Modular forms and their applications II

Danylo Radchenko

ETH Zurich
August 25, 2020

Online Summer School on Optimization, Interpolation and Modular Forms August 24-28, 2020, EPFL

The group $\mathrm{PSL}_{2}(\mathbb{Z})$

Let us look again at the transformation law for modular forms

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

Since $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, by above definition any modular form of odd weight must vanish identically, so we may concentrate on the case when k is even.
In this case $(c \tau+d)^{k}$ is invariant under $(c, d) \mapsto(-c,-d)$ and hence we may work with the group $\Gamma_{1}:=\mathrm{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /(\pm I)$ instead.

The slash operator

Recall that the group $\mathrm{PSL}_{2}(\mathbb{R})$ acts on \mathbb{H} on the left:

$$
\gamma \tau:=\frac{a \tau+b}{c \tau+d}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{R})
$$

It is convenient to define the right action of $\mathrm{PSL}_{2}(\mathbb{R})$ on functions $f: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
\left(\left.f\right|_{k} \gamma\right)(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right) .
$$

Exercise

Show that $\left.\right|_{k}$ indeed defines a right group action, i.e, $\left.f\right|_{k} \gamma_{1} \gamma_{2}=\left.\left.f\right|_{k} \gamma_{1}\right|_{k} \gamma_{2}$.

The generators of $\mathrm{PSL}_{2}(\mathbb{Z})$

The transformation law for modular forms then becomes

$$
\left.f\right|_{k} \gamma=f, \quad \gamma \in \mathrm{PSL}_{2}(\mathbb{Z})
$$

Let us denote

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Exercise

Show that the group $\mathrm{PSL}_{2}(\mathbb{Z})$ is generated by S and T with $S^{2}=(S T)^{3}=1$.
This implies that it is enough to verify $\left.f\right|_{k} S=\left.f\right|_{k} T=f$.

Periodicity

The condition $\left.f\right|_{k} T=f$ is simply saying that f is 1-periodic.
Note that any 1-periodic analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$ can be written as a Laurent series

$$
\begin{equation*}
f(\tau)=\sum_{n=-\infty}^{\infty} a_{n} q^{n}, \quad q:=e^{2 \pi i \tau} \tag{*}
\end{equation*}
$$

Definition

A modular form of weight k for Γ_{1} is an analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$ that satisfies $\left.f\right|_{k} \gamma=f$ for all $\gamma \in \Gamma_{1}$ and such that $\left({ }^{*}\right)$ contains only nonnegative powers of q. A modular form f is called a cusp form if $a_{0}=0$. We denote by $M_{k}\left(\Gamma_{1}\right)$ and $S_{k}\left(\Gamma_{1}\right)$ the spaces of modular forms and cusp forms respectively.

Other subgroups of finite index

If $\Gamma \subset \Gamma_{1}$ is a subgroup of finite index, then one needs to modify the definition a bit.

Definition

A modular form of weight k for Γ is an analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$ that satisfies $\left.f\right|_{k} \gamma=f$ for all $\gamma \in \Gamma$ and such that $\left(\left.f\right|_{k} \gamma\right)(\tau)$ is bounded as $\tau \rightarrow i \infty$ for all $\gamma \in \operatorname{PSL}_{2}(\mathbb{Z})$.
A modular form f is called a cusp form if instead $\left(\left.f\right|_{k} \gamma\right)(\tau)$ goes to 0 as $\tau \rightarrow i \infty$ for all $\gamma \in \mathrm{PSL}_{2}(\mathbb{Z})$.

Again, the spaces are denoted by $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$. Note that a product of modular forms of weight k and l is a modular form of weight $k+l$, so that

$$
M_{*}(\Gamma)=\bigoplus_{k \geq 0} M_{k}(\Gamma)
$$

is a graded ring.

The fundamental domain

Since the values of a modular form f at any two points in the same Γ_{1}-orbit are related by a transformation law, it is useful to have a set of representatives of these orbits.

Definition

A fundamental domain for Γ_{1} is an open set \mathcal{F} such that no two points of \mathcal{F} lie in the same Γ_{1}-orbit, and every point is equivalent to a point of $\overline{\mathcal{F}}$

Proposition

The set

$$
\mathcal{F}=\{\tau \in \mathbb{H}:|\operatorname{Re} \tau|<1 / 2,|\tau|>1\}
$$

is a fundamental domain for $\mathrm{PSL}_{2}(\mathbb{Z})$.

The fundamental domain

The fundamental domain

Proof.

Use the identity

$$
\operatorname{Im} \gamma \tau=\frac{\operatorname{Im} \tau}{|c \tau+d|^{2}}
$$

and consider $\tau^{\prime} \in \Gamma_{1} \tau$ with the largest imaginary part.
Since $\{c \tau+d \mid c, d \in \mathbb{Z}\}$ is a lattice, it has only finitely many vectors shorter than 1 , and thus τ^{\prime} is well-defined.
By applying some power of T if necessary, we may also assume that $\left|\operatorname{Re} \tau^{\prime}\right| \leq 1 / 2$.
Since $\operatorname{Im} \tau^{\prime}$ is maximal, we must have $\left|\tau^{\prime}\right| \geq 1$, since otherwise $\operatorname{Im} S \tau^{\prime}>\operatorname{Im} \tau^{\prime}$.
This shows that every point in \mathbb{H} is equivalent to a point in closure of \mathcal{F}.

Exercise

Show that no two points of \mathcal{F} are Γ_{1}-equivalent.

Some translates of the fundamental domain

Elliptic points

Note that some elements of $\mathrm{PSL}_{2}(\mathbb{Z})$ have fixed points in \mathbb{H}. For instance, S fixes i and $U=S T$ fixes the 3rd root of unity ρ.

We will call a point $z \in \mathbb{H}$ elliptic, if it has a nontrivial stabilizer in $\operatorname{PSL}_{2}(\mathbb{Z})$.

Exercise

Show that any elliptic point for $\mathrm{PSL}_{2}(\mathbb{Z})$ is equivalent to either i or ρ.
Define

$$
n_{z}= \begin{cases}3, & z \in \Gamma_{1} \rho \\ 2, & z \in \Gamma_{1} i \\ 1, & \text { otherwise }\end{cases}
$$

Orders of zeros

Let $\operatorname{ord}_{z}(f)$ be the order of a zero of f at the point z, and let $\operatorname{ord}_{\infty}(f)$ be the smallest n such that $a_{n} \neq 0$ in the q-expansion.
Note that if f is a modular form, $\operatorname{ord}_{z}(f)=\operatorname{ord}_{w}(f)$ whenever $z=\gamma w, \gamma \in \Gamma_{1}$.

Proposition

Let f be a nonzero modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. Then

$$
\sum_{z \in \Gamma_{1} \backslash \mathbb{H}} \frac{\operatorname{ord}_{z}(f)}{n_{z}}+\operatorname{ord}_{\infty}(f)=\frac{k}{12}
$$

Proof.

Compute the integral of $\frac{1}{2 \pi i} \frac{f^{\prime}(z)}{f(z)}$ over the "Swiss cheese contour" illustrated on the next slide. We leave details as an exercise.

Contour of integration

Proof of finite-dimensionality

Proposition

Let $k \geq 0$ be even. Then

$$
\operatorname{dim} M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \leq \begin{cases}\lfloor k / 12\rfloor+1, & k \not \equiv 2(\bmod 12) \\ \lfloor k / 12\rfloor, & k \equiv 2(\bmod 12)\end{cases}
$$

Proof.

Given $m+1$ forms f_{1}, \ldots, f_{m+1}, where $m=\lfloor k / 12\rfloor+1$, one can find a linear combination that vanishes at non-elliptic points z_{1}, \ldots, z_{m}, which must vanish. If $k \equiv 2(\bmod 12)$, then $k / 12=a / 3+b / 2+c$ implies $a \equiv 2(\bmod 3), b \equiv 1(\bmod 2)$, so that $a \geq 2$ and $b \geq 1$. Then the same argument shows $\operatorname{dim} M_{k}\left(\Gamma_{1}\right) \leq m-1$.

A different proof of finite-dimensionality

Exercise

(i) Define the following norms on $S_{k}\left(\Gamma_{1}\right)$:

$$
\begin{aligned}
\|f\|_{2}^{2} & :=\int_{\mathcal{F}}|f(z)|^{2} y^{k} d \mu(z) \\
\|f\|_{\infty} & :=\sup _{\mathcal{F}}|f(z)| y^{k / 2}
\end{aligned}
$$

where $d \mu(z)=y^{-2} d x d y$ is the hyperbolic area measure. Show that there exists a constant C_{k} that depends only on k, such that

$$
\|f\|_{\infty} \leq C_{k}\|f\|_{2}, \quad f \in S_{k}\left(\Gamma_{1}\right) .
$$

(ii) Let f_{1}, \ldots, f_{m} be an orthonormal system with respect to the inner product associated to $\|\cdot\|_{2}$. Show that $m \leq C_{k}^{2} \operatorname{vol}(\mathcal{F})$.

Eisenstein series

Our next step is to show that the above upper bounds are exact. For even $k>2$ the Eisenstein series of weight k by is defined by

$$
G_{k}(\tau)=\frac{(k-1)!}{2(2 \pi i)^{k}} \sum_{(m, n) \neq 0} \frac{1}{(m \tau+n)^{k}}
$$

Since

$$
\begin{aligned}
\sum_{(m, n) \neq 0} \frac{1}{\left(m \frac{a \tau+b}{c \tau+d}+n\right)^{k}} & =(c \tau+d)^{k} \sum_{(m, n) \neq 0} \frac{1}{((m a+n c) \tau+(m b+n d))^{k}} \\
& =(c \tau+d)^{k} \sum_{\left(m^{\prime}, n^{\prime}\right) \neq 0} \frac{1}{\left(m^{\prime} \tau+n^{\prime}\right)^{k}}
\end{aligned}
$$

(where $\left.\left(m^{\prime}, n^{\prime}\right)=(m, n)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ we get that $G_{k} \in M_{k}\left(S_{2}(\mathbb{Z})\right)$.

Eisenstein series

To compute the q-expansion of Eisenstein series we use the Lipschitz formula

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{l \geq 1} I^{k-1} e^{2 \pi i l z}, \quad k \geq 2
$$

Applying it to the sum over n gives

$$
G_{k}(\tau)=\frac{(k-1)!}{(2 \pi i)^{k}} \zeta(k)+\sum_{m \geq 1} \sum_{l \geq 1} I^{k-1} e^{2 \pi i l m \tau}=-\frac{B_{k}}{2 k}+\sum_{n \geq 1} \sigma_{k-1}(n) e^{2 \pi i n \tau}
$$

Here B_{k} is the k-th Bernoulli number, defined by the generating series

$$
\sum_{k \geq 0} \frac{B_{k} x^{k}}{k!}=\frac{x}{e^{x}-1}
$$

Structure of the ring of modular forms

Let us denote by $E_{k}(\tau)$ the Eisenstein series normalized to have constant term 1 .

$$
\begin{aligned}
& E_{4}(\tau)=1+240 q+2160 q^{2}+6720 q^{3}+\ldots \\
& E_{6}(\tau)=1-504 q-16632 q^{2}-122976 q^{3}+\ldots \\
& E_{8}(\tau)=1+480 q+61920 q^{2}+1050240 q^{3}+\ldots
\end{aligned}
$$

Note that E_{4}^{3} and E_{6}^{2} are linearly independent.

Proposition

The functions $E_{4}(\tau)$ and $E_{6}(\tau)$ are algebraically independent.

Structure of the ring of modular forms

Proof.

It is enough to show that E_{4}^{3} and E_{6}^{2} are algebraically independent. Let $P\left(E_{4}^{3}(\tau), E_{6}^{2}(\tau)\right)=0$ for some polynomial $P \in \mathbb{C}[X, Y]$. We may assume that P is homogeneous since any homogeneous component P_{d} also satisfies $P_{d}\left(E_{4}^{3}(\tau), E_{6}^{2}(\tau)\right)=0$. But if P is homogeneous, then $P(x, y)=0$ has only finitely many solutions x / y, which implies that $E_{4}^{3}(\tau) / E_{6}^{2}(\tau)$ is constant, a contradiction.

Corollary

We have

$$
M_{*}\left(\Gamma_{1}\right)=\mathbb{C}\left[E_{4}, E_{6}\right]
$$

Proof.

One can compute that $\#\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 4 a+6 b=k\right\}=\lfloor k / 12\rfloor+1$ if $k \not \equiv 2(\bmod 12)$ and $\#\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 4 a+6 b=k\right\}=\lfloor k / 12\rfloor$ otherwise. Since these are also the upper bounds for $\operatorname{dim} M_{k}\left(\Gamma_{1}\right)$, they must match.

Eisenstein series of weight 2

As we have mentioned in the first lecture,

$$
G_{2}(\tau)=-\frac{1}{24}+\sum_{n \geq 1} \sigma(n) q^{n}
$$

is not a modular form, but it does satisfy a similar transformation law

$$
\begin{equation*}
G_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} G_{2}(\tau)-\frac{c(c \tau+d)}{4 \pi i} . \tag{1}
\end{equation*}
$$

Exercise

Show that if (1) holds for γ_{1} and γ_{2}, then it also holds for $\gamma_{1} \gamma_{2}$.

Eisenstein series of weight 2

There are several ways of proving the transformation law for G_{2}. One way is to use Hecke's trick: define

$$
G_{2, \varepsilon}(\tau)=-\frac{1}{8 \pi^{2}} \sum_{(m, n) \neq 0} \frac{1}{(m \tau+n)^{2}|m \tau+n|^{2 \varepsilon}}
$$

and show that $\lim _{\varepsilon \rightarrow 0} G_{2, \varepsilon}(\tau)=G_{2}(\tau)+\frac{1}{8 \pi y}$. Since $G_{2, \varepsilon}(\tau)$ does satisfy a modular transformation, one can show that it implies (1).

Eisenstein series of weight 2

A different way: it is enough to show that

$$
\begin{equation*}
G_{2}(i / y)=-y^{2} G_{2}(i y)-\frac{y}{4 \pi} \tag{2}
\end{equation*}
$$

Consider the L-series associated to G_{2} :

$$
\begin{aligned}
L(s)=\int_{0}^{\infty}\left(G_{2}(i y)+1 / 24\right) y^{s-1} d y & =(2 \pi)^{-s} \Gamma(s) \sum_{n \geq 1} \frac{\sigma(n)}{n^{s}} \\
& =(2 \pi)^{-s} \Gamma(s) \zeta(s) \zeta(s-1)
\end{aligned}
$$

The functional equation for $\zeta(s)$ then implies $L(2-s)=-L(s)$, and knowing that L has poles only at $s=0,1,2$ with known residues gives (2) by inverse Mellin transform.

Modular discriminant function

An immediate application of G_{2} is the proof of the fact that $\Delta(\tau)$ is modular

$$
\Delta(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \in S_{12}\left(\Gamma_{1}\right)
$$

Proof.

The product expansion shows that $\Delta(\tau) \neq 0$ for $\tau \in \mathbb{H}$. Note that

$$
\frac{1}{2 \pi i} \frac{\Delta^{\prime}(\tau)}{\Delta(\tau)}=1-24 \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}=E_{2}(\tau)
$$

Then the functional equation $\tau^{-2} E_{2}(-1 / \tau)=E_{2}(\tau)+\frac{12}{2 \pi i \tau}$ implies that $\Delta(-1 / \tau)=c \tau^{12} \Delta(\tau)$, and since $\Delta(i) \neq 0$ we must have $c=1$.

Modular discriminant function

Since the space $S_{12}\left(\Gamma_{1}\right)$ is 1-dimensional, we obtain

$$
\Delta(\tau)=\frac{E_{4}^{3}(\tau)-E_{6}^{2}(\tau)}{1728}
$$

Since $\Delta(\tau)$ does not vanish anywhere in $\mathbb{H}, j(\tau)=\frac{E_{4}^{3}(\tau)}{\Delta(\tau)}$ is a modular function.
Ramanujan has observed experimentally that the coefficients of the q-expansion

$$
\Delta(\tau)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\sum_{n \geq 1} \tau(n) q^{n}
$$

are multiplicative and satisfy $|\tau(p)|<2 p^{11 / 2}$ for primes p.
The first statement was proved one year later by Mordell, but the second was only proved in 1974 by Deligne as a corollary of the Weil conjectures.

