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The notion of modular forms

Let H = {τ ∈ C : Im τ > 0} be the complex upper half-plane.

A modular form (of weight k) on SL2(Z) is an analytic function f : H→ C satisfying

f
( aτ + b

cτ + d

)
= (cτ + d)k f (τ) ,

(
a b
c d

)
∈ SL2(Z) (i)

that has a convergent Fourier expansion of the form

f (τ) =
∑
n≥0

anq
n , q := e2πiτ (ii)

If a0 = 0, f is called a cusp form. We denote by Mk(SL2(Z)) and Sk(SL2(Z)) the
spaces of modular forms and cusp forms of weight k respectively.
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Moduli space of genus 1 curves

If f ( aτ+b
cτ+d ) = f (τ) and f (τ) =

∑
n>−c anq

n, f is called a modular function.

The name “modular” comes from the fact that one can define a function on lattices

Λ = Zω1 + Zω2 7→ F (Λ) := f (ω1/ω2) ,

and since F (λΛ) = F (Λ), F (Λ) is an invariant of the complex curve C/Λ.

By analogy, if f is a modular form of weight k, then

Λ = Zω1 + Zω2 7→ F (Λ) := ω−k2 f (ω1/ω2) ,

satisfies F (λΛ) = λ−kF (Λ).
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Other groups

One may also consider functions that satisfy f ( aτ+b
cτ+d ) = (cτ + d)k f (τ) only for(

a b
c d

)
∈ Γ, where Γ is a subgroup of finite index in SL2(Z).

The most important

examples are the following subgroups of “level N”:

Γ0(N) =
{(a b

c d

)
∈ SL2(Z)

∣∣ (a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =
{(a b

c d

)
∈ SL2(Z)

∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

Γ(N) =
{(a b

c d

)
∈ SL2(Z)

∣∣ (a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

The condition (ii) and the definition of cusp forms need to be changed appropriately.
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Why are modular forms important?

From the above definition it may not be clear why modular forms are natural objects.

Fact 1

There exist many different sources of modular forms, often quite dissimilar in nature.

Fact 2

The spaces of modular forms are finite-dimensional.

Because of this one can often prove identities an = bn between sequences of numbers
by observing that their generating series land in the same space of modular forms and
then checking finitely many of them.
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Modular forms are everywhere!

Modular forms often appear rather unexpectedly.

explicit class field theory for imaginary quadratic fields (Kronecker’s Jugendtraum)

irrationality of ζ(3) (Apéry)

construction of non-torsion rational points on elliptic curves over Q (Gross-Zagier)

algebraic independence of π and eπ (Nesterenko)

Fermat’s Last Theorem (Wiles)

sphere packing problem in 8 dimensions (Viazovska)
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Examples: Eisenstein series

For all even k > 2 the function

Gk(τ) := −Bk

2k
+
∑
n≥1

σk−1(n)qn

is a modular form of weight k for SL2(Z).

Here

σs(n) =
∑
d |n

d s

The function G2(τ) is not a modular form, but transforms according to

G2

( aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− c(cτ + d)

4πi

It is sometimes more convenient to use a normalization

Ek(τ) := 1− 2k

Bk

∑
n≥1

σk−1(n)qn
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Examples: Eisenstein series

As we will see, the space M8(SL2(Z)) is 1-dimensional, and since E 2
4 and E8 both

belong to it and have the expansion 1 + O(q), we must have E 2
4 = E8.

This leads to a nontrivial identity

σ7(n)− σ3(n)

120
=

n−1∑
m=1

σ3(m)σ3(n −m)

Simiarly, E4E6 = E10, and thus

11σ9(n)− 21σ5(n) + 10σ3(n)

5040
=

n−1∑
m=1

σ5(m)σ3(n −m)
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Examples: eta-quotients

The Dedekind eta-function

η(τ) = q
1

24

∞∏
n=1

(1− qn)

satisfies
η(τ + 1) = eπi/12η(τ) , η(−1/τ) =

√
τ/i η(τ)

As a corollary,

∆(τ) := η(τ)24 = q − 24q2 + 252q3 + · · · − 6048q6 + . . .

is a cusp form of weight 12 for SL2(Z).
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Examples: eta-quotients

There are many other examples of modular forms that can be written as eta quotients:

η16(2τ)

η8(τ)
= q + 8q2 + 28q3 + 64q4 + · · · ∈ M4(Γ0(2))

η4(τ)η4(5τ) = q − 4q2 + 2q3 + 8q4 + · · · ∈ S4(Γ0(5))

η2(τ)η2(11τ) = q − 2q2 − q3 + 2q4 + q5 + · · · ∈ S2(Γ0(11))

One can show that M4(Γ0(2)) is 2-dimensional, and thus

η16(2τ)

η8(τ)
= G4(τ)− G4(2τ)
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Examples: theta series

Let θ(τ) be the Jacobi theta series

θ(τ) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + . . . .

One can show that θ4(τ) is a modular form of weight 2 for Γ0(4), and since M2(Γ0(4))
is spanned by G2(τ)− 2G2(2τ) and G2(τ)− 4G2(4τ), one gets

θ4(τ) = 8(G2(τ)− 4G2(4τ))

From this one obtains Jacobi’s identity

r4(n) = 8
∑

4-d |n,

d , n ≥ 1 .

This also implies Lagrange’s four-square theorem.

11 / 17



Examples: theta series

If Λ ⊂ Rd is an even unimodular lattice, then one can show that

ΘΛ(τ) =
∑
v∈Λ

q|v |
2/2

is a modular form of weight d/2 for SL2(Z).

In particular, since the E8-lattice

Λ8 = {(x1, . . . , x8) ∈ Z8 ∪ (1/2 + Z)8 | x1 + · · ·+ x8 = 0 (mod 2)}

is even and unimodular, we have ΘΛ8(τ) ∈ M4(SL2(Z)), and thus one has

ΘΛ8(τ) = E4(τ)

12 / 17
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Examples: Euler’s pentagonal number theorem

The first example of a nontrivial identity between modular forms was observed by Euler:∏
n≥1

(1− qn) =
∑
n∈Z

(−1)nq(3n2−n)/2 .

To see why this an identity between modular forms, one needs to “complete squares”

3n2 − n

2
=

(6n − 1)2

24
− 1

24
,

to get an equivalent formulation

q1/24
∏
n≥1

(1− qn) =
∑
n∈Z

χ12(n)qn
2/24 ,

where χ12 : Z→ {−1, 0, 1} is a 12-periodic function defined by

χ12(±1) = 1 , χ12(±5) = −1 .
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Examples: arithmetic sources

A much deeper source of modular forms is arithmetic geometry. In these examples the
coefficients apk are obtained by counting the solutions of systems of polynomial
equations in finite fields Fpk .
Here is an explicit example. If we denote by an the n-th Fourier coefficient of

f (τ) = η2(τ)η2(11τ) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + . . . ,

then
ap = p −#{(x , y) ∈ F2

p : y2 + y = x3 − x2} .

This is a special case of the modularity theorem for elliptic curves (in this case for a
curve of conductor 11).
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Examples: toric modular forms

There is a construction of modular forms associated to toric varieties due to Borisov
and Gunnels. The simplest nontrivial example is

Tk(τ) =
∑

n1+···+n2k+1=0

1

(1 + qn1) . . . (1 + qn2k+1)
∈ M2k(Γ0(2))

In particular, since M2(Γ0(2)) is 1-dimensional,∑
a+b+c=0

8

(1 + qa)(1 + qb)(1 + qc)
= E2(τ)− 2E2(2τ)
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Gauss’s discovery of modular forms

Gauss was led to consider theta functions when he was studying the
arithmetic-geometric mean M(a, b). Let a ≥ b be two positive numbers, and define
recursively a0 = a, b0 = b, and

an+1 =
an + bn

2
, bn+1 =

√
anbn , n ≥ 0

The limit of an (or bn) as n→∞ is the arithmetic-geometric mean M(a, b).
Sometime around 1794 he discovered the following remarkable fact. If we denote

P(q) =
∑
n∈Z

qn
2
, Q(q) =

∑
n∈Z

(−1)nqn
2
,

then
M(P2(q),Q2(q)) = 1 , |q| < 1 .
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Gauss’s discovery of modular forms

Gauss’s proof is based on the following identities

P2(q2) =
P2(q) + Q2(Q)

2
,

Q2(q2) = P(q)Q(q) .

The first identity is not hard to prove directly, but for the second one essentially needs

P(q) =
∏
n≥1

(1− q2n)(1 + q2n−1)2 , Q(q) =
∏
n≥1

(1− q2n)(1− q2n−1)2

which is equivalent to showing that

P(q) =
η5(2τ)

η2(τ)η2(4τ)
, Q(q) =

η2(τ)

η(2τ)
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