Online summer school on optimization, interpolation and modular forms
— Problem Sheet 3: Application to lattice sphere coverings -

Problem 3.1 Define the Cayley-Menger determinant of n points x_{1}, \ldots, x_{n}, where the pairwise distances $d\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|$ are given, by

$$
\mathrm{CM}\left(x_{1}, \ldots, x_{n}\right)=\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & d\left(x_{1}, x_{1}\right)^{2} & \ldots & d\left(x_{1}, x_{n}\right)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & d\left(x_{n}, x_{1}\right)^{2} & \ldots & d\left(x_{n}, x_{n}\right)^{2}
\end{array}\right|
$$

a) The Cayley-Menger determinant of $n+2$ points in \mathbb{R}^{n} vanishes.
b) Let $L=\operatorname{conv}\left\{v_{0}, \ldots, v_{n}\right\}$ be an n-dimensional simplex. Then the circumsphere of L has the squared radius

$$
R^{2}=-\frac{1}{2} \cdot \frac{\operatorname{det}\left(d\left(v_{i}, v_{j}\right)^{2}\right)_{0 \leq i, j \leq n}}{\operatorname{CM}\left(v_{0}, \ldots, v_{n}\right)}
$$

Problem 3.2 Consider $Q[x]=n \sum_{i=1}^{n} x_{i}^{2}-\sum_{i \neq j} x_{i} x_{j}$. Show that Q is locally optimal for the lattice sphere covering problem.

