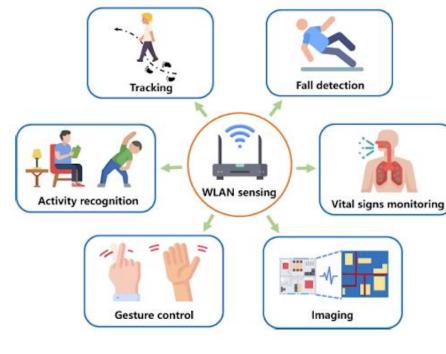
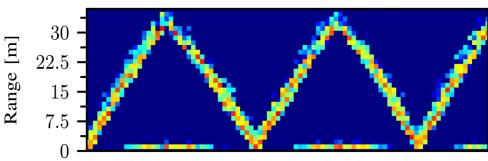
TCL Student Projects Spring 2025

VLSI / Digital Design Related Projects

Chip for Wi-Fi sensing

Motivation


- Current methods for activity detection, localization, and vitalsign estimation (breathing) require the use of cameras (intrusive) or wearables (restrictive)
- Wireless-sensing systems can provide contactless, 24/7
 detection supporting applications like home intrusion detection,
 tracking, activity recognition, vital-signs monitoring etc.


Objective

- Transition our current Wi-Fi sensing system (FPGA) to an ASIC (semi-custom)
- Optimize for area, power and speed

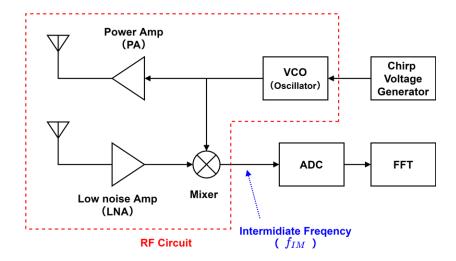
Type of work:

- Circuit design and optimization using Cadence tools and a standard-cell based flow
- Additional exploration with VHDL/Verilog

Andreas Kristensen: andreas.kristensen@epfl.ch
Andreas Burg: andreas.burg@epfl.ch

Drone Detection Radar Design

Motivation

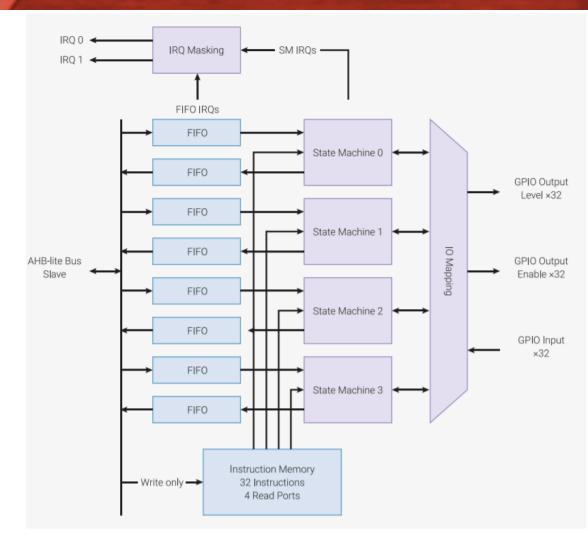

- With the increasing use of drones in various sectors (e.g., delivery, surveillance), there is a growing need to detect unauthorized drones entering restricted airspaces
- A radar system can provide early detection and tracking capabilities, allowing security teams to respond quickly to potential threats such as drone intrusions into airports, government buildings, or other sensitive locations

Objective

- Design an RF circuit on PCB to detect the speed and position of a drone
- Model the behavior of the RF system for simulation and analysis
- Digital processing will be performed on a Software Defined Radio (SDR) for real-time data acquisition and signal processing

Type of work:

- RF Circuit Design: PCB design (KiCad) and tests.
- Signal Processing: Work with Python for system modeling and SDR for digital processing


AI Generated radar PCB

Ludovic Blanc: ludovic.blanc@epfl.ch
Taras Pavliv: taras.pavliv@hotmail.com

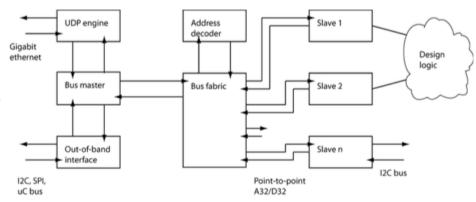
Open Reimplementation of the RP2040 PIO (Master Thesis)

- IO interface of Raspberry Pi RP2040
 - Simple state machines with 9 16-bit instructions
 - Highly Specialized for real time IO implementation of protocol like I2C, SPI, CAN, etc.
- Expected Outcome
 - RTL code reimplementing the functionality
- Tasks / Objectives:
 - Read the specifications, implement in RTL, and integrate into the HEEP System
- Type of work:
 - RTL implementation, FPGA prototyping
- Pre-requisites
 - Knowledge in an HDL (VHDL/Verilog)

Ludovic Blanc: ludovic.blanc@epfl.ch Christoph Müller: christoph.mueller@epfl.ch

Integrating High-Speed Test Infrastructure into XHeep (Semester Project)

Motivation


- Methods to interact with custom ASICs (with no onboard CPU) relies on custom slow interfaces:
 - Reliable but outdated, with low bandwidth and poor compatibility with modern protocols
- An Ethernet-based solution, combining IPbus and Verilog-Ethernet, has been implemented at TCL for high-speed testing of custom ASICs

What is IPbus?

- An open-source protocol developed by CERN for managing memory-mapped resources in hardware
- Provides a packet-based communication system with built-in reliability features
- High-speed operation: Optimized for efficient memory access
- Complete support for the OSI stack from physical to application layer (with no CPU)
- Comprehensive software tools: C firmware and Python wrappers for testing and control
- Example Use: **Python** → **Ethernet** → **AXIbus** for direct communication with ASICs

Objective

- Integrate the IPbus-based high-speed test infrastructure into the XHeep project
- Prerequisits:
 - Knowledge in VHDL and in SV/Verilog
 - Basics in python

Communication

Application

Transport

Interconnection

Network

MAC

Distance

Physical

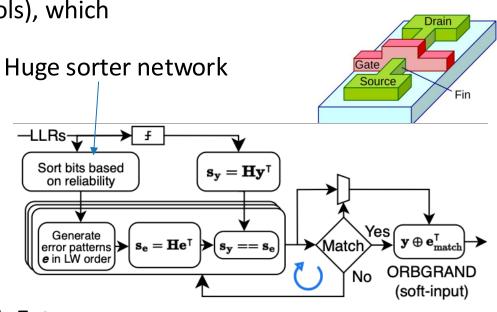
Ludovic Blanc: ludovic.blanc@epfl.ch
Wenging Song: wenging.song@epfl.ch

Christoph Müller: christoph Müller: christoph.mueller@epfl.ch

Analog High-Performance Sorters for Telecommunications

Motivation

- In telecommunications (5G/6G/800Gbps Fiber), algorithms must operate at unprecedented speeds.
- A critical challenge: sorting large sets of elements to find the U smallest elements, crucial for communication systems
- Current approaches rely on semi-custom designs (HDL, EDA tools), which often fail to achieve peak performance and minimum power consumption.
 Huge sorte


Tasks/Objectives:

- Evaluate architectural alternatives in a mixed-signal way
- Optimize for area, power, and speed
- Compare against purely digital implementations

Type of work:

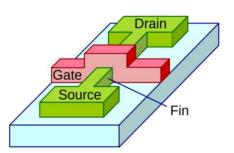
- Circuit design and optimization using Cadence tools in 16nm FinFet
- Additional exploration with HDL and Python for modeling and validation

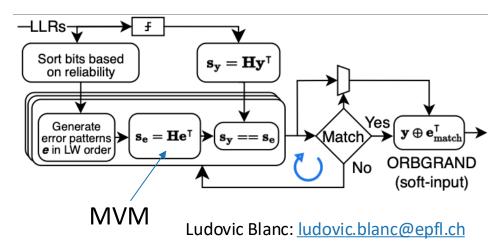
Ludovic Blanc: ludovic.blanc@epfl.ch
Yuqi Wang: yuqi.wang@epfl.ch

Efficient MVM for Syndrome Computation in Decoders

Motivation

- Matrix-vector multiplication (MVM) is emerging as a bottleneck in decoder implementations for modern communication systems
- Current implementations use standard-cell designs, but a fullcustom approach could bring significant improvements
- Inspiration comes from AI accelerators, particularly binary neural networks, which use custom arrays for efficient computation
- Unlike Al accelerators, our application:
 - Requires only **GF(2)** (=modulo 2) summation (no multi-bit analog outputs or reprogrammable weights)
 - Hardcoded weights, enabling a simpler, more efficient design


Tasks/Objective

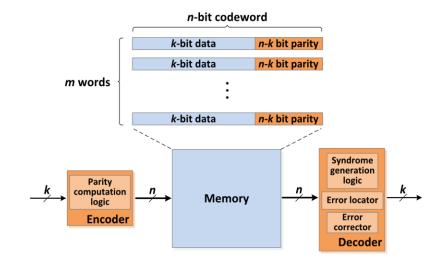

- Design a Full-Custom MVM accelerator in 16nm FinFet
- Compare the proposed design with standard-cell implementations in terms of efficiency and performance

Type of work

- Use Cadence tools for transistor-level circuit design
- Python scripts to automatize the layout generation
- HDL model of the MVM

Multi-Bit Error Correction Code (ECC) for Gain-Cell eDRAM

Background


- Embedded DRAMs are much denser than SRAMs, but also easy to be affected by the retention time variation
- => Error correction codes for mitigating refresh-related failures

Tasks/Objectives:

- Explore how to achieve better tradeoff between parity bits storage overhead, latency, and system power
- Design, verify and implement the chosen multi-bit ECC
- Type of work: Digital circuit design & ASIC implementation

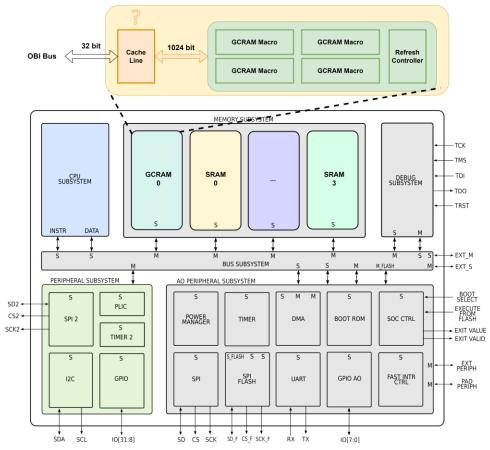
Prerequisites:

- VHDL/Verilog
- Python/C
- Basic knowledge/interest of ECC and linear algebra is preferred

 Contact: Wenqing Song <u>wenqing.song@epfl.ch</u>

 Yifei Shen

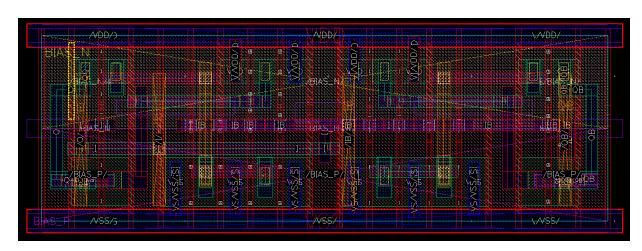
yifei.shen@epfl.ch



Optimize Gain-Cell eDRAM Performance on X-Heep Platform

Background

- GC-eDRAM has a larger line size (1024-bit) compared to data bus width (32-bit), read-modify-write and refresh operation increases memory access time
- => Add one or more cache lines as a buffer zone
- Tasks/Objectives:
 - Familiar with SoC architecture and be able to run benchmarks
 - Optimize the cache line structure to improve the performance
- Type of work: Software & hardware co-optimization
- Prerequisites:
 - VHDL/Verilog
 - o C/Python
 - Basic knowledge of System on Chip (SoC) is preferred, like cache, system bus


Contact: Wenqing Song wenqing.song@epfl.ch

Ultra-low power standard-cells library optimization for AO systems

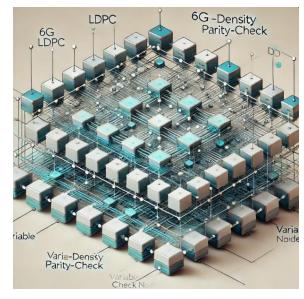
- Background
 - Always-on systems operate at reduced frequency (kHz range) and are dominated by leakage power consumption
 - Conventional CMOS are highly power hungry + require high design effort to lower their consumption (voltage scaling, clock-gating, reversed body biasing)
- Tasks/Objectives:
 - Optimize, Design and characterize a full-custom differential standard-cell library (DPTLSL)
 based on preliminary works for improved performance (robustness/leakage)
 - Comparison with a standard CMOS library
- Prerequisites:
 - Cadence Virtuoso (schematic/layout)
 - Monte Carlo/spice simulations
 - Python
 - Teamwork and git

Contact: Clement Chone: <u>clement.chone@epfl.ch</u>

Design of A Matrix with Multiple Sizes and Its Decoder Implementation

Motivation

- Low-density parity-check (LDPC) are a standard in 5G-NR and hold significant promise for 6G applications
- Length flexibility is necessary to match the varying wireless channel
- An efficient decoder is expected to support multiple sizes flexibly


Tasks/Objective

- Given a base matrix, design a matrix with different lifting sizes (a small size should be nested in a large one)
- Verify the designed matrix in a given configurable LDPC ASIC decoder

Type of work

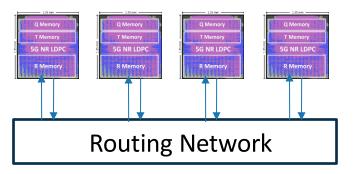
- Matlab or C++ to analyze the matrix performance
- VHDL/Verilog to test the designed matrix
- Basic knowledge of layout design

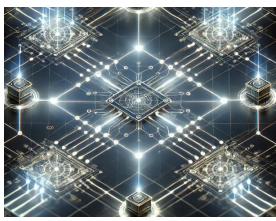
GPT Generated 6G LDPC Decoder

Contact: Yuqing REN: <u>yuqing.ren@epfl.ch</u>

Routing Design for Data Coupling in Decoders

Motivation


- Multi-core is an efficient architecture to improve T/P in wireless
- It also provides a chance to design a global coupling (GC) among each core to enhance the LDPC error-rate performance
- A flexible routing that supports coupling in such a design is important


Tasks/Objective

- Simplify the routing design in the perspective of coding theory
- Implement the designed flexible routing in ASIC

Type of work

- Matlab or C++ to analyze the routing performance
- VHDL/Verilog to test the designed matrix
- Basic knowledge of layout design

GPT Generated Routing Network in a multi-core design

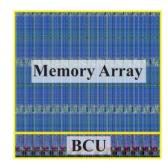
Contact: Yuqing REN: <u>yuqing.ren@epfl.ch</u>
 Wenqing Song: <u>wenqing.song@epfl.ch</u>

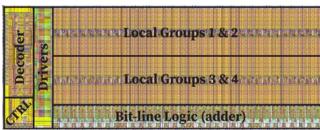
Elaboration of an In-Memory Computing Memory Compiler (Master Thesis)

Motivation

- In-memory computing shows promising gains for edge AI architectures
- Designing memories is a complex task
- Automating the generation of arbitrary memory sizes can enable huge gains

Tasks/Objective


- Design a IMC memory compiler in 65nm technology using open-source tools
 - port the flow for high density SRAM bitcells
- End goal: from memory size and config, generate gds, lef, lib, spice files
- Bonus: porting the flow for an open-source technology node and publication


Type of work

- Physical design, simulation, characterization, verification
- Automation with scripts

Requirements

- Excellent understanding of Digital and full custom flows
- Programming skills : Python, TCL, Spice, HDL
- Comfortable with scripting and versioning tools (git)

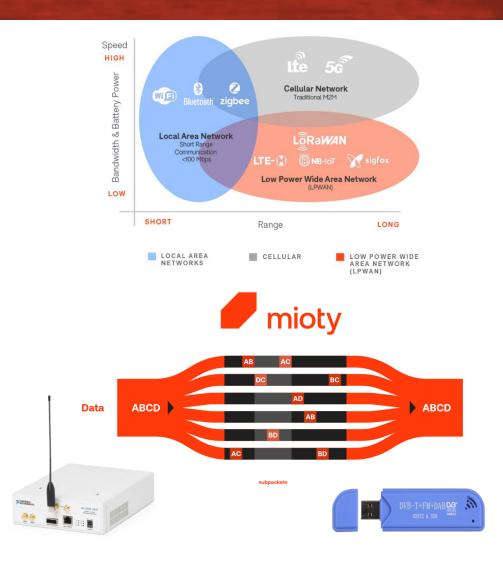
Example of IMC memory macros manually designed

- Contact: Alexandre Levisse (<u>alexandre.levisse@epfl.ch</u>)
 - Giovanni Ansaloni (giovanni.ansaloni@epfl.ch)

Telecommunications Related Projects

Mioty Implementation

Topic


- Mioty is a recent standard for low-power wide-area networks (LPWAN)
- Although the specification is open-source, there currently is no implementation for software defined radio available
- Previous student projects led to a first basic implementation

Tasks/Objectives:

- Improve synchronization of current implementation to achieve real-world communications
- Build a transceiver compatible with commercial devices

Type of work:

- Coding (C++ and python)
- Measurement of real transmissions
- Prerequisits: C++, basics of wireless communications

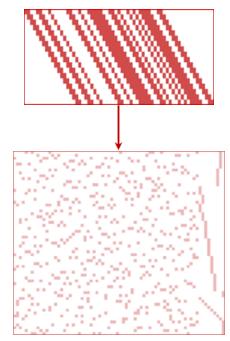
• Contact: <u>joachim.tapparel@epfl.ch</u>

Cellular Sensing: Traffic Safety Alert

- Background
 - Pedestrians distracted by phones are at risk on roads.
 - Use cellular sensing to alert pedestrians of fastapproaching vehicles.
- Tasks/Objectives:
 - Collect, extract and process real-time CSI data from cellular signals
 - Identify patterns indicating vehicle speed
 - Classify traffic as safe or dangerous using CSI data
- Type of work:
 - Data collection, Signal processing, Algorithm design
- Prerequisits: Python/C++, basics of wireless communications

Sitian Li: sitian.li@epfl.ch

Improved Belief Propagation Decoding for Short Codes


Topic

- Belief propagation (BP) algorithm is widely used in channel coding, signal processing, and artificial intelligence
- Though BP decoding is successful for long codes, direct BP decoding has very poor performance for short codes
- Recently, we found that BP decoding for short codes can be significantly improved by sparsifying the parity-check matrix, which will be a promising decoding solution to 6G uRLLC scenarios

Tasks/Objectives:

- Improve the quality of the transformed sparse matrix for a specific code with the help of machine learning
- Construct good short linear codes tailored to the sparse BP decoding
- Type of work (Recommended in a group >= 2 students)
 - Algorithm design
 - Coding (Matlab, C++ and Python)
- Prerequisites: Linear Algebra, machine learning, basics of coding theory

Contact: Yifei Shen vifei.shen@epfl.ch

Wenging Song wenging.song@epfl.ch

Thank you for your attention!

