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Jacobi’'s theta function

Let us start by looking at unary theta functions.

0(7) ::an2:1+2q+2q4+2q9+...
nezZ

Clearly, this function is 1-periodic.

Proposition

The function 0(T) satisfies

0(—%):@9(7)7 el
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Poisson summation formula

To prove this we recall the Poisson summation formula.

~

Let f: R — C be a Schwartz function, and let f(&) be its Fourier transform

fle) = /R F(x)e 27 dx

Then

Y F(n+x) = f(n)e™™

nez nez

The standard way to prove this is to consider the left-hand side as a function on R/Z
and look at its Fourier series.
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Jacobi’'s theta function

The function 0(T) satisfies

9(-%):@9(7), el

Proof.
Let f(x) = e ™" so that F(¢) = t72/2e"%*_ Then by the Poisson summation

formula for x =0
Z e—7rn2t _ t_1/2 Z e—7rn2/t )

neZ neZ

| A

This is equivalent to
1 :
9( - E) = /277 6(7)

for 7 on the imaginary axis, and by the identity theorem we get it for all 7 € H. O

<
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Application: Jacobi's identities for sums of squares

We have proved that 6 is modular with respect to T and Wy = ( % %).
Note that W TWy = (78 %) ~ (% 9).

One can show what T and (! ° ) generate the subgroup Io(4).

Show that 94(7') € Mg(r0(4)).

Note that

04(r) =1+ rn)q”.

n>1

where ri(n) is the number of representations of n as a sum of k squares.

5/22



Application: Jacobi's identities for sums of squares

Since 0*(7) € Ma(Io(4)) and the latter space is 2-dimensional, spanned by
Go(1) — 2G2(27) and Gy(7) — 4Ga(47), one gets

0*(1) = 8(Go(7) — 4Gy (47))
From this we get Jacobi’'s identity

r4(n):8Zd, n>1

and also a proof of Lagrange's four-square theorem.

Similarly, the space M4(Io(4)) is spanned by G4(7), G4(27), and G4(47), which implies

rs(n) =16 (—1)""d?
d|
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Exercise: multiplicativity of rx(n)

The explicit formulas for k = 4 and k = 8 show that the sequences {@} and {%}
are both multiplicative, i.e., they satisfy a(mn) = a(m)a(n) for (m,n) = 1.

Let ri(n) be the number of representations of n as a sum of squares of k integers.

Show that the sequence {rg(g)},,zl is multiplicative if and only if k € {1,2,4,8}.
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Theta functions of lattices

Recall that a lattice A C R is a discrete subgroup of rank d.

N is called integral if
(x,y) €Z forall x,yeA.

N is called even if
Ix?€2Z forall x€A.

We define the dual lattice by
N ={ccR?|(x,&) €Z forall xeA}

A lattice is called unimodular if A = A*.
For integral lattices this is equivalent to vol(R?/A) = 1.
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Poisson summation formula for lattices

For any lattice A € R? and any Schwartz function f: RY — C we have

Zf(x+v ’/\‘Zf e2mi(x:€)

vel EEN*

Here we define

F(e) = /R ) f(x)e 208 dx

The proof is more or less the same as in one dimension: consider the Fourier series of
the left hand side as a function on the torus R7/A.
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Theta functions of even unimodular lattices

Let A C RY be an even unimodular lattice. Then 8|d and the function

on(r) = Y g

veN

is a modular form of weight d/2 for PSLy(Z).

The Poisson summation formula applied to e™X* shows that

Z eTri‘r|v|2 _ ﬁ(T/i)—d/Z Z eTl'l'(—l/T)‘V|2

veEN VEN*
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Theta functions of even unimodular lattices

Proof (cont.)

Equivalently, .
On(r) = W(T/i)_dp@/\*(—l/T)

Since A = A* and |A| = 1, and using periodicity we get that
ON(L —1/7)(7/i) =% = On(7)
Since 7 +— 1 —1/7 is cyclic of order 3, this implies
(/i) 12((1 = /) ()2 i = )2 = 1.
2mid

On the other hand one can directly check that the left hand side equals e~ & .
This implies 8[d and hence also that ©x € My/»(I'1). O
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Example: theta series of the Eg lattice

Since the Eg-lattice
Ne={(x1,...,x8) €EZ8U(1/2+Z)® | x1+ - +xg =0 (mod 2)}
is even and unimodular, we have Op,(7) € M4(SL2(Z)), and therefore
Opg(7) = Ea(7)
In particular, the number of vectors of length v/2n in Ag is equal to

r/\s(n) = 2400’3(”)
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Application: even unimodular lattices

For any even unimodular lattice we can get an approximation to ra(n), the number of
vectors of square length 2n, as n goes to infinity.
For this we need the following estimate for coefficients of cusp forms due to Hecke.

Proposition

Let f(1) = >_,>12nq" € Sk(T1). Then |ap| < nk/2,

Proof

Consider the function F(7) = |f(7)|y*/2. It is ['1 invariant, and goes to 0 as 7 — ico,
and therefore it is bounded by some constant C. Then

1/2+i/n
lan| = ‘/ f(T)q "dT’ < Ce?™nk/?
1/2+i/n
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Application: even unimodular lattices

Proposition

If A c R® js an even unimodular lattice, then

8/
ra(n) ~ —B—MU4/—1(”); n— oo

Proof.
Since ©p € My (1) and ©A(7) = 1+ O(q), we have

@/\(7‘) = E4/(7') aF f(T) )

where f =3" -, a(n)q" is a cusp form. Since 04)-1(n) > n*=1and a, = O(n?), we
get the claim. [

v
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Application: extremal lattices

Note that since ©p belongs to My (I'1), it is uniquely determined by m = dim My(I'1)
first coefficients. An even unimodular lattice A is called extremal if

On(r) =1+ 0(q™)
In this case we define a; and b; by Oa(7) = 1+ a;g™ + b;g™ ™t + O(q™+?).

Theorem (Siegel)
For all | > 1 the coefficient a; is positive. In particular, any even unimodular lattice has
a nonzero vector of length < v/2m.

v

Theorem (Mallows—Odlyzko—Sloane)

For all sufficiently large | the coefficient b, is negative. In particular, there exists C > 0
such that there are no extremal lattices in RY for d > C.

<
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Application: extremal lattices

The idea is to calculate ay, b; using Lagrange inversion formula, and get asymptotic
formulas.
For example, one can show that

o= > 1[ k]( 2dE4 H(l B qn)f24(k+1))

nZl

which immediately shows that asz, > 0 is positive.

The proof of the claim for b; is more involved but is based on a similar computation.
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Theta functions with polynomial weights

Let A be an even unimodular lattice in RY, and let P(x) be a homogeneous harmonic
polynomial in d variables of degree m > 0. We define

Oap(T ZP v)q"|/2

veN

Proposition
Under the above conditions ©Op p € Sy/54+m(T'1)-

The claim follows by applylng the Poisson summation formula to f(x) = P(x)e”’T‘XF,
using the fact that f(x) = i™(7/i)=9/2=mP(x)em(=1/7)IxI?, 0

v
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Application: spherical designs

The fact that we can consider theta functions weighted by harmonic polynomials can
be used to analyze the strength of a lattice shell as a spherical design.

Recall that a spherical t-design is a configuration of N points xi,...,xy € ST such
that for any polynomial P € R[ty, ..., ty] of degree < t one has
L
P(x)d = — P(x; *
o PO = 35 3 P )

One can show that it is enough to verify (*) for homogeneous harmonic polynomials.
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Application: spherical designs

Proposition

The set of vectors of length v/2n in the Eg lattice forms a spherical 7-design.

By the above theorem, if P is harmonic of degree d, then ©p p € S414(I'1), and hence
it vanishes for d < 8. []

Note that since S14(I'1) = 0 the average of any harmonic polynomial of degree 10 over
the set of vectors in Eg of length v/2n is also zero.
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Application (?7): Lehmer’s conjecture

Lehmer has conjectured that the Fourier coefficients of A(7) are non-zero.

One can reformulate this conjecture in more geometric terms as follows.

Proposition

Lehmer’s conjecture is equivalent to the following statement: for all n > 1 the set of
vectors of length v/2n in the Eg lattice does not form an 8-design.

To see this, note that the theta function of Ag weighted by a harmonic polynomial of
degree 8 lies in S12('1), which is spanned by A(7).

By the previous remark, we can also replace “8-design” by “9-design”, “10-design”, or
even “11-design”.
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Application: tight spherical designs

A spherical t-design X on S"1 is called tight if

X| = (n— H L§J> N (n_ TLJJ)

Bannai and Damerell have proved that for n > 2 tight designs can exist only for
te{1,2,3,4,5,7,11}.

For t = 1,2, 3 there is a simple classification, and for t = 11 there is only one such
design, namely the 196560 shortest vectors of the Leech lattice.

For t = 4,5,7 there are only partial results: the only known examples are

t=4: n=6,22
t=5: n=3,7,23
t=7: n=28,23
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Application: tight spherical designs

It is known that for a tight 5-design, if n > 3, then n = (2m + 1)? — 2 for some m > 1.
The two known examples correspond to m =1, 2.

Bannai, Munemasa, and Venkov have proved that tight 5-designs do not exist for

m = 3,4 by analyzing the lattice generated by X.

In particular, to prove that a tight 5-design in R*’ cannot exist they have constructed
from it an even unimodular lattice A C R*® with

OA(T) = 14 2q + 4512¢° + 1271256¢° + . ..

Show that such a lattice does not exist. l
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