Modular forms and their applications I

Danylo Radchenko

ETH Zurich
August 24, 2020

Online Summer School on Optimization, Interpolation and Modular Forms August 24-28, 2020, EPFL

The notion of modular forms

Let $\mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$ be the complex upper half-plane.

The notion of modular forms

Let $\mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$ be the complex upper half-plane.
A modular form (of weight k) on $\mathrm{SL}_{2}(\mathbb{Z})$ is an analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$ satisfying

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \tag{i}\\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

that has a convergent Fourier expansion of the form

$$
\begin{equation*}
f(\tau)=\sum_{n \geq 0} a_{n} q^{n}, \quad q:=e^{2 \pi i \tau} \tag{ii}
\end{equation*}
$$

The notion of modular forms

Let $\mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$ be the complex upper half-plane.
A modular form (of weight k) on $\mathrm{SL}_{2}(\mathbb{Z})$ is an analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$ satisfying

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \tag{i}\\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

that has a convergent Fourier expansion of the form

$$
\begin{equation*}
f(\tau)=\sum_{n \geq 0} a_{n} q^{n}, \quad q:=e^{2 \pi i \tau} \tag{ii}
\end{equation*}
$$

If $a_{0}=0, f$ is called a cusp form. We denote by $M_{k}\left(S_{2}(\mathbb{Z})\right)$ and $S_{k}\left(S_{2}(\mathbb{Z})\right)$ the spaces of modular forms and cusp forms of weight k respectively.

Moduli space of genus 1 curves

If $f\left(\frac{a \tau+b}{c \tau+d}\right)=f(\tau)$ and $f(\tau)=\sum_{n>-c} a_{n} q^{n}, f$ is called a modular function.

Moduli space of genus 1 curves

If $f\left(\frac{a \tau+b}{c \tau+d}\right)=f(\tau)$ and $f(\tau)=\sum_{n>-c} a_{n} q^{n}, f$ is called a modular function.
The name "modular" comes from the fact that one can define a function on lattices

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \quad \mapsto \quad F(\Lambda):=f\left(\omega_{1} / \omega_{2}\right)
$$

and since $F(\lambda \Lambda)=F(\Lambda), F(\Lambda)$ is an invariant of the complex curve \mathbb{C} / Λ.

Moduli space of genus 1 curves

If $f\left(\frac{a \tau+b}{c \tau+d}\right)=f(\tau)$ and $f(\tau)=\sum_{n>-c} a_{n} q^{n}, f$ is called a modular function.
The name "modular" comes from the fact that one can define a function on lattices

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \quad \mapsto \quad F(\Lambda):=f\left(\omega_{1} / \omega_{2}\right)
$$

and since $F(\lambda \Lambda)=F(\Lambda), F(\Lambda)$ is an invariant of the complex curve \mathbb{C} / Λ.
By analogy, if f is a modular form of weight k, then

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \quad \mapsto \quad F(\Lambda):=\omega_{2}^{-k} f\left(\omega_{1} / \omega_{2}\right)
$$

satisfies $F(\lambda \Lambda)=\lambda^{-k} F(\Lambda)$.

Other groups

One may also consider functions that satisfy $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$ only for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, where Γ is a subgroup of finite index in $\mathrm{SL}_{2}(\mathbb{Z})$.

Other groups

One may also consider functions that satisfy $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$ only for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, where Γ is a subgroup of finite index in $\mathrm{SL}_{2}(\mathbb{Z})$. The most important examples are the following subgroups of "level N ":

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)(\bmod N)\right.\right\}, \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)(\bmod N)\right.\right\}, \\
& \Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod N)\right.\right\} .
\end{aligned}
$$

Other groups

One may also consider functions that satisfy $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$ only for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, where Γ is a subgroup of finite index in $S L_{2}(\mathbb{Z})$. The most important examples are the following subgroups of "level N ":

$$
\begin{aligned}
\Gamma_{0}(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)(\bmod N)\right.\right\}, \\
\Gamma_{1}(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)(\bmod N)\right.\right\}, \\
\Gamma(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod N)\right.\right\} .
\end{aligned}
$$

The condition (ii) and the definition of cusp forms need to be changed appropriately.

Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.

Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.
Fact 1
There exist many different sources of modular forms, often quite dissimilar in nature.

Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.

Fact 1

There exist many different sources of modular forms, often quite dissimilar in nature.

Fact 2
 The spaces of modular forms are finite-dimensional.

Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.

Fact 1

There exist many different sources of modular forms, often quite dissimilar in nature.

Fact 2
 The spaces of modular forms are finite-dimensional.

Because of this one can often prove identities $a_{n}=b_{n}$ between sequences of numbers by observing that their generating series land in the same space of modular forms and then checking finitely many of them.

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
■ explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.

- explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

■ irrationality of $\zeta(3)$ (Apéry)

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
■ explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

- irrationality of $\zeta(3)$ (Apéry)
- construction of non-torsion rational points on elliptic curves over \mathbb{Q} (Gross-Zagier)

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
■ explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

- irrationality of $\zeta(3)$ (Apéry)
- construction of non-torsion rational points on elliptic curves over \mathbb{Q} (Gross-Zagier)

■ algebraic independence of π and e^{π} (Nesterenko)

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
■ explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

- irrationality of $\zeta(3)$ (Apéry)
- construction of non-torsion rational points on elliptic curves over \mathbb{Q} (Gross-Zagier)

■ algebraic independence of π and e^{π} (Nesterenko)

- Fermat's Last Theorem (Wiles)

Modular forms are everywhere!

Modular forms often appear rather unexpectedly.
■ explicit class field theory for imaginary quadratic fields (Kronecker's Jugendtraum)

- irrationality of ζ (3) (Apéry)
- construction of non-torsion rational points on elliptic curves over \mathbb{Q} (Gross-Zagier)

■ algebraic independence of π and e^{π} (Nesterenko)

- Fermat's Last Theorem (Wiles)
- sphere packing problem in 8 dimensions (Viazovska)

Examples: Eisenstein series

For all even $k>2$ the function

$$
G_{k}(\tau):=-\frac{B_{k}}{2 k}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$.

Examples: Eisenstein series

For all even $k>2$ the function

$$
G_{k}(\tau):=-\frac{B_{k}}{2 k}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. Here

$$
\sigma_{s}(n)=\sum_{d \mid n} d^{s}
$$

Examples: Eisenstein series

For all even $k>2$ the function

$$
G_{k}(\tau):=-\frac{B_{k}}{2 k}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. Here

$$
\sigma_{s}(n)=\sum_{d \mid n} d^{s}
$$

The function $G_{2}(\tau)$ is not a modular form, but transforms according to

$$
G_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} G_{2}(\tau)-\frac{c(c \tau+d)}{4 \pi i}
$$

Examples: Eisenstein series

For all even $k>2$ the function

$$
G_{k}(\tau):=-\frac{B_{k}}{2 k}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. Here

$$
\sigma_{s}(n)=\sum_{d \mid n} d^{s}
$$

The function $G_{2}(\tau)$ is not a modular form, but transforms according to

$$
G_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} G_{2}(\tau)-\frac{c(c \tau+d)}{4 \pi i}
$$

It is sometimes more convenient to use a normalization

$$
E_{k}(\tau):=1-\frac{2 k}{B_{k}} \sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

Examples: Eisenstein series

As we will see, the space $M_{8}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is 1-dimensional, and since E_{4}^{2} and E_{8} both belong to it and have the expansion $1+O(q)$, we must have $E_{4}^{2}=E_{8}$.

Examples: Eisenstein series

As we will see, the space $M_{8}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is 1-dimensional, and since E_{4}^{2} and E_{8} both belong to it and have the expansion $1+O(q)$, we must have $E_{4}^{2}=E_{8}$.
This leads to a nontrivial identity

$$
\frac{\sigma_{7}(n)-\sigma_{3}(n)}{120}=\sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)
$$

Examples: Eisenstein series

As we will see, the space $M_{8}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is 1-dimensional, and since E_{4}^{2} and E_{8} both belong to it and have the expansion $1+O(q)$, we must have $E_{4}^{2}=E_{8}$.
This leads to a nontrivial identity

$$
\frac{\sigma_{7}(n)-\sigma_{3}(n)}{120}=\sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)
$$

Simiarly, $E_{4} E_{6}=E_{10}$, and thus

$$
\frac{11 \sigma_{9}(n)-21 \sigma_{5}(n)+10 \sigma_{3}(n)}{5040}=\sum_{m=1}^{n-1} \sigma_{5}(m) \sigma_{3}(n-m)
$$

Examples: eta-quotients

The Dedekind eta-function

$$
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

satisfies

$$
\eta(\tau+1)=e^{\pi i / 12} \eta(\tau), \quad \eta(-1 / \tau)=\sqrt{\tau / i} \eta(\tau)
$$

Examples: eta-quotients

The Dedekind eta-function

$$
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

satisfies

$$
\eta(\tau+1)=e^{\pi i / 12} \eta(\tau), \quad \eta(-1 / \tau)=\sqrt{\tau / i} \eta(\tau)
$$

As a corollary,

$$
\Delta(\tau):=\eta(\tau)^{24}=q-24 q^{2}+252 q^{3}+\cdots-6048 q^{6}+\ldots
$$

is a cusp form of weight 12 for $\mathrm{SL}_{2}(\mathbb{Z})$.

Examples: eta-quotients

There are many other examples of modular forms that can be written as eta quotients:

$$
\begin{gathered}
\frac{\eta^{16}(2 \tau)}{\eta^{8}(\tau)}=q+8 q^{2}+28 q^{3}+64 q^{4}+\cdots \in M_{4}\left(\Gamma_{0}(2)\right) \\
\eta^{4}(\tau) \eta^{4}(5 \tau)=q-4 q^{2}+2 q^{3}+8 q^{4}+\cdots \in S_{4}\left(\Gamma_{0}(5)\right) \\
\eta^{2}(\tau) \eta^{2}(11 \tau)=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+\cdots \in S_{2}\left(\Gamma_{0}(11)\right)
\end{gathered}
$$

Examples: eta-quotients

There are many other examples of modular forms that can be written as eta quotients:

$$
\begin{gathered}
\frac{\eta^{16}(2 \tau)}{\eta^{8}(\tau)}=q+8 q^{2}+28 q^{3}+64 q^{4}+\cdots \in M_{4}\left(\Gamma_{0}(2)\right) \\
\eta^{4}(\tau) \eta^{4}(5 \tau)=q-4 q^{2}+2 q^{3}+8 q^{4}+\cdots \in S_{4}\left(\Gamma_{0}(5)\right) \\
\eta^{2}(\tau) \eta^{2}(11 \tau)=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+\cdots \in S_{2}\left(\Gamma_{0}(11)\right)
\end{gathered}
$$

One can show that $M_{4}\left(\Gamma_{0}(2)\right)$ is 2-dimensional, and thus

$$
\frac{\eta^{16}(2 \tau)}{\eta^{8}(\tau)}=G_{4}(\tau)-G_{4}(2 \tau)
$$

Examples: theta series

Let $\theta(\tau)$ be the Jacobi theta series

$$
\theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q+2 q^{4}+\ldots
$$

One can show that $\theta^{4}(\tau)$ is a modular form of weight 2 for $\Gamma_{0}(4)$, and since $M_{2}\left(\Gamma_{0}(4)\right)$ is spanned by $G_{2}(\tau)-2 G_{2}(2 \tau)$ and $G_{2}(\tau)-4 G_{2}(4 \tau)$, one gets

$$
\theta^{4}(\tau)=8\left(G_{2}(\tau)-4 G_{2}(4 \tau)\right)
$$

From this one obtains Jacobi's identity

$$
r_{4}(n)=8 \sum_{4 \nmid d \mid n,} d, \quad n \geq 1
$$

This also implies Lagrange's four-square theorem.

Examples: theta series

If $\Lambda \subset \mathbb{R}^{d}$ is an even unimodular lattice, then one can show that

$$
\Theta_{\Lambda}(\tau)=\sum_{v \in \Lambda} q^{|v|^{2} / 2}
$$

is a modular form of weight $d / 2$ for $\mathrm{SL}_{2}(\mathbb{Z})$.

Examples: theta series

If $\Lambda \subset \mathbb{R}^{d}$ is an even unimodular lattice, then one can show that

$$
\Theta_{\Lambda}(\tau)=\sum_{v \in \Lambda} q^{|v|^{2} / 2}
$$

is a modular form of weight $d / 2$ for $\mathrm{SL}_{2}(\mathbb{Z})$.
In particular, since the E_{8}-lattice

$$
\Lambda_{8}=\left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{Z}^{8} \cup(1 / 2+\mathbb{Z})^{8} \mid x_{1}+\cdots+x_{8}=0(\bmod 2)\right\}
$$

is even and unimodular, we have $\Theta_{\Lambda_{8}}(\tau) \in M_{4}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and thus one has

$$
\Theta_{\Lambda_{8}}(\tau)=E_{4}(\tau)
$$

Examples: Euler's pentagonal number theorem

The first example of a nontrivial identity between modular forms was observed by Euler:

$$
\prod_{n \geq 1}\left(1-q^{n}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\left(3 n^{2}-n\right) / 2}
$$

Examples: Euler's pentagonal number theorem

The first example of a nontrivial identity between modular forms was observed by Euler:

$$
\prod_{n \geq 1}\left(1-q^{n}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\left(3 n^{2}-n\right) / 2}
$$

To see why this an identity between modular forms, one needs to "complete squares"

$$
\frac{3 n^{2}-n}{2}=\frac{(6 n-1)^{2}}{24}-\frac{1}{24}
$$

to get an equivalent formulation

$$
q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)=\sum_{n \in \mathbb{Z}} \chi_{12}(n) q^{n^{2} / 24}
$$

where $\chi_{12}: \mathbb{Z} \rightarrow\{-1,0,1\}$ is a 12 -periodic function defined by

$$
\chi_{12}(\pm 1)=1, \quad \chi_{12}(\pm 5)=-1
$$

Examples: arithmetic sources

A much deeper source of modular forms is arithmetic geometry. In these examples the coefficients $a_{p^{k}}$ are obtained by counting the solutions of systems of polynomial equations in finite fields $\mathbb{F}_{p^{k}}$.
Here is an explicit example. If we denote by a_{n} the n-th Fourier coefficient of

$$
f(\tau)=\eta^{2}(\tau) \eta^{2}(11 \tau)=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+\ldots
$$

then

$$
a_{p}=p-\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}+y=x^{3}-x^{2}\right\}
$$

Examples: arithmetic sources

A much deeper source of modular forms is arithmetic geometry. In these examples the coefficients $a_{p^{k}}$ are obtained by counting the solutions of systems of polynomial equations in finite fields $\mathbb{F}_{p^{k}}$.
Here is an explicit example. If we denote by a_{n} the n-th Fourier coefficient of

$$
f(\tau)=\eta^{2}(\tau) \eta^{2}(11 \tau)=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+\ldots
$$

then

$$
a_{p}=p-\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}+y=x^{3}-x^{2}\right\}
$$

This is a special case of the modularity theorem for elliptic curves (in this case for a curve of conductor 11).

Examples: toric modular forms

There is a construction of modular forms associated to toric varieties due to Borisov and Gunnels. The simplest nontrivial example is

$$
T_{k}(\tau)=\sum_{n_{1}+\cdots+n_{2 k+1}=0} \frac{1}{\left(1+q^{n_{1}}\right) \ldots\left(1+q^{n_{2 k+1}}\right)} \in M_{2 k}\left(\Gamma_{0}(2)\right)
$$

Examples: toric modular forms

There is a construction of modular forms associated to toric varieties due to Borisov and Gunnels. The simplest nontrivial example is

$$
T_{k}(\tau)=\sum_{n_{1}+\cdots+n_{2 k+1}=0} \frac{1}{\left(1+q^{n_{1}}\right) \ldots\left(1+q^{n_{2 k+1}}\right)} \in M_{2 k}\left(\Gamma_{0}(2)\right)
$$

In particular, since $M_{2}\left(\Gamma_{0}(2)\right)$ is 1-dimensional,

$$
\sum_{a+b+c=0} \frac{8}{\left(1+q^{a}\right)\left(1+q^{b}\right)\left(1+q^{c}\right)}=E_{2}(\tau)-2 E_{2}(2 \tau)
$$

Gauss's discovery of modular forms

Gauss was led to consider theta functions when he was studying the arithmetic-geometric mean $M(a, b)$. Let $a \geq b$ be two positive numbers, and define recursively $a_{0}=a, b_{0}=b$, and

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad n \geq 0
$$

The limit of a_{n} (or b_{n}) as $n \rightarrow \infty$ is the arithmetic-geometric mean $M(a, b)$. Sometime around 1794 he discovered the following remarkable fact. If we denote

$$
P(q)=\sum_{n \in \mathbb{Z}} q^{n^{2}}, \quad Q(q)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}
$$

then

$$
M\left(P^{2}(q), Q^{2}(q)\right)=1, \quad|q|<1
$$

Gauss's discovery of modular forms

Gauss's proof is based on the following identities

$$
\begin{aligned}
& P^{2}\left(q^{2}\right)=\frac{P^{2}(q)+Q^{2}(Q)}{2} \\
& Q^{2}\left(q^{2}\right)=P(q) Q(q)
\end{aligned}
$$

The first identity is not hard to prove directly, but for the second one essentially needs

$$
P(q)=\prod_{n \geq 1}\left(1-q^{2 n}\right)\left(1+q^{2 n-1}\right)^{2}, \quad Q(q)=\prod_{n \geq 1}\left(1-q^{2 n}\right)\left(1-q^{2 n-1}\right)^{2}
$$

which is equivalent to showing that

$$
P(q)=\frac{\eta^{5}(2 \tau)}{\eta^{2}(\tau) \eta^{2}(4 \tau)}, \quad Q(q)=\frac{\eta^{2}(\tau)}{\eta(2 \tau)}
$$

