Modular forms and their applications III

Danylo Radchenko

ETH Zurich
August 26, 2020

Online Summer School on Optimization, Interpolation and Modular Forms August 24-28, 2020, EPFL

Jacobi's theta function

Let us start by looking at unary theta functions.

$$
\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q+2 q^{4}+2 q^{9}+\ldots
$$

Clearly, this function is 1-periodic.

Proposition

The function $\theta(\tau)$ satisfies

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{2 \tau / i} \theta(\tau), \quad \tau \in \mathbb{H}
$$

Poisson summation formula

To prove this we recall the Poisson summation formula.
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a Schwartz function, and let $\widehat{f}(\xi)$ be its Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \xi} d x
$$

Then

$$
\sum_{n \in \mathbb{Z}} f(n+x)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2 \pi i n x}
$$

The standard way to prove this is to consider the left-hand side as a function on \mathbb{R} / \mathbb{Z} and look at its Fourier series.

Jacobi's theta function

Proposition

The function $\theta(\tau)$ satisfies

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{2 \tau / i} \theta(\tau), \quad \tau \in \mathbb{H}
$$

Proof.

Let $f(x)=e^{-\pi t x^{2}}$, so that $\widehat{f}(\xi)=t^{-1 / 2} e^{-\pi t^{-1} x^{2}}$. Then by the Poisson summation formula for $x=0$

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}=t^{-1 / 2} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / t}
$$

This is equivalent to

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{2 \tau / i} \theta(\tau)
$$

for τ on the imaginary axis, and by the identity theorem we get it for all $\tau \in \mathbb{H}$.

Application: Jacobi's identities for sums of squares

We have proved that θ is modular with respect to T and $W_{4}=\left(\begin{array}{cc}0 & 1 \\ -4 & 0\end{array}\right)$. Note that $W_{4} T W_{4}=\left(\begin{array}{cc}-4 & 0 \\ 16 & -4\end{array}\right) \sim\left(\begin{array}{cc}1 & 0 \\ -4 & 1\end{array}\right)$.
One can show what T and $\left(\begin{array}{cc}-1 & 0 \\ 4 & -1\end{array}\right)$ generate the subgroup $\Gamma_{0}(4)$.

Exercise

Show that $\theta^{4}(\tau) \in M_{2}\left(\Gamma_{0}(4)\right)$.
Note that

$$
\theta^{k}(\tau)=1+\sum_{n \geq 1} r_{k}(n) q^{n}
$$

where $r_{k}(n)$ is the number of representations of n as a sum of k squares.

Application: Jacobi's identities for sums of squares

Since $\theta^{4}(\tau) \in M_{2}\left(\Gamma_{0}(4)\right)$ and the latter space is 2-dimensional, spanned by $G_{2}(\tau)-2 G_{2}(2 \tau)$ and $G_{2}(\tau)-4 G_{2}(4 \tau)$, one gets

$$
\theta^{4}(\tau)=8\left(G_{2}(\tau)-4 G_{2}(4 \tau)\right)
$$

From this we get Jacobi's identity

$$
r_{4}(n)=8 \sum_{4 \nmid d \mid n,} d, \quad n \geq 1
$$

and also a proof of Lagrange's four-square theorem.
Similarly, the space $M_{4}\left(\Gamma_{0}(4)\right)$ is spanned by $G_{4}(\tau), G_{4}(2 \tau)$, and $G_{4}(4 \tau)$, which implies

$$
r_{8}(n)=16 \sum_{d \mid n}(-1)^{n+d} d^{3}
$$

Exercise: multiplicativity of $r_{k}(n)$

The explicit formulas for $k=4$ and $k=8$ show that the sequences $\left\{\frac{r_{4}(n)}{8}\right\}$ and $\left\{\frac{r_{8}(n)}{16}\right\}$ are both multiplicative, i.e., they satisfy $a(m n)=a(m) a(n)$ for $(m, n)=1$.

Exercise

Let $r_{k}(n)$ be the number of representations of n as a sum of squares of k integers. Show that the sequence $\left\{\frac{r_{k}(n)}{2 k}\right\}_{n \geq 1}$ is multiplicative if and only if $k \in\{1,2,4,8\}$.

Theta functions of lattices

Recall that a lattice $\Lambda \subset \mathbb{R}^{d}$ is a discrete subgroup of rank d.
Λ is called integral if

$$
\langle x, y\rangle \in \mathbb{Z} \quad \text { for all } \quad x, y \in \Lambda .
$$

Λ is called even if

$$
|x|^{2} \in 2 \mathbb{Z} \quad \text { for all } \quad x \in \Lambda .
$$

We define the dual lattice by

$$
\Lambda^{*}=\left\{\xi \in \mathbb{R}^{d} \mid\langle x, \xi\rangle \in \mathbb{Z} \quad \text { for all } x \in \Lambda\right\}
$$

A lattice is called unimodular if $\Lambda=\Lambda^{*}$. For integral lattices this is equivalent to $\operatorname{vol}\left(\mathbb{R}^{d} / \Lambda\right)=1$.

Poisson summation formula for lattices

For any lattice $\Lambda \subset \mathbb{R}^{d}$ and any Schwartz function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ we have

$$
\sum_{v \in \Lambda} f(x+v)=\frac{1}{|\Lambda|} \sum_{\xi \in \Lambda^{*}} \widehat{f}(\xi) e^{2 \pi i\langle x, \xi\rangle}
$$

Here we define

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x
$$

The proof is more or less the same as in one dimension: consider the Fourier series of the left hand side as a function on the torus \mathbb{R}^{d} / Λ.

Theta functions of even unimodular lattices

Proposition

Let $\Lambda \subseteq \mathbb{R}^{d}$ be an even unimodular lattice. Then $8 \mid d$ and the function

$$
\Theta_{\Lambda}(\tau)=\sum_{v \in \Lambda} q^{|v|^{2} / 2}
$$

is a modular form of weight $d / 2$ for $\mathrm{PSL}_{2}(\mathbb{Z})$.

Proof

The Poisson summation formula applied to $e^{\pi i \tau|x|^{2}}$ shows that

$$
\sum_{v \in \Lambda} e^{\pi i \tau|v|^{2}}=\frac{1}{|\Lambda|}(\tau / i)^{-d / 2} \sum_{v \in \Lambda^{*}} e^{\pi i(-1 / \tau)|v|^{2}}
$$

Theta functions of even unimodular lattices

Proof (cont.)

Equivalently,

$$
\Theta_{\Lambda}(\tau)=\frac{1}{|\Lambda|}(\tau / i)^{-d / 2} \Theta_{\Lambda^{*}}(-1 / \tau)
$$

Since $\Lambda=\Lambda^{*}$ and $|\Lambda|=1$, and using periodicity we get that

$$
\Theta_{\wedge}(1-1 / \tau)(\tau / i)^{-d / 2}=\Theta_{\wedge}(\tau)
$$

Since $\tau \mapsto 1-1 / \tau$ is cyclic of order 3 , this implies

$$
(\tau / i)^{-d / 2}((1-1 / \tau) / i)^{-d / 2}(1 / i(1-\tau))^{-d / 2}=1
$$

On the other hand one can directly check that the left hand side equals $e^{-\frac{2 \pi i d}{8}}$. This implies $8 \mid d$ and hence also that $\Theta_{\Lambda} \in M_{d / 2}\left(\Gamma_{1}\right)$.

Example: theta series of the E_{8} lattice

Since the E_{8}-lattice

$$
\Lambda_{8}=\left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{Z}^{8} \cup(1 / 2+\mathbb{Z})^{8} \mid x_{1}+\cdots+x_{8}=0(\bmod 2)\right\}
$$

is even and unimodular, we have $\Theta_{\Lambda_{8}}(\tau) \in M_{4}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and therefore

$$
\Theta_{\Lambda_{8}}(\tau)=E_{4}(\tau)
$$

In particular, the number of vectors of length $\sqrt{2 n}$ in Λ_{8} is equal to

$$
r_{\Lambda_{8}}(n)=240 \sigma_{3}(n)
$$

Application: even unimodular lattices

For any even unimodular lattice we can get an approximation to $r_{\Lambda}(n)$, the number of vectors of square length $2 n$, as n goes to infinity.
For this we need the following estimate for coefficients of cusp forms due to Hecke.

Proposition

Let $f(\tau)=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}\right)$. Then $\left|a_{n}\right| \ll n^{k / 2}$.

Proof.

Consider the function $F(\tau)=|f(\tau)| y^{k / 2}$. It is Γ_{1} invariant, and goes to 0 as $\tau \rightarrow i \infty$, and therefore it is bounded by some constant C. Then

$$
\left|a_{n}\right|=\left|\int_{-1 / 2+i / n}^{1 / 2+i / n} f(\tau) q^{-n} d \tau\right| \leq C e^{2 \pi} n^{k / 2}
$$

Application: even unimodular lattices

Proposition

If $\Lambda \subset \mathbb{R}^{8 /}$ is an even unimodular lattice, then

$$
r_{\Lambda}(n) \sim-\frac{8 /}{B_{4 I}} \sigma_{4 I-1}(n), \quad n \rightarrow \infty
$$

Proof.

Since $\Theta_{\Lambda} \in M_{4 /}\left(\Gamma_{1}\right)$ and $\Theta_{\wedge}(\tau)=1+O(q)$, we have

$$
\Theta_{\wedge}(\tau)=E_{4 l}(\tau)+f(\tau)
$$

where $f=\sum_{n \geq 1} a(n) q^{n}$ is a cusp form. Since $\sigma_{4 I-1}(n) \geq n^{4 l-1}$ and $a_{n}=O\left(n^{2 \prime}\right)$, we get the claim.

Application: extremal lattices

Note that since Θ_{Λ} belongs to $M_{4 /}\left(\Gamma_{1}\right)$, it is uniquely determined by $m=\operatorname{dim} M_{4 /}\left(\Gamma_{1}\right)$ first coefficients. An even unimodular lattice Λ is called extremal if

$$
\Theta_{\wedge}(\tau)=1+O\left(q^{m}\right)
$$

In this case we define a_{l} and b_{l} by $\Theta_{\Lambda}(\tau)=1+a_{l} q^{m}+b_{l} q^{m+1}+O\left(q^{m+2}\right)$.

Theorem (Siegel)

For all $I \geq 1$ the coefficient a_{l} is positive. In particular, any even unimodular lattice has a nonzero vector of length $\leq \sqrt{2 m}$.

Theorem (Mallows-Odlyzko-Sloane)

For all sufficiently large I the coefficient b_{I} is negative. In particular, there exists $C>0$ such that there are no extremal lattices in \mathbb{R}^{d} for $d>C$.

Application: extremal lattices

The idea is to calculate a_{l}, b_{l} using Lagrange inversion formula, and get asymptotic formulas.
For example, one can show that

$$
a_{3 k}=\frac{3 k}{k+1}\left[q^{k}\right]\left(E_{4}^{2} \frac{d E_{4}}{d q} \prod_{n \geq 1}\left(1-q^{n}\right)^{-24(k+1)}\right)
$$

which immediately shows that $a_{3 k}>0$ is positive.
The proof of the claim for b_{l} is more involved but is based on a similar computation.

Theta functions with polynomial weights

Let Λ be an even unimodular lattice in \mathbb{R}^{d}, and let $P(x)$ be a homogeneous harmonic polynomial in d variables of degree $m>0$. We define

$$
\Theta_{\Lambda, P}(\tau)=\sum_{v \in \Lambda} P(v) q^{|v|^{2} / 2}
$$

Proposition

Under the above conditions $\Theta_{\Lambda, P} \in S_{d / 2+m}\left(\Gamma_{1}\right)$.

Proof.

The claim follows by applying the Poisson summation formula to $f(x)=P(x) e^{\pi i \tau|x|^{2}}$, using the fact that $\widehat{f}(x)=i^{m}(\tau / i)^{-d / 2-m} P(x) e^{\pi i(-1 / \tau)|x|^{2}}$.

Application: spherical designs

The fact that we can consider theta functions weighted by harmonic polynomials can be used to analyze the strength of a lattice shell as a spherical design.

Recall that a spherical t-design is a configuration of N points $x_{1}, \ldots, x_{N} \in S^{d-1}$ such that for any polynomial $P \in \mathbb{R}\left[t_{1}, \ldots, t_{d}\right]$ of degree $\leq t$ one has

$$
\begin{equation*}
\int_{S^{d-1}} P(x) d \mu(x)=\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right) \tag{*}
\end{equation*}
$$

One can show that it is enough to verify $\left({ }^{*}\right)$ for homogeneous harmonic polynomials.

Application: spherical designs

Proposition

The set of vectors of length $\sqrt{2 n}$ in the E_{8} lattice forms a spherical 7-design.

Proof.

By the above theorem, if P is harmonic of degree d, then $\Theta_{\Lambda, P} \in S_{4+d}\left(\Gamma_{1}\right)$, and hence it vanishes for $d<8$.

Note that since $S_{14}\left(\Gamma_{1}\right)=0$ the average of any harmonic polynomial of degree 10 over the set of vectors in E_{8} of length $\sqrt{2 n}$ is also zero.

Application (?): Lehmer's conjecture

Lehmer has conjectured that the Fourier coefficients of $\Delta(\tau)$ are non-zero.
One can reformulate this conjecture in more geometric terms as follows.

Proposition

Lehmer's conjecture is equivalent to the following statement: for all $n \geq 1$ the set of vectors of length $\sqrt{2 n}$ in the E_{8} lattice does not form an 8-design.

To see this, note that the theta function of Λ_{8} weighted by a harmonic polynomial of degree 8 lies in $S_{12}\left(\Gamma_{1}\right)$, which is spanned by $\Delta(\tau)$.
By the previous remark, we can also replace " 8 -design" by " 9 -design", "10-design", or even "11-design".

Application: tight spherical designs

A spherical t-design X on S^{n-1} is called tight if

$$
|X|=\binom{n-1+\left\lfloor\frac{t}{2}\right\rfloor}{\left\lfloor\frac{t}{2}\right\rfloor}+\binom{n-1+\left\lfloor\frac{t-1}{2}\right\rfloor}{\left\lfloor\frac{t-1}{2}\right\rfloor}
$$

Bannai and Damerell have proved that for $n>2$ tight designs can exist only for $t \in\{1,2,3,4,5,7,11\}$.

For $t=1,2,3$ there is a simple classification, and for $t=11$ there is only one such design, namely the 196560 shortest vectors of the Leech lattice.

For $t=4,5,7$ there are only partial results: the only known examples are

$$
\begin{array}{ll}
t=4: & n=6,22 \\
t=5: & n=3,7,23 \\
t=7: & n=8,23
\end{array}
$$

Application: tight spherical designs

It is known that for a tight 5-design, if $n>3$, then $n=(2 m+1)^{2}-2$ for some $m \geq 1$.
The two known examples correspond to $m=1,2$.
Bannai, Munemasa, and Venkov have proved that tight 5-designs do not exist for $m=3,4$ by analyzing the lattice generated by X.

In particular, to prove that a tight 5-design in \mathbb{R}^{47} cannot exist they have constructed from it an even unimodular lattice $\Lambda \subset \mathbb{R}^{48}$ with

$$
\Theta_{\Lambda}(\tau)=1+2 q+4512 q^{2}+1271256 q^{3}+\ldots
$$

Exercise

Show that such a lattice does not exist.

