} / C^{|\alpha| / 2} & \text { if }|\alpha| \leq 2 t \\ 0 & \text { otherwise }\end{cases}
$$

The functional L^{t} lies in the unit ball, which is closed in the weak* topology by the Banach-Alaoglu theorem. This shows L^{t} has a pointwise limit point L, and thus y^{t} has a limit point y which is feasible for P. This gives $P_{\infty} \leq \lim _{t \rightarrow \infty} P_{t}+\epsilon$.

Asymptotic convergence

Riesz-Haviland Theorem Let y be a vector indexed by all exponent vectors and let $K \subseteq \mathbb{R}^{n}$ be closed. There exists a finite Borel measure μ on K such that $y_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$ for all α if and only if $\sum_{\alpha} h_{\alpha} y_{\alpha} \geq 0$ for all polynomials h that are nonnegative on K.

Asymptotic convergence

Riesz-Haviland Theorem Let y be a vector indexed by all exponent vectors and let $K \subseteq \mathbb{R}^{n}$ be closed. There exists a finite Borel measure μ on K such that $y_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$ for all α if and only if $\sum_{\alpha} h_{\alpha} y_{\alpha} \geq 0$ for all polynomials h that are nonnegative on K.

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{\infty}=P$
Proof
If $h \geq 0$ on $S(Q)$, then $h+\epsilon>0$ on $S(Q)$, so by Putinar's theorem $h+\epsilon \in \mathcal{M}(Q)$. The conditions $y_{0}=1$ and $M_{t}^{q}(y) \succeq 0$ then imply $\sum_{\alpha} y_{\alpha} h_{\alpha}+\varepsilon \geq 0$. Since $\epsilon>0$ was arbitrary we get $\sum_{\alpha} y_{\alpha} h_{\alpha} \geq 0$ so by the Riesz-Haviland theorem there is a probability measure μ supported on $S(Q)$ with $\mu(p)=\sum_{\alpha} p_{\alpha} y_{\alpha}$.

Asymptotic convergence

Riesz-Haviland Theorem Let y be a vector indexed by all exponent vectors and let $K \subseteq \mathbb{R}^{n}$ be closed. There exists a finite Borel measure μ on K such that $y_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$ for all α if and only if $\sum_{\alpha} h_{\alpha} y_{\alpha} \geq 0$ for all polynomials h that are nonnegative on K.

Theorem If $\mathcal{M}(Q)$ is archimedean, then $P_{\infty}=P$
Proof
If $h \geq 0$ on $S(Q)$, then $h+\epsilon>0$ on $S(Q)$, so by Putinar's theorem $h+\epsilon \in \mathcal{M}(Q)$. The conditions $y_{0}=1$ and $M_{t}^{q}(y) \succeq 0$ then imply $\sum_{\alpha} y_{\alpha} h_{\alpha}+\varepsilon \geq 0$. Since $\epsilon>0$ was arbitrary we get $\sum_{\alpha} y_{\alpha} h_{\alpha} \geq 0$ so by the Riesz-Haviland theorem there is a probability measure μ supported on $S(Q)$ with $\mu(p)=\sum_{\alpha} p_{\alpha} y_{\alpha}$.

Alternatively we can avoid using Putinar's theorem and instead work fully 'on the moment side' by a Gelfand-Naimark-Segal construction and the Gelfand and Riesz representation theorems.

Strengthening the moment hierarchy

We defined the localizing matrices by

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Strengthening the moment hierarchy

We defined the localizing matrices by

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Here we needed to restrict to $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$ because y_{α} is only defined for $|\alpha| \leq 2 t$.

Strengthening the moment hierarchy

We defined the localizing matrices by

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Here we needed to restrict to $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$ because y_{α} is only defined for $|\alpha| \leq 2 t$.

Instead we can define the partial matrix

$$
M_{t}^{q}(y)_{\alpha, \beta}= \begin{cases}\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta} & \text { if }|\alpha+\beta| \leq 2 t-\operatorname{deg}(q) \\ \text { unspecified } & \text { otherwise }\end{cases}
$$

for $|\alpha|,|\beta| \leq t$

Strengthening the moment hierarchy

We defined the localizing matrices by

$$
M_{t}^{q}(y)_{\alpha, \beta}=\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta}
$$

for $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$

Here we needed to restrict to $|\alpha|,|\beta| \leq t-\lfloor\operatorname{deg}(q) / 2\rfloor$ because y_{α} is only defined for $|\alpha| \leq 2 t$.

Instead we can define the partial matrix

$$
M_{t}^{q}(y)_{\alpha, \beta}= \begin{cases}\sum_{\gamma} q_{\gamma} y_{\gamma+\alpha+\beta} & \text { if }|\alpha+\beta| \leq 2 t-\operatorname{deg}(q) \\ \text { unspecified } & \text { otherwise }\end{cases}
$$

for $|\alpha|,|\beta| \leq t$

The constraint $M_{t}^{q}(y) \succeq 0$ now means: There is a positive semidefinite completion of the partial matrix $M_{t}^{q}(y)$

Specialization to $0 / 1$ polynomial optimization problems

Exercise 6

Show that if Q contains the polynomials $x_{i}\left(1-x_{i}\right)$ and $-x_{i}\left(1-x_{i}\right)$ for $i=1, \ldots, n$, then we may assume the exponent vector of each term of all other polynomials in $\{p\} \cup Q$ lies in $\{0,1\}^{n}$, and if y is a feasible vector to P_{t}, then $y_{\alpha}=y_{\bar{\alpha}}$, where $\bar{\alpha}$ is obtained from α by replacing all nonzero entries by ones.

Specialization to $0 / 1$ polynomial optimization problems

Exercise 6
 Show that if Q contains the polynomials $x_{i}\left(1-x_{i}\right)$ and $-x_{i}\left(1-x_{i}\right)$ for $i=1, \ldots, n$, then we may assume the exponent vector of each term of all other polynomials in $\{p\} \cup Q$ lies in $\{0,1\}^{n}$, and if y is a feasible vector to P_{t}, then $y_{\alpha}=y_{\bar{\alpha}}$, where $\bar{\alpha}$ is obtained from α by replacing all nonzero entries by ones.

This shows the moment hierarchy can be written as

$$
P_{t}=\inf \left\{\sum_{S} p_{S} y_{S}: y_{\emptyset}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\}
$$

Specialization to $0 / 1$ polynomial optimization problems

> Exercise 6
> Show that if Q contains the polynomials $x_{i}\left(1-x_{i}\right)$ and $-x_{i}\left(1-x_{i}\right)$ for $i=1, \ldots, n$, then we may assume the exponent vector of each term of all other polynomials in $\{p\} \cup Q$ lies in $\{0,1\}^{n}$, and if y is a feasible vector to P_{t}, then $y_{\alpha}=y_{\bar{\alpha}}$, where $\bar{\alpha}$ is obtained from α by replacing all nonzero entries by ones.

This shows the moment hierarchy can be written as

$$
P_{t}=\inf \left\{\sum_{S} p_{S} y_{S}: y_{\emptyset}=1, M_{t}^{q}(y) \succeq 0 \text { for } q \in\{1\} \cup Q\right\}
$$

Here $p(x)=\sum_{S \subseteq\{1, \ldots, n\}} p_{S} \prod_{i \in S} x_{i}$ and

$$
M_{t}^{q}(y)_{J, J^{\prime}}= \begin{cases}\sum_{S} q_{S} y_{J \cup J^{\prime} \cup S} & \text { if }\left|J \cup J^{\prime}\right| \leq 2 t-\operatorname{deg}(q), \\ \text { unspecified } & \text { otherwise }\end{cases}
$$

for $|J|,\left|J^{\prime}\right| \leq t$

Specialization to the independent set problem

$0 / 1$ polynomial optimization problem for the independent set problem:

$$
P=\max \left\{\sum_{i=1}^{n} x_{i}: x_{i}\left(1-x_{i}\right)=0 \text { for } i=1, \ldots, n, x_{i}+x_{j} \leq 1 \text { if } i \sim j\right\}
$$

Specialization to the independent set problem

$0 / 1$ polynomial optimization problem for the independent set problem:

$$
P=\max \left\{\sum_{i=1}^{n} x_{i}: x_{i}\left(1-x_{i}\right)=0 \text { for } i=1, \ldots, n, x_{i}+x_{j} \leq 1 \text { if } i \sim j\right\}
$$

The moment hierarchy thus reduces to

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y_{\emptyset}=1, M_{t}^{1}(y) \succeq 0, M_{t}^{1-x_{i}-x_{j}}(y) \succeq 0 \text { for } i \sim j\right\}
$$

Specialization to the independent set problem

$0 / 1$ polynomial optimization problem for the independent set problem:

$$
P=\max \left\{\sum_{i=1}^{n} x_{i}: x_{i}\left(1-x_{i}\right)=0 \text { for } i=1, \ldots, n, x_{i}+x_{j} \leq 1 \text { if } i \sim j\right\}
$$

The moment hierarchy thus reduces to

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y_{\emptyset}=1, M_{t}^{1}(y) \succeq 0, M_{t}^{1-x_{i}-x_{j}}(y) \succeq 0 \text { for } i \sim j\right\}
$$

Exercise 7 Assume we use the strengthened version of the moment hierarchy. Show that if y is feasible for P_{t} for $t \geq 1$, we have $y_{S}=0$ for all dependent sets.

Specialization to the independent set problem

$0 / 1$ polynomial optimization problem for the independent set problem:
$P=\max \left\{\sum_{i=1}^{n} x_{i}: x_{i}\left(1-x_{i}\right)=0\right.$ for $i=1, \ldots, n, x_{i}+x_{j} \leq 1$ if $\left.i \sim j\right\}$
The moment hierarchy thus reduces to

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y_{\emptyset}=1, M_{t}^{1}(y) \succeq 0, M_{t}^{1-x_{i}-x_{j}}(y) \succeq 0 \text { for } i \sim j\right\}
$$

Exercise 7 Assume we use the strengthened version of the moment hierarchy. Show that if y is feasible for P_{t} for $t \geq 1$, we have $y_{S}=0$ for all dependent sets.

So instead we use the moment hierarchy

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y \emptyset=1, M_{t}^{1}(y) \succeq 0, y_{S}=0 \text { for } S \text { dependent }\right\}
$$

Specialization to the independent set problem

$0 / 1$ polynomial optimization problem for the independent set problem:
$P=\max \left\{\sum_{i=1}^{n} x_{i}: x_{i}\left(1-x_{i}\right)=0\right.$ for $i=1, \ldots, n, x_{i}+x_{j} \leq 1$ if $\left.i \sim j\right\}$
The moment hierarchy thus reduces to

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y_{\emptyset}=1, M_{t}^{1}(y) \succeq 0, M_{t}^{1-x_{i}-x_{j}}(y) \succeq 0 \text { for } i \sim j\right\}
$$

Exercise 7 Assume we use the strengthened version of the moment hierarchy. Show that if y is feasible for P_{t} for $t \geq 1$, we have $y_{S}=0$ for all dependent sets.

So instead we use the moment hierarchy

$$
P_{t}=\sup \left\{\sum_{i=1}^{n} y_{\{i\}}: y_{\emptyset}=1, M_{t}^{1}(y) \succeq 0, y_{S}=0 \text { for } S \text { dependent }\right\}
$$

(That these hierarchies are the same is shown by Laurent in 2001)

Tomorrow

Adapt this to infinite graphs.

Tomorrow

Adapt this to infinite graphs.
P_{1} for the independent set problem is (almost) the Delsarte bound.

