MODULAR FORMS AND THEIR APPLICATIONS: EXERCISES 2

Exercise 1. For $k \in\{4,6,8,10,14\}$ define $f_{k}=E_{k}$ and let $f_{0}=1$. Prove that if $k=12 l+k_{0}$ for $k_{0} \in\{0,4,6,8,10,14\}$ and $l \geq 0$, then

$$
M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\Delta^{l}(z) f_{k_{0}}(z) \mathbb{C}[j(z)]_{\leq l}
$$

where $j(z)=E_{4}^{3}(z) / \Delta(z)$ and $\mathbb{C}[X]_{\leq k}$ denotes the space of polynomials of degree $\leq k$ in X.
Exercise 2. Verify, using the transformation $\theta(-1 / 4 \tau)=\sqrt{2 \tau / i} \theta(\tau)$, that $\theta^{4} \in M_{k}\left(\Gamma_{0}(4)\right)$. One may use the fact that $\Gamma_{0}(4)$ is generated by T and $\left(\begin{array}{cc}1 \\ -4 & 0 \\ \hline\end{array}\right)$.

Exercise 3. Let $r_{k}(n)$ be the number of representations of n as a sum of squares of k integers. Show that the sequence $\left\{\frac{r_{k}(n)}{2 k}\right\}_{n \geq 1}$ is multiplicative if and only if $k \in\{1,2,4,8\}$. In each of these cases compute the corresponding Dirichlet series

$$
L_{k}(s)=\frac{1}{2 k} \sum_{n \geq 1} \frac{r_{k}(n)}{n^{s}}
$$

(For $k=2$ one may use the identity $r_{2}(n)=4 \sum_{2 \nmid d \mid n}(-1)^{(d-1) / 2}$.)

