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Topics for the four talks

1. Sums-of-squares hierarchies for polynomial optimization

2. Moment hierarchies for polynomial optimization

3. Packing problems

4. Energy minimization problems



Polynomial optimization

{p} ∪Q ⊆ R[x1, . . . , xn] finite

Polynomial optimization problem:

P = inf
{
p(x) : x ∈ S(Q)

}
Semialgebraic set:

S(Q) = {x ∈ Rn : q(x) ≥ 0 for q ∈ Q}

Computing P is NP-hard, even if all polynomials are at most quadratic



Independent set problem

Find a largest independent set in a graph

We can write this as

max
{ n∑

i=1

xi : xi(1− xi) = 0 for i = 1, . . . , n, xi + xj ≤ 1 if i ∼ j
}
.



Sums-of-squares polynomials
Write the problem P = inf

{
p(x) : x ∈ S(Q)

}
as

P = sup
{
c ∈ R : p(x)− c ≥ 0 for x ∈ S(Q)

}
Quadratic module

M(Q) = cone
{
qs2 : q ∈ {1} ∪Q, s ∈ R[x1, . . . , xn]

}
Truncated quadratic module

Mt(Q) = cone
{
qs2 : q ∈ {1} ∪Q, s ∈ R[x1, . . . , xn], deg(qs2) ≤ 2t

}
The Lasserre hierarchy

P sos
t = sup

{
c ∈ R : p− c ∈Mt(Q)

}
Exercise 1
Show p ∈M(Q) implies p ≥ 0 on S(Q);
Show P sos

t ≤ P for all t.



Sums-of-squares polynomials

Exercise 2
Let m(x) be a vector whose entries form a basis for
the space R[x1, . . . , xn]t of polynomials of degree at
most t. Then p ∈ R[x1, . . . , xn]2t is a sum-of-squares
polynomial if and only if there is a positive semidefinite
matrix A such that

p(x) = m(x)TAm(x).

Hint: use the Cholesky factorization.



Semidefinite programming
In a semidefinite program we minimize (or maximize) a linear functional
over positive semidefinite matrices with linear constraints:

inf
{
〈C,X〉 : X ∈ Rn×n, X � 0, 〈Ai, X〉 = bi for i = 1, . . . ,m

}
.

Here 〈C,X〉 = tr(CTX) is the trace inner product and X � 0 means X
is positive semidefinite.

Generalization of linear programming.

Semidefinite programs can be solved in polynomial time (roughly in the
size of the problem and log(1/ε), where ε > 0 is the additive error).

Semidefinite programs can be solved efficiently in practice using interior
point methods.

Exercise 3
Show P sos

t is a semidefinite program.



What happens as d→∞?

Definition
M(Q) is archimedean if for every polynomial p there is
a constant C > 0 such that C − p ∈M(Q).

Exercise 4
ShowM(Q) is archimedean if and only if there exists a constant
N > 0 such that

N −
n∑

i=1

x2i ∈M(Q).

Hint: For the “if” direction first show (N + 1
4 )± xi ∈M(Q) for

any i = 1, . . . , n. Then extend to the full polynomial ring.



What happens as d→∞?

Putinar’s Theorem (1993)
Suppose M(Q) is archimedean. If p is strictly positive
on S(Q), then p ∈M(Q).

P = sup
{
c ∈ R : p(x)− c ≥ 0 for x ∈ S(Q)

}
P sos
t = sup

{
c ∈ R : p− c ∈Mt(Q)

}
Asymptotic convergence follows from Putinar’s theorem: If M(Q) is
archimedean, then P sos

t → P as t→∞.



Background

In the PhD thesis (2000) of Parrilo SOS and SDP are used to compute
the global minimum of a polynomial.

The hierarchy P sos
t introduced by Lasserre in 2001.

In computer science this is used to study approximation algorithms

In quantum information theory there are noncommutative extensions
such as the NPA hierarchy (2007).



Is there a contradiction?

Semidefinite programs can be solved in polynomial time (roughly in the
size of the problem and log(1/ε), where ε is the additive error).

But the independent set problem is NP-hard, and we can write the
independent set problem as a polynomial optimization problem of
polynomial size.

The value of t for which P sos
t = P holds depends on the graph and can

grow linearly in n (although we will see t does not need to be larger than
the independence number).

If t grows linearly in n, the dimension of R[x1, . . . , xn]t, and thus the size
of P sos

t , grows exponentially in n, so there is no contradiction.



Does finite convergence always hold?

The Motzkin polynomial
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It can be shown that p is not a sum-of-squares polynomial. In fact, it can
be shown p does not lie in M({1− (x21 + x22 + x23)}).

This gives an example where P sos
t < P for all t.



Certificates

Putinar’s theorem is an example of a Positivstellensatz.

Hilbert’s Nullstellensatz gives a certificate for a polynomial p to be zero
at the common zero set of some given polynomials: Write some power of
p as an element in the ideal generated by those polynomials.

A Positivstellensatz is a real algebraic version of this: Find a certificate
for a polynomial p to be positive on a set.

To find a Nullstellensatz certificate we can use linear algebra, but to find
a Positivstellensatz certificate we need optimization.

There are many other Positivstellensatze, but Putinar’s theorem is good
computationally (SDP) and in practice often gives finite convergence.


