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The notion of modular forms

Let H= {7 € C: Im7 > 0} be the complex upper half-plane.
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The notion of modular forms

Let H= {7 € C: Im7 > 0} be the complex upper half-plane.

A modular form (of weight k) on SL»(Z) is an analytic function f: H — C satisfying

ar +b
f'
(CT+d

) = (c7 + d)*f(7), (i Z) € SLy(Z) (i)
that has a convergent Fourier expansion of the form

F(r) = anq", q:=e&" (ii)

n>0

If ag =0, f is called a cusp form. We denote by M(SL2(Z)) and Sk(SL2(Z)) the
spaces of modular forms and cusp forms of weight k respectively.
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Moduli space of genus 1 curves

If £( Z’ZIZ) = f(r) and f(7) = >, _.anq", fis called a modular function.
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Moduli space of genus 1 curves

If £( Z’ZIZ) = f(r) and f(7) = >, _.anq", fis called a modular function.

The name “modular” comes from the fact that one can define a function on lattices
N=72w1+Zws — F(N):=f(wi/w2),
and since F(A\) = F(A), F(A) is an invariant of the complex curve C/A.
By analogy, if f is a modular form of weight k, then
N="TZw +Zwy = F(N):=w;,  flwr/w),

satisfies F(AA) = A"KF(A).
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Other groups

One may also consider functions that satisfy f( i:i?/) = (¢ + d)*f(7) only for

(i 2) € I, where I is a subgroup of finite index in SLy(Z).
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Other groups

One may also consider functions that satisfy f( i:i?/) = (¢ + d)*f(7) only for

d

examples are the following subgroups of “level N":

Fo(N) = { <j 3) € SLa(2) | <i Z) = <; :) (mod N)},
ra(v) = { (j Z) eSLy(2) | (j f,) - <(1) ’{) (mod M)},
r(N) = { <j Z) € SLa(2) | <i Z) = <é (1)) (mod N)}.

(i b €T, where I is a subgroup of finite index in SL2(Z). The most important
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One may also consider functions that satisfy f(

2

Other groups

i:i?/) = (¢ + d)*f(7) only for

€T, where I is a subgroup of finite index in SL2(Z). The most important

examples are the following subgroups of “level N":

o) = { <j Z) € SLy(2) | <j
r) = { (j 2) € SLy(2) | <i
r(w) = { <j Z) € SLy(2) | <j

o) o}
= <(1) ’1‘> (mod N)},
(

é (1)) (mod N)}

The condition (ii) and the definition of cusp forms need to be changed appropriately.
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Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.
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Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.

Fact 1
There exist many different sources of modular forms, often quite dissimilar in nature. J

Fact 2
The spaces of modular forms are finite-dimensional. J

Because of this one can often prove identities a, = b, between sequences of numbers
by observing that their generating series land in the same space of modular forms and
then checking finitely many of them.
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Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
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Modular forms are everywhere!

Modular forms often appear rather unexpectedly.

explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)
irrationality of ((3) (Apéry)

construction of non-torsion rational points on elliptic curves over Q (Gross-Zagier)
algebraic independence of 7 and e™ (Nesterenko)
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Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)
irrationality of ((3) (Apéry)

construction of non-torsion rational points on elliptic curves over Q (Gross-Zagier)

]
(]
m algebraic independence of 7 and e™ (Nesterenko)
m Fermat's Last Theorem (Wiles)

(]

sphere packing problem in 8 dimensions (Viazovska)
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Examples: Eisenstein series

For all even k > 2 the function
Gi(7) 1= = + > ok-1(n)g”

is a modular form of weight k for SL2(Z).
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Examples: Eisenstein series

For all even k > 2 the function
Gi(7) 1= = + > ok-1(n)g”

is a modular form of weight k for SLo(Z). Here

os(n) =) d°
d|n

The function Gy(7) is not a modular form, but transforms according to
c(cT +d)
Ami

G2<a7-+b

) = (er+dPG(n) -
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Examples: Eisenstein series

For all even k > 2 the function
Gi(7) 1= = + > ok-1(n)g”

is a modular form of weight k for SLo(Z). Here

The function Gy(7) is not a modular form, but transforms according to

) = (c7 + d)Go(r) - C(CZ; 9)

ar + b
G2<c7'+d

It is sometimes more convenient to use a normalization

Ek _1—720';( 1
n>1
7/17



Examples: Eisenstein series

As we will see, the space Mg(SL2(Z)) is 1-dimensional, and since E? and Eg both
belong to it and have the expansion 1 + O(q), we must have E? = Eg.
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Examples: Eisenstein series

As we will see, the space Mg(SL2(Z)) is 1-dimensional, and since E? and Eg both
belong to it and have the expansion 1 + O(q), we must have E? = Eg.

This leads to a nontrivial identity

n—1
07(—03 = 3" o3(m)os(n — m)
m=1
Simiarly, E4E¢ = Eyg, and thus

n—1
11og(n) — 21os(n) + 1003(n
5040 - 205 m)os(n —m)

=1
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Examples: eta-quotients

The Dedekind eta-function -
1
n(r) = q= H (1-4")

satisfies

n(r+1)=e"y(r),  n(=1/7)=/7/in(r)
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Examples: eta-quotients

The Dedekind eta-function -
1
n(r) = q= H (1-4")

satisfies

n(r+1)=e"y(r),  n(=1/7)=/7/in(r)

As a corollary,
A(T) :=n(7)** = g — 24q¢° +252¢° + - -- — 6048¢° + ...

is a cusp form of weight 12 for SL»(Z).
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Examples: eta-quotients

There are many other examples of modular forms that can be written as eta quotients:

n*(2r)
n8(7)

n*(r)n*(57) = q — 49 +2¢° +8q* + - € S4(T'o(5))

= q+8¢°+28¢° +64g" + - -- € My(lo(2))

P(T)P(117) = g = 2¢° — ¢° +2¢* + ¢° + - - € S(Mo(11))
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Examples: eta-quotients

There are many other examples of modular forms that can be written as eta quotients:

n*(2r)
n8(7)

n*(r)n*(57) = q — 49 +2¢° +8q* + - € S4(T'o(5))

= q+8¢°+28¢° +64g" + - -- € My(lo(2))

P(T)P(117) = g = 2¢° — ¢° +2¢* + ¢° + - - € S(Mo(11))

One can show that Ms(o(2)) is 2-dimensional, and thus

n*°(27)

() = Gy(7) — G4(27)
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Examples: theta series

Let 6(7) be the Jacobi theta series

0(r) = q" =1+2q+2¢" +....
nez

One can show that §4(7) is a modular form of weight 2 for [o(4), and since M(Io(4))
is spanned by Gy(7) — 2G(27) and Gy(7) — 4Gy(471), one gets

0% (1) = 8(Ga(71) — 4Gy(47))
From this one obtains Jacobi's identity
ra(n) =8 Z d, n>1.
44d|n,
This also implies Lagrange's four-square theorem.
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Examples: theta series

If A c R? is an even unimodular lattice, then one can show that

Or(r) = Y g2

vel

is a modular form of weight d/2 for SL»(Z).
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Examples: theta series

If A c R? is an even unimodular lattice, then one can show that

Or(r) = Y g2

vel

is a modular form of weight d/2 for SL»(Z).
In particular, since the Eg-lattice

Ne={(x1,...,x3) € ZBU(1/2+Z)® | xg +---+xg =0 (mod 2)}
is even and unimodular, we have ©Op,(7) € M4(SL2(Z)), and thus one has

Opg(7) = Ea(T)
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Examples: Euler's pentagonal number theorem

The first example of a nontrivial identity between modular forms was observed by Euler:

[T -7 =2 (-1t

n>1 nezZ
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Examples: Euler's pentagonal number theorem

The first example of a nontrivial identity between modular forms was observed by Euler:

[T -7 =2 (-1t

n>1 nezZ

To see why this an identity between modular forms, one needs to “complete squares”
3 —n _(6n—-1)? 1
2 24 24"
to get an equivalent formulation

q1/24 H(l - qn) _ lez(n)qn2/24’

n>1 neZ

where x12: Z — {—1,0,1} is a 12-periodic function defined by

x12(£1) =1, x12(E5) =-1.
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Examples: arithmetic sources

A much deeper source of modular forms is arithmetic geometry. In these examples the
coefficients a,« are obtained by counting the solutions of systems of polynomial
equations in finite fields FF .

Here is an explicit example. If we denote by a, the n-th Fourier coefficient of

F(r) =n*(Mn(1l7) =q-2¢° — ¢ +2¢* + ¢° +2¢° — 2¢" + ...,

then
ap=p—#{(x,y) €Fo: y* +y=x>-x*}.
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Examples: arithmetic sources

A much deeper source of modular forms is arithmetic geometry. In these examples the
coefficients a,« are obtained by counting the solutions of systems of polynomial
equations in finite fields FF .

Here is an explicit example. If we denote by a, the n-th Fourier coefficient of

F(r) =n*(Mn(1l7) =q-2¢° — ¢ +2¢* + ¢° +2¢° — 2¢" + ...,
then

a5 = p—#{(x,y) €F2: y2 4y = x* — X},

This is a special case of the modularity theorem for elliptic curves (in this case for a
curve of conductor 11).
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Examples: toric modular forms

There is a construction of modular forms associated to toric varieties due to Borisov
and Gunnels. The simplest nontrivial example is

()= > ! € My (To(2))

M+ M1 =0 (1+gm)...(1+ gnwn)
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Examples: toric modular forms

There is a construction of modular forms associated to toric varieties due to Borisov
and Gunnels. The simplest nontrivial example is

()= > ! € My (To(2))

M+ M1 =0 (1+gm)...(1+ gnwn)

In particular, since Ma(I'9(2)) is 1-dimensional,

8
a+§c_o (T ) it g g 2T —2E()
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Gauss's discovery of modular forms

Gauss was led to consider theta functions when he was studying the
arithmetic-geometric mean M(a, b). Let a > b be two positive numbers, and define
recursively ag = a, bp = b, and

an+b
dpt+1 = n‘|2‘ n7 bny1=+anbn, n>0

The limit of a, (or b,) as n — oo is the arithmetic-geometric mean M(a, b).
Sometime around 1794 he discovered the following remarkable fact. If we denote

P@)=>q", Q@) =>(-1)"q",
nez nezZ
then
M(PX(q),@*(q)) =1, |q/ <1.
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Gauss's discovery of modular forms

Gauss's proof is based on the following identities

P2(q2) _ Pz(q) + Qz(Q)

The first identity is not hard to prove directly, but for the second one essentially needs

Plo)=[a-N0+a )2, Q@ =][C-@)1-¢"")

n>1 n>1

which is equivalent to showing that

P(q):n27-
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