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The group PSL2(Z)

Let us look again at the transformation law for modular forms

f
( aτ + b

cτ + d

)
= (cτ + d)k f (τ) ,

(
a b
c d

)
∈ SL2(Z) .

Since (−1 0
0 −1 ) ∈ SL2(Z), by above definition any modular form of odd weight must

vanish identically, so we may concentrate on the case when k is even.

In this case (cτ + d)k is invariant under (c , d) 7→ (−c ,−d) and hence we may work
with the group Γ1 := PSL2(Z) = SL2(Z)/(±I ) instead.

2 / 24



The slash operator

Recall that the group PSL2(R) acts on H on the left:

γτ :=
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ PSL2(R)

It is convenient to define the right action of PSL2(R) on functions f : H→ C by

(f |kγ)(z) := (cz + d)−k f
(az + b

cz + d

)
.

Exercise

Show that |k indeed defines a right group action, i.e, f |kγ1γ2 = f |kγ1|kγ2.
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The generators of PSL2(Z)

The transformation law for modular forms then becomes

f |kγ = f , γ ∈ PSL2(Z)

Let us denote

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
.

Exercise

Show that the group PSL2(Z) is generated by S and T with S2 = (ST )3 = 1.

This implies that it is enough to verify f |kS = f |kT = f .
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Periodicity

The condition f |kT = f is simply saying that f is 1-periodic.
Note that any 1-periodic analytic function f : H→ C can be written as a Laurent series

f (τ) =
∞∑

n=−∞
anq

n , q := e2πiτ (*)

Definition

A modular form of weight k for Γ1 is an analytic function f : H→ C that satisfies
f |kγ = f for all γ ∈ Γ1 and such that (*) contains only nonnegative powers of q.

A modular form f is called a cusp form if a0 = 0. We denote by Mk(Γ1) and Sk(Γ1)
the spaces of modular forms and cusp forms respectively.
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Other subgroups of finite index

If Γ ⊂ Γ1 is a subgroup of finite index, then one needs to modify the definition a bit.

Definition

A modular form of weight k for Γ is an analytic function f : H→ C that satisfies
f |kγ = f for all γ ∈ Γ and such that (f |kγ)(τ) is bounded as τ → i∞ for all
γ ∈ PSL2(Z).

A modular form f is called a cusp form if instead (f |kγ)(τ) goes to 0 as τ → i∞ for
all γ ∈ PSL2(Z).

Again, the spaces are denoted by Mk(Γ) and Sk(Γ). Note that a product of modular
forms of weight k and l is a modular form of weight k + l , so that

M∗(Γ) =
⊕
k≥0

Mk(Γ)

is a graded ring.
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The fundamental domain

Since the values of a modular form f at any two points in the same Γ1-orbit are related
by a transformation law, it is useful to have a set of representatives of these orbits.

Definition

A fundamental domain for Γ1 is an open set F such that no two points of F lie in the
same Γ1-orbit, and every point is equivalent to a point of F

Proposition

The set
F = {τ ∈ H : |Re τ | < 1/2 , |τ | > 1}

is a fundamental domain for PSL2(Z).
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The fundamental domain

F

−1/2 1/2

i
ρ
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The fundamental domain

Proof.

Use the identity

Im γτ =
Im τ

|cτ + d |2
.

and consider τ ′ ∈ Γ1τ with the largest imaginary part.
Since {cτ + d | c , d ∈ Z} is a lattice, it has only finitely many vectors shorter than 1,
and thus τ ′ is well-defined.
By applying some power of T if necessary, we may also assume that |Re τ ′| ≤ 1/2.
Since Im τ ′ is maximal, we must have |τ ′| ≥ 1, since otherwise Im Sτ ′ > Im τ ′.
This shows that every point in H is equivalent to a point in closure of F .

Exercise

Show that no two points of F are Γ1-equivalent.
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Some translates of the fundamental domain

ST−1S TS

IT−1 T

STS ST ST−1 TST TST−1T−1ST
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Elliptic points

Note that some elements of PSL2(Z) have fixed points in H. For instance, S fixes i
and U = ST fixes the 3rd root of unity ρ.

We will call a point z ∈ H elliptic, if it has a nontrivial stabilizer in PSL2(Z).

Exercise

Show that any elliptic point for PSL2(Z) is equivalent to either i or ρ.

Define

nz =


3, z ∈ Γ1ρ

2, z ∈ Γ1i

1, otherwise
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Orders of zeros

Let ordz(f ) be the order of a zero of f at the point z , and let ord∞(f ) be the smallest
n such that an 6= 0 in the q-expansion.
Note that if f is a modular form, ordz(f ) = ordw (f ) whenever z = γw , γ ∈ Γ1.

Proposition

Let f be a nonzero modular form of weight k for SL2(Z). Then∑
z∈Γ1\H

ordz(f )

nz
+ ord∞(f ) =

k

12
.

Proof.

Compute the integral of 1
2πi

f ′(z)
f (z) over the “Swiss cheese contour” illustrated on the

next slide. We leave details as an exercise.
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Contour of integration
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Proof of finite-dimensionality

Proposition

Let k ≥ 0 be even. Then

dimMk(SL2(Z)) ≤

{
bk/12c+ 1 , k 6≡ 2 (mod 12) ,

bk/12c , k ≡ 2 (mod 12) .

Proof.

Given m + 1 forms f1, . . . , fm+1, where m = bk/12c+ 1, one can find a linear
combination that vanishes at non-elliptic points z1, . . . , zm, which must vanish.

If k ≡ 2 (mod 12), then k/12 = a/3 + b/2 + c implies a ≡ 2 (mod 3), b ≡ 1 (mod 2),
so that a ≥ 2 and b ≥ 1. Then the same argument shows dimMk(Γ1) ≤ m − 1.
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A different proof of finite-dimensionality

Exercise

(i) Define the following norms on Sk(Γ1):

‖f ‖2
2 :=

∫
F
|f (z)|2ykdµ(z) ,

‖f ‖∞ := sup
F
|f (z)|yk/2 .

where dµ(z) = y−2dxdy is the hyperbolic area measure. Show that there exists a
constant Ck that depends only on k, such that

‖f ‖∞ ≤ Ck‖f ‖2 , f ∈ Sk(Γ1) .

(ii) Let f1, . . . , fm be an orthonormal system with respect to the inner product
associated to ‖ · ‖2. Show that m ≤ C 2

k vol(F).
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Eisenstein series

Our next step is to show that the above upper bounds are exact.
For even k > 2 the Eisenstein series of weight k by is defined by

Gk(τ) =
(k − 1)!

2(2πi)k

∑
(m,n)6=0

1

(mτ + n)k

Since ∑
(m,n)6=0

1

(m aτ+b
cτ+d + n)k

= (cτ + d)k
∑

(m,n)6=0

1

((ma + nc)τ + (mb + nd))k

= (cτ + d)k
∑

(m′,n′)6=0

1

(m′τ + n′)k

(where (m′, n′) = (m, n)( a b
c d )) we get that Gk ∈ Mk(SL2(Z)).
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Eisenstein series

To compute the q-expansion of Eisenstein series we use the Lipschitz formula

∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∑
l≥1

lk−1e2πilz , k ≥ 2

Applying it to the sum over n gives

Gk(τ) =
(k − 1)!

(2πi)k
ζ(k) +

∑
m≥1

∑
l≥1

lk−1e2πilmτ = −Bk

2k
+
∑
n≥1

σk−1(n)e2πinτ

Here Bk is the k-th Bernoulli number, defined by the generating series

∑
k≥0

Bkx
k

k!
=

x

ex − 1
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Structure of the ring of modular forms

Let us denote by Ek(τ) the Eisenstein series normalized to have constant term 1.

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + . . .

E6(τ) = 1− 504q − 16632q2 − 122976q3 + . . .

E8(τ) = 1 + 480q + 61920q2 + 1050240q3 + . . .

Note that E 3
4 and E 2

6 are linearly independent.

Proposition

The functions E4(τ) and E6(τ) are algebraically independent.
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Structure of the ring of modular forms

Proof.

It is enough to show that E 3
4 and E 2

6 are algebraically independent. Let
P(E 3

4 (τ),E 2
6 (τ)) = 0 for some polynomial P ∈ C[X ,Y ]. We may assume that P is

homogeneous since any homogeneous component Pd also satisfies
Pd(E 3

4 (τ),E 2
6 (τ)) = 0. But if P is homogeneous, then P(x , y) = 0 has only finitely

many solutions x/y , which implies that E 3
4 (τ)/E 2

6 (τ) is constant, a contradiction.

Corollary

We have
M∗(Γ1) = C[E4,E6]

Proof.

One can compute that #{(a, b) ∈ Z2
≥0 : 4a + 6b = k} = bk/12c+ 1 if

k 6≡ 2 (mod 12) and #{(a, b) ∈ Z2
≥0 : 4a + 6b = k} = bk/12c otherwise. Since these

are also the upper bounds for dimMk(Γ1), they must match.
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Eisenstein series of weight 2

As we have mentioned in the first lecture,

G2(τ) = − 1

24
+
∑
n≥1

σ(n)qn

is not a modular form, but it does satisfy a similar transformation law

G2

( aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− c(cτ + d)

4πi
. (1)

Exercise

Show that if (1) holds for γ1 and γ2, then it also holds for γ1γ2.
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Eisenstein series of weight 2

There are several ways of proving the transformation law for G2.
One way is to use Hecke’s trick: define

G2,ε(τ) = − 1

8π2

∑
(m,n) 6=0

1

(mτ + n)2|mτ + n|2ε

and show that limε→0 G2,ε(τ) = G2(τ) + 1
8πy . Since G2,ε(τ) does satisfy a modular

transformation, one can show that it implies (1).
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Eisenstein series of weight 2

A different way: it is enough to show that

G2(i/y) = −y2G2(iy)− y

4π
(2)

Consider the L-series associated to G2:

L(s) =

∫ ∞
0

(G2(iy) + 1/24)y s−1dy = (2π)−sΓ(s)
∑
n≥1

σ(n)

ns

= (2π)−sΓ(s)ζ(s)ζ(s − 1)

The functional equation for ζ(s) then implies L(2− s) = −L(s), and knowing that L
has poles only at s = 0, 1, 2 with known residues gives (2) by inverse Mellin transform.
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Modular discriminant function

An immediate application of G2 is the proof of the fact that ∆(τ) is modular

∆(τ) = q
∞∏
n=1

(1− qn)24 ∈ S12(Γ1)

Proof.

The product expansion shows that ∆(τ) 6= 0 for τ ∈ H. Note that

1

2πi

∆′(τ)

∆(τ)
= 1− 24

∑
n≥1

nqn

1− qn
= E2(τ)

Then the functional equation τ−2E2(−1/τ) = E2(τ) + 12
2πiτ implies that

∆(−1/τ) = cτ12∆(τ), and since ∆(i) 6= 0 we must have c = 1.
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Modular discriminant function

Since the space S12(Γ1) is 1-dimensional, we obtain

∆(τ) =
E 3

4 (τ)− E 2
6 (τ)

1728

Since ∆(τ) does not vanish anywhere in H, j(τ) =
E3

4 (τ)
∆(τ) is a modular function.

Ramanujan has observed experimentally that the coefficients of the q-expansion

∆(τ) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

are multiplicative and satisfy |τ(p)| < 2p11/2 for primes p.
The first statement was proved one year later by Mordell, but the second was only
proved in 1974 by Deligne as a corollary of the Weil conjectures.
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