Online summer school on optimization, interpolation and modular forms
— Problem Sheet 2: Voronoi's lattice reduction theory -

Problem 2.1 Given $Q \in \mathbb{S}^{n}$ and $V=\left\{v_{1}, \ldots, v_{n+1}\right\}$ be affinely independent. For $w \in \mathbb{R}^{n}$ there exist $\alpha_{1}, \ldots, \alpha_{n+1}$ so that

$$
w=\sum_{i=1}^{n+1} \alpha_{i} v_{i}, \quad \sum_{i=1}^{n+1} \alpha_{i}=1
$$

Define

$$
N_{V, w}=w w^{\top}-\sum_{i=1}^{n+1} \alpha_{i} v_{i} v_{i}^{\top}
$$

Let $c \in \mathbb{R}^{n}$ and $r>0$ be such that $Q\left[c-v_{i}\right]=r^{2}$ for all $i=1, \ldots, n+1$.
Show that

$$
\left\langle Q, N_{V, w}\right\rangle=Q[w-c]-r^{2}
$$

Think about how this could help to show that $\Delta(\operatorname{Del}(Q))$ is an open polyhedral cone.

Problem 2.2 Consider $Q[x]=n \sum_{i=1}^{n} x_{i}^{2}-\sum_{i \neq j} x_{i} x_{j}$. For a permutation $\pi \in S_{n+1}$ define the n-dimensional simplex

$$
L_{\pi}=\operatorname{conv}\left\{\sum_{i=1}^{k} e_{\pi(i)}: k=1, \ldots, n+1\right\}
$$

where $e_{n+1}=-\left(e_{1}+\cdots+e_{n}\right)$.
a) Then, $L_{\pi} \in \operatorname{Del}(Q)$ holds for any $\pi \in S_{n+1}$.
b) What is $\Delta(\operatorname{Del}(Q))$?

Problem 2.3 Let $V=\left\{v_{1}, \ldots, v_{n+2}\right\} \subseteq \mathbb{R}^{n}$ be points which affinely span \mathbb{R}^{n}. Show that the polytope $P=$ conv V has exactly two different triangulations (i.e. it can be decomposed into simplices where all vertices lie in V).

