MODULAR FORMS AND THEIR APPLICATIONS: EXERCISES 1

Exercise 1. (i) Show that

$$
\gamma \tau-\gamma z=\frac{\tau-z}{(c \tau+d)(c z+d)}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}) .
$$

(ii) Show that

$$
\operatorname{Im} \gamma \tau=\frac{\operatorname{Im} \tau}{|c \tau+d|^{2}}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})
$$

Exercise 2. Show that the group $\mathrm{PSL}_{2}(\mathbb{Z})$ is generated by S and T with $S^{2}=(S T)^{3}=1$. (it is not necessary to prove that these are the only relations).
Exercise 3. Show that any elliptic point for $\operatorname{PSL}_{2}(\mathbb{Z})$ is equivalent to either i or ρ.
Exercise 4. Prove Lipschitz's formula

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{l \geq 1} l^{k-1} e^{2 \pi i l z}, \quad z \in \mathbb{H}, \quad k \geq 2 .
$$

Exercise 5. In this exercise we give an alternative proof of finite-dimensionality of $M_{k}\left(\Gamma_{1}\right)$:
(i) Let f be a cusp form of weight k. Show that

$$
\varphi(z)=|f(z)| y^{k / 2}
$$

is $\mathrm{PSL}_{2}(\mathbb{Z})$-invariant and bounded.
(ii) Define the following two norms on $S_{k}\left(\Gamma_{1}\right)$:

$$
\|f\|_{2}^{2}:=\int_{\mathcal{F}}|f(z)|^{2} y^{k} d \mu(z)
$$

where $d \mu(z)=y^{-2} d x d y$ is the hyperbolic area measure and

$$
\|f\|_{\infty}:=\sup _{\mathcal{F}}|f(z)| y^{k / 2} .
$$

Show that there exists a constant C_{k} that depends only on k, such that

$$
\|f\|_{\infty} \leq C_{k}\|f\|_{2}, \quad f \in S_{k}\left(\Gamma_{1}\right)
$$

(iii) Let f_{1}, \ldots, f_{m} be an orthonormal system with respect to the inner product associated to $\|\cdot\|_{2}$. Using (a) show that $m \leq C_{k}^{2} \operatorname{vol}(\mathcal{F})$.
(Hint: in (a) use the invariance of the measure μ and consider an integral of $|f(z)|^{2} y^{k} d \mu(z)$ over a strip $[-1 / 2,1 / 2] \times[\delta, \infty)$ for some $\delta<\sqrt{3} / 2$.)

