Modular forms and their applications Il

Danylo Radchenko
ETH Zurich

August 25, 2020

Online Summer School on Optimization, Interpolation and Modular Forms
August 24-28, 2020, EPFL

1/24



The group PSL,(Z)

Let us look again at the transformation law for modular forms

f(37'+2) = (cT + d)*f(7), <i Z) € 5SLy(Z).

cT +

Since (o' %) € SLa(Z), by above definition any modular form of odd weight must

vanish identically, so we may concentrate on the case when k is even.

In this case (c7 + d)¥ is invariant under (c, d) — (—c, —d) and hence we may work
with the group Iy := PSLo(Z) = SL»(Z)/(+£/) instead.
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The slash operator

Recall that the group PSL»(R) acts on H on the left:

ar+ b

b
VT = v= (i d) € PSLy(R)

ct+d’

It is convenient to define the right action of PSL,(R) on functions f: H — C by

az+b).

(Fliv)(2) == (cz + d)’kf<cz -

Show that |, indeed defines a right group action, i.e, f|xy1v2 = fliy1lky2-
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The generators of PSL,(Z)

The transformation law for modular forms then becomes

f|k’}/ = f, v e PSLz(Z)
0 1 11
(o) 6

Show that the group PSLy(Z) is generated by S and T with S = (ST)3 = 1.

Let us denote

This implies that it is enough to verify [, S = |, T = f.
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The condition |, T = f is simply saying that f is 1-periodic.
Note that any 1-periodic analytic function f: H — C can be written as a Laurent series

F(r)= > anq", q=¢&"" (*)

n=—oo

Definition

A modular form of weight k for ['; is an analytic function f: H — C that satisfies
flky = f for all v € I'1 and such that (*) contains only nonnegative powers of q.

A modular form f is called a cusp form if ag = 0. We denote by My (1) and Sk(l'1)
the spaces of modular forms and cusp forms respectively.
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Other subgroups of finite index

If  C I'1is a subgroup of finite index, then one needs to modify the definition a bit.

Definition

A modular form of weight k for " is an analytic function f: H — C that satisfies
flky = f for all v € T and such that (f|,y)(7) is bounded as 7 — ico for all

AS PSLQ(Z).

A modular form f is called a cusp form if instead (f|,y)(7) goes to 0 as 7 — ioco for
all v € PSLy(Z).

Again, the spaces are denoted by My (') and Sx(I'). Note that a product of modular
forms of weight k and / is a modular form of weight k 4 /, so that

M.(I) = €D Mi(T)

k>0

is a graded ring.
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The fundamental domain

Since the values of a modular form f at any two points in the same ['1-orbit are related
by a transformation law, it is useful to have a set of representatives of these orbits.

Definition
A fundamental domain for 1 is an open set F such that no two points of F lie in the
same [1-orbit, and every point is equivalent to a point of F

| \

Proposition

The set
F={reH:|Ret| <1/2,|r| > 1}

is a fundamental domain for PSLy(Z).
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The fundamental domain

5
P
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The fundamental domain

Proof.
Use the identity

ImT

Imyr = —
M er + dP?

and consider 7/ € ;7 with the largest imaginary part.

Since {c7 + d | c,d € Z} is a lattice, it has only finitely many vectors shorter than 1,
and thus 7’ is well-defined.

By applying some power of T if necessary, we may also assume that |Re7/| < 1/2.
Since Im 7’ is maximal, we must have |7| > 1, since otherwise Im S7/ > Im 7.

This shows that every point in H is equivalent to a point in closure of F. O

Show that no two points of F are '1-equivalent.
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Elliptic points

Note that some elements of PSL,(Z) have fixed points in H. For instance, S fixes i
and U = ST fixes the 3rd root of unity p.

We will call a point z € H elliptic, if it has a nontrivial stabilizer in PSL,(Z).

Show that any elliptic point for PSL>(Z) is equivalent to either i or p.

Define
; zelp

3
n,=1<2  zelyi
1

, otherwise
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Orders of zeros

Let ord,(f) be the order of a zero of f at the point z, and let ord(f) be the smallest
n such that a, # 0 in the g-expansion.
Note that if f is a modular form, ord,(f) = ord,,(f) whenever z = yw, v € I'1.

Proposition

Let f be a nonzero modular form of weight k for SLy(Z). Then

3 MJrordoo(f) _k
n, 12
Zerl\H

!
Compute the integral of % ';((zz)) over the “Swiss cheese contour” illustrated on the
next slide. We leave details as an exercise. O

12/24



Contour of integration

O
O
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Proof of finite-dimensionality

Let k > 0 be even. Then

|k/12] +1, k #2 (mod 12),

dim Mk(SL2(Z)) < {U(/12J ’ k=2 (mod 12)-

| A\

Proof.

Given m+ 1 forms fi,. .., fmy1, where m = | k/12]| + 1, one can find a linear
combination that vanishes at non-elliptic points zi, ..., z;, which must vanish.

If k=2 (mod 12), then k/12 = a/3 + b/2 + c implies a=2 (mod 3), b=1 (mod 2),
so that a > 2 and b > 1. Then the same argument shows dim M, (1) < m — 1. O]

v
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A different proof of finite-dimensionality

Exercise

(i) Define the following norms on S,(I'1):

1713 = /F F(2)Py*du(z),
1Flloo = sup F(2)|y*/2.
f

where du(z) = y~2dxdy is the hyperbolic area measure. Show that there exists a
constant Cy that depends only on k, such that

[flloo < Cellfllz,  F € Sk(M).

(ii) Let f,...,fm be an orthonormal system with respect to the inner product
associated to || - ||2. Show that m < C? vol(F).
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Eisenstein series

Our next step is to show that the above upper bounds are exact.
For even k > 2 the Eisenstein series of weight k by is defined by

Since

>

(m,n)#0

(where (m’, n’) =

(

(k — 1)! 1
G-l s L
2(2mi)k (o (m7 + n)k

1 1

(m2mtb | )k = (c7+d) Z ((ma+ nc)T + (mb + nd))k

ct+d (m,n)#£0

1
_ k
= (CT + d) (m/§n/):7éo (m/T + n/)k

(m,n)(25)) we get that G, € M(SLo(Z)).
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Eisenstein series

To compute the g-expansion of Eisenstein series we use the Lipschitz formula

1 (—27Ti)k k—1 27il
- [le2milz  f> 0
;(szn)k (/<—1)!Z © =

>1

Applying it to the sum over n gives
( k—1 27rllmT Bk 2minT
Gi(7) = gy SR+ DD TR ILEICL
m>1 [>1 n>1

Here By is the k-th Bernoulli number, defined by the generating series

kak_ X
kI ex—1

k>0
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Structure of the ring of modular forms

Let us denote by Ex(7) the Eisenstein series normalized to have constant term 1.

E4(7) = 1+ 240q + 2160g° + 6720q° + . ..

Es(7) = 1 — 504q — 16632q° — 122976¢° + . ..

Es(7) = 1+ 480q + 61920¢° + 10502404° + . ..
Note that EJ and E2 are linearly independent.

Proposition

The functions E4(7) and Ee(7) are algebraically independent.
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Structure of the ring of modular forms

Proof.

It is enough to show that £} and E62 are algebraically independent. Let

P(E3(7), E2(7)) = 0 for some polynomial P € C[X, Y]. We may assume that P is
homogeneous since any homogeneous component P, also satisfies

P4(E3(7), E2(7)) = 0. But if P is homogeneous, then P(x,y) = 0 has only finitely
many solutions x/y, which implies that E3(7)/EZ2(7) is constant, a contradiction. [

| \

Corollary

We have
M*(rl) — (C[E4a E6]

| A

Proof.
One can compute that #{(a, b) € ZZZO :4a+6b=k} = |k/12| + 1 if
k # 2 (mod 12) and #{(a, b) € Z2, : 4a+6b = k} = | k/12| otherwise. Since these

are also the upper bounds for dim M(I'1), they must match. O
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Eisenstein series of weight 2

As we have mentioned in the first lecture,

o) = = + S o (n)q”

24
n>1

is not a modular form, but it does satisfy a similar transformation law

c(cr +d)
Awi

G2<ar—|—b (1)

cT+d

Show that if (1) holds for 1 and 72, then it also holds for v17s. l
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Eisenstein series of weight 2

There are several ways of proving the transformation law for Go.
One way is to use Hecke's trick: define

1 1
Goe(T) = =25 Z 2 2
87 (o (m7 + n)?|mT + n|

and show that lim.,0 Go o(7) = Go(7) + %. Since Gy (7) does satisfy a modular
transformation, one can show that it implies (1).

21/24



Eisenstein series of weight 2

A different way: it is enough to show that

Galify) = —y*Galiy) = 1 (2)

Consider the L-series associated to Gp:

L(s):/goo(Gz(/y)+1/24) ldy = (2m) T (s Z
n>1
= (2m) 7T (s)¢(s)¢(s = 1)

The functional equation for ((s) then implies L(2 — s) = —L(s), and knowing that L
has poles only at s = 0, 1,2 with known residues gives (2) by inverse Mellin transform.
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Modular discriminant function

An immediate application of G is the proof of the fact that A(7) is modular

A(r) =q[J(1 = q")** € Sia(T)
n=1

Proof.
The product expansion shows that A(7) # 0 for 7 € H. Note that

/ n
! A(T)=1—24Z B _E(7)
q

2mi A7) L
Then the functional equation 772E5(—1/7) = E»(T) + 52— implies that
A(—1/7) = ct'2A(7), and since A(i) # 0 we must have ¢ = 1. O
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Modular discriminant function

Since the space S12(I1) is 1-dimensional, we obtain

_ E(r) - B(r)

A7) 1728

Since A(7) does not vanish anywhere in H, j(7) = i‘?((:)) is a modular function.

Ramanujan has observed experimentally that the coefficients of the g-expansion

A(r)=q]J(1—-q"*=>_7(nq"

n>1 n>1

are multiplicative and satisfy |7(p)| < 2p'/2 for primes p.
The first statement was proved one year later by Mordell, but the second was only
proved in 1974 by Deligne as a corollary of the Weil conjectures.
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