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Topics for the four talks

1. Sums-of-squares hierarchies for polynomial optimization

2. Moment hierarchies for polynomial optimization

3. Packing problems

4. Energy minimization problems



Yesterday

P = inf
{
p(x) : x ∈ S(Q)

}
= sup

{
M ∈ R : p(x)−M ≥ 0 for x ∈ S(Q)

}
≥ sup

{
M ∈ R : p−M ∈Mt(Q)

}
= Pt

Semialgebraic set:

S(Q) = {x ∈ Rn : q(x) ≥ 0 for q ∈ Q}

Quadratic module:

M(Q) = cone
{
qs2 : q ∈ {1} ∪Q, s ∈ R[x1, . . . , xn]

}
Truncated quadratic module:

Mt(Q) = cone
{
qs2 : q ∈ {1} ∪Q, s ∈ R[x1, . . . , xn], deg(qs2) ≤ 2t

}



Convexification

Let P(S(Q)) be the set of probability measures supported on S(Q).

Write the polynomial optimization problem

P = inf
{
p(x) : x ∈ S(Q)

}
as

inf
{∫

S(Q)

p(x) dµ(x) : µ ∈ P(S(Q))
}
.
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Moment and localizing matrices

Notation: xα = xα1
1 · · ·xαn

n and |α| = α1 + . . .+ αn

Define the localizing matrices

Mq(µ)α,β =

∫
S(Q)

xα+β q(x)dµ(x)

For q = 1 this is called the moment matrix

Lemma If µ ∈ P(S(Q)), then Mq(µ) � 0 for every q ∈ {1} ∪Q.
Proof For C a finite set of exponend vectors and c ∈ RC ,∑
α,β∈C

cαcβM
q(µ)α,β =

∑
α,β∈C

cαcβ

∫
S(Q)

xα+β q(x)dµ(x)

=

∫
S(Q)

(∑
α

cαx
α

)2

q(x)dµ(x) ≥ 0.
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Relaxations

Let y be a real vector indexed by exponent vectors α with |α| ≤ 2t.

For q ∈ Q we write q(x) =
∑
γ qγx

γ

Define
Mq
t (y)α,β =

∑
γ

qγyα+β+γ

for |α|, |β| ≤ t− bdeg(q)/2c

Exercise 5
Define y by yα =

∫
S(Q)

xα dµ(x) for |α| ≤ 2t. Show that

Mq
t (y)α,β = Mq(µ)α,β

for |α|, |β| ≤ t− bdeg(q)/2c
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Relaxations

The Lasserre moment hierarchy:

Pt = inf
{∑

α

pαyα : y0 = 1, Mq
t (y) � 0 for q ∈ {1} ∪Q

}
Here the optimization variable is the real vector y indexed by the
exponent vectors α with |α| ≤ 2t

Lemma
If t ≥ ddeg(h)/2e for h ∈ {p} ∪Q, then Pt ≤ P .
Proof
For x ∈ S(Q), define y by yα = xα for |α| ≤ 2t.
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Semidefinite programming duality
Primal and dual semidefinite programs:

Pt = inf
{∑

α

pαyα : y0 = 1, Mq
t (y) � 0 for q ∈ {1} ∪Q

}
P sos
t = sup

{
c ∈ R : p− c ∈Mt(Q)

}

Weak duality:

c =
∑
α

(c− p)αyα +
∑
α

pαyα

=
∑
α

−

(∑
q

q(x)〈Aq,m(x)m(x)T〉

)
α

yα +
∑
α

pαyα

= −
∑
q

〈
Aq,

∑
α

(
q(x)m(x)m(x)T

)
α
yα

〉
+
∑
α

pαyα

= −
∑
q

〈Aq,Mq
t (y)〉+

∑
α

pαyα ≤
∑
α

pαyα.

If S(Q) is full dimensional, then strong duality holds: Pt = P sos
t
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Asymptotic convergence

Strong duality shows Pt → P holds whenever M(Q) is archimedean
(since we know P sos

t → P by Putinar’s theorem)

Is there a direct proof?

Yes, we first show Pt → P∞ as t→∞, and then we show P∞ = P

Note that Pt ≤ Pt+1 ≤ ... ≤ P
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Asymptotic convergence

Theorem If M(Q) is archimedean, then Pt → P∞.
Proof sketch

Fix ε > 0 and let yt be feasible for Pt with
∑
α pαy

t
α ≤ Pt+ε. Since

M(Q) is archimedean, there is a C with C −
∑n
i=1 x

2
i ∈ M(Q).

Since Mq
t (y) � 0 for all q ∈ {1} ∪Q, we get

∑
α hαy

t
α ≥ 0 for all

h ∈Mt(Q). From this we get ytα ≤ C |α|/2y0 = C |α|/2.

Define the linear functional Lt on R[x1, . . . , xn] by

Lt(xα) =

{
ytα/C

|α|/2 if |α| ≤ 2t,

0 otherwise.

The functional Lt lies in the unit ball, which is closed in the weak*
topology by the Banach-Alaoglu theorem. This shows Lt has a
pointwise limit point L, and thus yt has a limit point y which is
feasible for P . This gives P∞ ≤ limt→∞ Pt + ε.
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Asymptotic convergence

Riesz-Haviland Theorem Let y be a vector indexed by all exponent
vectors and let K ⊆ Rn be closed. There exists a finite Borel
measure µ on K such that yα =

∫
K
xα dµ(x) for all α if and only

if
∑
α hαyα ≥ 0 for all polynomials h that are nonnegative on K.

Theorem If M(Q) is archimedean, then P∞ = P
Proof
If h ≥ 0 on S(Q), then h+ ε > 0 on S(Q), so by Putinar’s theorem
h+ ε ∈ M(Q). The conditions y0 = 1 and Mq

t (y) � 0 then imply∑
α yαhα + ε ≥ 0. Since ε > 0 was arbitrary we get

∑
α yαhα ≥ 0

so by the Riesz-Haviland theorem there is a probability measure µ
supported on S(Q) with µ(p) =

∑
α pαyα.

Alternatively we can avoid using Putinar’s theorem and instead work fully ‘on

the moment side’ by a Gelfand–Naimark–Segal construction and the Gelfand

and Riesz representation theorems.
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Strengthening the moment hierarchy
We defined the localizing matrices by

Mq
t (y)α,β =

∑
γ

qγyγ+α+β

for |α|, |β| ≤ t− bdeg(q)/2c

Here we needed to restrict to |α|, |β| ≤ t− bdeg(q)/2c because yα is only
defined for |α| ≤ 2t.

Instead we can define the partial matrix

Mq
t (y)α,β =

{∑
γ qγyγ+α+β if |α+ β| ≤ 2t− deg(q),

unspecified otherwise

for |α|, |β| ≤ t

The constraint Mq
t (y) � 0 now means: There is a positive semidefinite

completion of the partial matrix Mq
t (y)
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Specialization to 0/1 polynomial optimization problems

Exercise 6
Show that if Q contains the polynomials xi(1−xi) and −xi(1−xi)
for i = 1, . . . , n, then we may assume the exponent vector of each
term of all other polynomials in {p} ∪Q lies in {0, 1}n, and if y is
a feasible vector to Pt, then yα = yᾱ, where ᾱ is obtained from α
by replacing all nonzero entries by ones.

This shows the moment hierarchy can be written as

Pt = inf
{∑

S

pSyS : y∅ = 1, Mq
t (y) � 0 for q ∈ {1} ∪Q

}
Here p(x) =

∑
S⊆{1,...,n} pS

∏
i∈S xi and

Mq
t (y)J,J ′ =

{∑
S qS yJ∪J′∪S if |J ∪ J ′| ≤ 2t− deg(q),

unspecified otherwise

for |J |, |J ′| ≤ t
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Specialization to the independent set problem
0/1 polynomial optimization problem for the independent set problem:

P = max
{ n∑
i=1

xi : xi(1− xi) = 0 for i = 1, . . . , n, xi + xj ≤ 1 if i ∼ j
}

The moment hierarchy thus reduces to

Pt = sup
{ n∑
i=1

y{i} : y∅ = 1, M1
t (y) � 0, M

1−xi−xj

t (y) � 0 for i ∼ j
}

Exercise 7 Assume we use the strengthened version of the moment
hierarchy. Show that if y is feasible for Pt for t ≥ 1, we have yS = 0
for all dependent sets.

So instead we use the moment hierarchy

Pt = sup
{ n∑
i=1

y{i} : y∅ = 1, M1
t (y) � 0, yS = 0 for S dependent

}
(That these hierarchies are the same is shown by Laurent in 2001)
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