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— Problem Sheet 3: Application to lattice sphere coverings —

Problem 3.1 Define the Cayley-Menger determinant of n points x1, . . . , xn, where
the pairwise distances d(xi, xj) = ‖xi − xj‖ are given, by
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a) The Cayley-Menger determinant of n+ 2 points in Rn vanishes.

b) Let L = conv{v0, . . . , vn} be an n-dimensional simplex. Then the circumsphe-
re of L has the squared radius
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Problem 3.2 Consider Q[x] = n
∑n
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2
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i 6=j xixj . Show that Q is locally optimal
for the lattice sphere covering problem.


