# Decision-making in uncertain, dynamic, and interactive environments

Maryam Kamgarpour École Polytechnique Fédérale de Lausanne, Switzerland

European Control Conference, Stockholm, Sweden

June 28, 2024





#### Control systems evolution

#### From ...







to ...







#### Stochastic control framework

Stochastic control system

ightharpoonup state  $x_{t+1}$  is a sample from  $P(.|x_t,u_t)$ 

Problem: design controller  $u_t = \pi(x_t)$  to

minimize 
$$\mathbb{E}_P \left[ \sum_t c(x_t, u_t) \right]$$
 subject to  $x_{t+1} \sim P(.|x_t, u_t)$ 

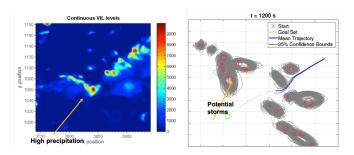
Dynamic programming (DP) [Bellman 1952]

$$P(.|x_t,u_t)$$
, objective  $\to \boxed{\mathsf{DP}} \to \mathsf{optimality}$  conditions for  $\pi$ 

#### Dynamic programming progress and limitations

Progress over the past decades

- addressing more general objectives
- multiagent formulation
- computational tractability



DP to design aircraft trajectory which maximizes probability of safety

Limitations: tractability, incorporating real-time data

#### Reinforcement learning (RL) approach

Given 
$$x_{t+1} \sim P(.|x_t, u_t)$$

ightharpoonup Optimize  $\pi$  by interacting with the system



RL successes: chess, Go, Starcraft, ...

Key challenge: guarantees for safe control systems

#### This talk

Towards incorporating performance guarantees in reinforcement learning for safe control systems

#### Outline

- Safe learning for a single agent
  - Constrained reinforcement learning
  - Log barrier approach

- Multiagent learning and control
  - ► Challenges compared to single agent setting
  - Multiagent reinforcement learning

Conclusions and outlook

#### Safety in learning and control

- Constrained RL approaches
  - Lagrangian formulations [Bharadhwaj et al 2021], [Efroni et al. 2020], [Ding et al. 2021], . . .
  - Constrained policy optimization [Achiam, et al. 2017], [Tsung-Yen et al. 2022], [Xu et al. 2021], ...
  - Model-based approaches [Zheng et al. 2020], [Turchetta et al. 2016], [Vaswani et al. 2022], [As et al. 2022], . . .

#### Control community approaches

- Learning-based model predictive control [Hewig et al. 2019], [Coulson et al. 2019], [Zanon et al. 2020], [Berberich et al. 2021], [Maddalena et al. 2021], . . .
- ► Safely training neural net controllers [Zhao et al. 2020], [Xiao et al. 2021], . . .
- Formal methods [Alshiekh et al. 2017], [Fulton et al. 2019], [ Hasanbeig et al. 2020], . . .
- Certificate functions, e.g. Lyapunov or control barrier functions [Chow et al. 2018], [Dutta et al. 2018], [Taylor et al. 2019], [Perkins et al. 2002], [Ma et al. 2022], [Emam et al. 2022], [Cohen et al. 2023], [Dowson et al. 2023], . . . .
- Gaussian processes [ Akametalu et al. 2014], [Wachi et al. 2018], ...

## Constrained reinforcement learning

Given  $x_{t+1} \sim P(.|x_t, u_t)$ , parametrize policy:  $u_t \sim \pi_{\theta}(.|x_t)$ 

minimize 
$$J(\pi_{\theta}) := \mathbb{E}_{P,\pi_{\theta}} \left[ \sum_{t} c_o(x_t, u_t) \right]$$
  
subject to  $C(\pi_{\theta}) := \mathbb{E}_{P,\pi_{\theta}} \left[ \sum_{t} c_s(x_t, u_t) \right] \leq 0$ 

Data: system trajectory



**Safe learning**: Design an algorithm such that  $\pi_{\theta_k}$  satisfies constraints and converges to the optimal policy

## Safe learning as optimization over policy parameters

#### Policy parametrization: $\theta \in \mathbb{R}^d$

- linear:  $\pi_{\theta}(x) = \theta^T x$
- ▶ Gaussian:  $\pi_{\theta}(u|x) = \mathcal{N}(\phi_{\theta}(x), \Sigma)$
- **.**..

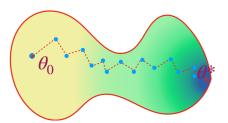
$$\begin{cases} \text{minimize} & \mathbb{E}_{P,\pi} \left[ \sum_{t} c_o(x_t, u_t) \right] \\ \text{subject to} & \mathbb{E}_{P,\pi} \left[ \sum_{t} c_s(x_t, u_t) \right] \le 0 \end{cases} \Longrightarrow \begin{cases} \text{minimize} & J(\theta) \\ \text{subject to} & C(\theta) \le 0 \end{cases}$$

Given 
$$x_{t+1} \sim P(.|x_t, u_t) \implies J(.), C(.)$$
 unknown

## Safe learning as blackbox constrained optimization

$$\label{eq:local_equation} \begin{aligned} & \underset{\theta}{\text{minimize}} & & J(\theta) \\ & \text{subject to} & & C(\theta) \leq 0 \end{aligned}$$

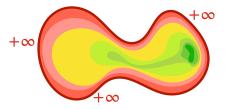
**Safe learning**: design  $\{\theta_k\}_k$  such that  $C(\theta_k) \leq 0$  and  $\theta_k \to \theta^*$ 



Challenges: J(.), C(.) non-convex and unknown

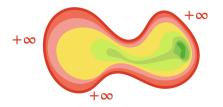
#### Overview of the proposed approach

- Design a barrier to stay inside the feasible set
- ▶ Estimate gradients to find a descent direction
- ► Take a carefully chosen step in the descent direction



#### Log barrier of the constrained optimization

▶ Log barrier of the constraint:  $-\log(-C(\theta))$ 



- ▶ Unconstrained optimization  $\tilde{J}(\theta) = J(\theta) \eta \log \left( -C(\theta) \right)$ 
  - $\blacktriangleright \ \eta \to 0 \text{: approximate solution} \to \mathsf{true} \ \mathsf{solution}$

## Log barrier policy gradient approach

Algorithm: 
$$\theta_{k+1} = \theta_k - \gamma_k \nabla_{\theta} \tilde{J}(\theta_k)$$

## Log barrier policy gradient approach

Algorithm: 
$$\theta_{k+1} = \theta_k - \gamma_k \nabla_{\theta} \tilde{J}(\theta_k)$$

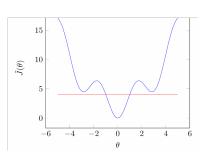
- 1. Would it converge to optimal policy parameters?
- 2. How to construct a good estimate of log barrier gradient?
- 3. How to choose  $\gamma_k$  for safety and convergence?

## 1. Stationary points of $\widetilde{J}$ are nearly optimal

▶ RL problem structure ⇒ gradient dominance:

$$J(\theta) - J(\theta^*) \le \eta + \frac{1}{\nu} \|\nabla_{\theta} \tilde{J}(\theta)\|_2, \ \nu > 0$$

[Ni, **MK**, ArXiv 2024]



## 2. Constructing high confidence gradient estimator

$$\nabla_{\theta} \tilde{J}(\theta) = \nabla_{\theta} J(\theta) - \eta \frac{\nabla_{\theta} C(\theta)}{C(\theta)}$$

▶ Sample average estimates of  $\nabla_{\theta}J(.), \nabla_{\theta}C(.), C(.)$ :

$$\frac{\{x_0^i, u_0^i, \dots, x_T^i\}_{i=1}^n}{}$$

$$P(|\widehat{\nabla_{\theta} \tilde{J}(\theta)} - \nabla_{\theta} \tilde{J}(\theta)| \le \epsilon) \ge 1 - \delta$$

$$P(|\widehat{\nabla_{\theta} \tilde{J}(\theta)}| \le \epsilon) \ge 1 - \delta$$

## 3. Ensuring safety of iterates with high probability

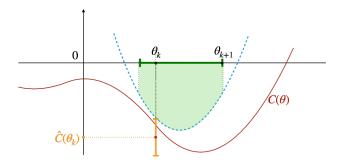
$$\theta_{k+1} = \theta_k - \widehat{\left[\gamma_k\right]} \widehat{\nabla_{\theta} \tilde{J}(\theta_k)}$$

 $\gamma_k$  should be

- sufficiently large to make progress
- sufficiently small to keep iterates safe

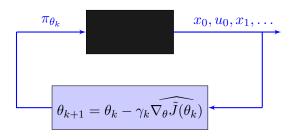
#### Approach

 Derive high probability local quadratic bounds on the objective and constraint



16/40

#### Theoretical guarantees for log barrier policy gradient



#### **Theorem**

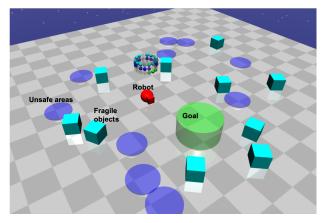
With suitable choices of  $\gamma_k$ ,  $\eta_k$ , we have

- safety: policies  $\pi_{\theta_k}$  satisfy constraints with high probability
- ightharpoonup convergence:  $\pi_{\theta_k} \to \pi_{\theta^*}$
- ▶ complexity:  $J(\theta_K) < J(\theta^*) + \epsilon$ , with  $K = \tilde{O}(\epsilon^{-6})$  trajectories (compare to  $\tilde{O}(\epsilon^{-2})$  in unconstrained case)

[Usmanova, As, MK, Krause, JMLR 2024], [Ni, MK, ArXiv 2024]

## Case study in safe learning

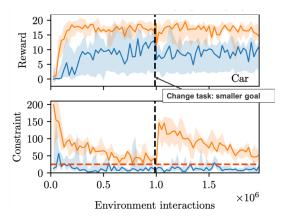
- ▶ Objective: reach the goal while avoiding obstacles
- ► Challenge: unknown dynamics and environment
- ► Approach: learn a neural network policy directly from images



From Open Al's Safety Gym

#### Log barrier approach in Safety Gym benchmark

Constraint satisfaction during learning but slow convergence



Our approach in blue, Lagrangian approach in orange Lagrangian: solves constrained RL, without safety during learning [As et al. 2022]

#### Outline

- Safe learning for a single agent
  - Constrained reinforcement learning
  - Log barrier policy gradient approach

- Multiagent learning and control
  - ► Challenges compared to single agent setting
  - Multiagent reinforcement learning

Conclusions and outlook

#### Multiagent systems



Several decision-makers with coupled objectives or constraints

## Multiagent systems formulation

Warmup: static, unconstrained, and deterministic

- ▶ N agents, with agent  $i \in \{1, ..., N\}$ 
  - $\blacktriangleright$  action  $\theta^i$  , joint action  $\pmb{\theta}=(\theta^i,\theta^{-i})$
  - lacktriangle objective  $J^i(\theta^i,\theta^{-i})$
- $lackbox{ Objectives: } \{J^i(.)\}_{i=1}^N \implies \text{no single function to optimize}$

#### Equilibrium as a desired solution

- $\blacktriangleright \ \theta^* \text{ is equilibrium: } \forall i, \quad J^i(\theta^{*i},\theta^{*-i}) = \min_{\theta^i} J^i(\theta^i,\theta^{*-i})$ 
  - ightharpoonup agent i has no reason to deviate from  $\theta^i$



ightharpoonup differentiable  $J^i(\theta) \implies \nabla_{\theta^i} J^i(\theta^*) = 0$ 

#### Learning in multiagent systems

Agent i does not know  $J^{i}(.)$  but can query it



How do agents learn an equilibrium?



## Uncoupled gradient-based learning in multiagent setting

Suppose each agent runs: 
$$\theta_{k+1}^i = \theta_k^i - \gamma_k \widehat{\nabla_{\theta^i} J^i(\theta_k)}$$

Challenges compared to the single agent setting:

- 1. How can agent i estimate  $\nabla_{\theta^i} J^i(\theta)$  without knowing  $\theta$ ?
  - use one-point gradient estimators but have high variance
- 2. Under which conditions do we have convergence?

## Single agent convergence conditions do not apply

Consider known  $\nabla_{\theta^i} J^i(\theta)$ 's Agents' learning dynamics:

$$\begin{bmatrix} \theta_{k+1}^1 \\ \vdots \\ \theta_{k+1}^N \end{bmatrix} = \begin{bmatrix} \theta_k^1 \\ \vdots \\ \theta_k^N \end{bmatrix} - \gamma_k \underbrace{\begin{bmatrix} \nabla_{\theta^1} J^1(\boldsymbol{\theta}_k) \\ \vdots \\ \nabla_{\theta^N} J^N(\boldsymbol{\theta}_k) \end{bmatrix}}_{\neq \nabla_{\theta} J(\boldsymbol{\theta})}$$

$$\qquad \text{ex: } J^1(\boldsymbol{\theta}) = \theta^1 \theta^2 = -J^2(\boldsymbol{\theta}), \ \begin{bmatrix} \nabla_{\theta^1} J^1(\boldsymbol{\theta}) \\ \nabla_{\theta^2} J^2(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \theta^1 \\ \theta^2 \end{bmatrix}$$

single agent analysis approaches don't generally work

## Sufficient conditions for convergence

Pseudo-gradient: 
$$m{M}(m{ heta}) = egin{bmatrix} 
abla_{ heta^1} J^1(m{ heta}_k) \\ \vdots \\ 
abla_{ heta^N} J^N(m{ heta}_k) \end{bmatrix}$$

- lacktriangle Algorithm:  $oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k \gamma_k \hat{oldsymbol{M}}(oldsymbol{ heta})$
- lacktriangle Sufficient convergence conditions based on  $M(oldsymbol{ heta})$ 
  - lacktriangledown ex: assume strong monotonicity of  $M(oldsymbol{ heta})$

#### Progress over years

Constrained setting, convergence rates: [Tatarenko, MK, IEEE TAC 2019, IEEE , ECC 2024], [Bravo et al. 2018], [Gao, Pavel, 2022], [Narang et al. 2023], ...

# Open challenge: convergence conditions for stochastic dynamical setting

#### Multiagent stochastic control formulation

- Stochastic dynamics controlled by agents:  $x_{t+1} \sim P(.|x_t, u_t^1, \dots, u_t^N)$
- Agent *i*'s decision:  $u_t^i = \pi^i(x_t)$ ,  $\boldsymbol{\pi} = (\pi^i, \pi^{-i})$
- Agent i's cost:  $J^i(\pi^i,\pi^{-i})=\mathbb{E}_{P,\pmb{\pi}}\left[\sum_t c^i(x_t,u^1_t,\ldots,u^N_t)\right]$

Compute an equilibrium policy  $\pmb{\pi} = (\pi^1, \dots, \pi^N)$  for  $\{J^i(\pmb{\pi})\}_{i=1}^N$ 

#### Multiagent reinforcement learning approach

Given 
$$x_{t+1} \sim P(.|x_t, u_t^1, \dots, u_t^N)$$

- Parametrize a stochastic policy  $u_t^i \sim \pi_{\theta^i}(.|x_t)$ ,  $\theta^i \in \mathbb{R}^d$
- Find equilibrium  ${\pmb{\theta}}^* = (\theta^1, \dots, \theta^N)$  by interacting with the system



Challenge: learning algorithms with provable convergence

## Challenging even in linear quadratic setting

single agent

$$J(\theta) = \mathbb{E}[\sum_{t=0}^{\infty} x_t^T Q x_t + u_t^T R u_t]$$

$$x_{t+1} = Ax_t + Bu_t$$

$$u_t = \theta^T x_t, \ x_0 \sim \mathcal{D}$$

#### Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator

Maryam Fazel \*1 Rong Ge \*2 Sham M. Kakade \*1 Mehran Mesbahi \*1

#### Abstract

Direct policy gradient methods for reinforcement learning and continuous control problems are a nonular approach for a variety of reasons: 1) they 2016) and Atari game playing (Mnih et al., 2015). Deep reinforcement learning (DeepRL) is becoming increasingly popular for tackling such challenging sequential decision making problems.

#### multiagent

$$J^i(\boldsymbol{\theta}) = \mathbb{E}[\sum_{t=0}^{\infty} x_t^T Q^i x_t + (u^i)_t^T R^i u_t^i]$$

$$x_{t+1} = Ax_t + \sum_{i=1}^{N} Bu_t^i$$

$$u_t^i = (\theta^i)^T x_t, \ x_0 \sim \mathcal{D}$$

## Policy-Gradient Algorithms Have No Guarantees of Convergence in Linear Quadratic Games

Eric Mazumdar University of California, Berkeley Berkeley, CA mazumdar@berkeley.edu

Michael I. Jordan University of California, Berkeley Berkeley, CA jordan@cs.berkeley.edu

#### ABSTRACT

We show by counterexample that policy-gradient algorithms have no guarantees of even local convergence to Nash equilibria in continuous action and state space multi-agent settings. To do so, we analyze gradient-play in N-player general-sum linear quadratic cames a classic eams estrius which is recently emerging as a benchLillian J. Ratliff University of Washington Seattle, WA ratliff@uw.edu

S. Shankar Sastry University of California, Berkeley Berkeley, CA sastry@coe.berkeley.edu

of multi-agent reinforcement learning have made use of policy optimization algorithms such as multi-agent actor-critic [13, 17, 30], multi-agent proximal policy optimization [2], and even simple multiagent policy-gradients [15] in problems where the various agents have high-dimensional continuous state and action spaces like StarCraft [132].

#### Relaxing the equilibrium notion

A probability distribution  $\mathcal{P}^*$  on  $oldsymbol{ heta}$  is an equilibrium

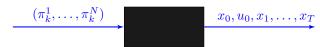
$$\forall i \quad \mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{P}^*}[J^i(\boldsymbol{\theta})] \leq \mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{P}^*}[J^i(\tilde{\theta}^i, \theta^{-i})], \ \forall \tilde{\theta}^i$$



Focus: learning algorithms that scale with number of agents [MK with Sessa, Maddux, Bugonovic, Krause, NeurIPS 2020, AISTATS 2019, 2020, 2024, ICML 2021,2022]

## Approach: model-based learning of equilibrium distribution

- lnitialize  $\mathcal{P}_0$ . For  $k=0,1,\ldots$ 
  - ightharpoonup sample  $(\pi_k^1,\ldots,\pi_k^N)\sim\mathcal{P}_k$



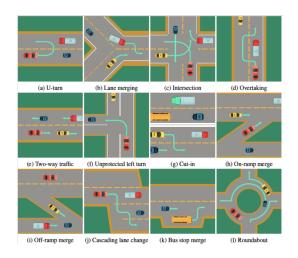
- estimate  $P(.|x_t, u_t^1, ..., u_t^N) \rightarrow \hat{J}_k^i(\boldsymbol{\theta})$
- lacktriangle compute  $\mathcal{P}_{k+1}$  as the equilibrium distribution of  $\hat{J}_k^i( heta)$

Finite-time convergence to an equilibrium distribution [Sessa, MK, Krause, ICML 2022]

## Case study: Multiagent RL in autonomous driving

SMARTS autonomous car simulation environment [Zhou et al. 2021]

- testing multiagent RL algorithms for autonomous driving
- realistic traffic data and car dynamics



#### Model-based multiagent RL for autonomous driving

- Objective: progress towards the goal, avoid collision
- ▶ Dynamics:  $P(.|x_t, u_t^1, u_t^2)$ 
  - x: positions and velocities of cars

  - $ightharpoonup \pi_{\theta^i}(x)$ : parametrized by neural networks, i=1,2

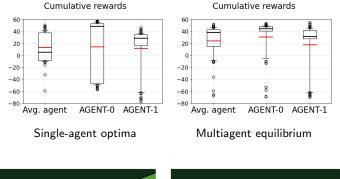




The autonomous cars can coordinate and overtake the human-driven car

#### Outcome of the multiagent learning approach

Learning to coordinate ⇒ less breaking, more successful merges







#### Outline

- Safe learning for a single agent
  - Constrained reinforcement learning
  - ► Log barrier policy gradient approach

- Multiagent learning and control
  - Challenges compared to single agent setting
  - ► Multiagent reinforcement learning

Conclusions and outlook

#### Recap

- Stochastic control: a powerful modeling framework
- RL: data-driven approach to stochastic control
- ► RL needs guarantees for safe control

We provided algorithms with proven performance guarantees for

- safe learning: satisfying constraints during system interactions
- multiagent learning: multiple objectives and decision-makers

## Outlook: open theoretical challenges

- ► Safe learning algorithms for multiagent stochastic systems
- ▶ Provable algorithms under partial and asymmetric information
- ► Learning of "good" equilibria, mechanism design
- **.**..



## Outlook: bridging the gap between theory and application

- Improving sample complexity
- ▶ Robustness to model mismatch





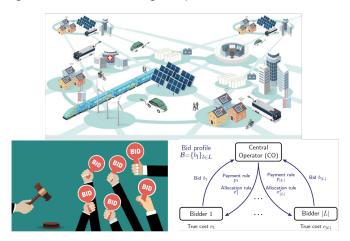
Autonomous car experiments in the lab

Outlook: bridging the gap between theory and application

Joint work with EPFL CRCL

## Outlook: bridging the gap between theory and application

Further applications of multiagent stochastic control: Learning and mechanism design in power markets



#### Acknowledgements

- Former and current PhD students: O Karaca, L Furieri, P Giuseppe Sessa, I Usmanova, B Guo, Kai Ren, T Ni, A Maddux, A Schlaginhaufen, G Salizzoni, S Hosseinirad. G Vallat
- Collaborators: T Tatarenko, T Summers, N Walton, T Wood, A Papachristodoulo, E Tedeschi, J Lygeros, G Ferrari Trecate, I. Bugonovic, H Ahn, C Tomlin, R Ouhamma, Z Wang, S Parascho, A Abate, J Kazempour, G Hug, G Ranade, C Jones
- Funding: ERC, NSERC Canada, Swiss National Fund, NCCR Automation



https://www.epfl.ch/labs/sycamore/

#### Constrained RL formulations

- ▶ Finite horizon:  $\mathbb{E}_{P,\pi} \left[ \sum_{t=0}^{T} c_s(x_t, u_t) \right]$ 
  - can encode probability of trajectory staying inside a safe set [Tkachev et al. 2013]
- ▶ Infinite horizon:  $\mathbb{E}_{P,\pi} \left[ \sum_{t=0}^{T} \lambda^t c_s(x_t, u_t) \right]$ 
  - ▶ discount factor  $0 < \lambda < 1$

Focus in this talk: discounted setting

#### **Parameters**

 $n=\mathcal{O}(\epsilon^{-4}\ln\frac{1}{\beta\epsilon})$  and  $H=\mathcal{O}(\ln\frac{1}{\epsilon})$ , and  $T=\mathcal{O}(\epsilon^{-2})$  to ensure optimality and safe exploration with confidence  $1-\beta$