SOLUTION TO EXERCISE 6 FOR LEONARDO'S EXERCISE SESSION

RUOYUAN LIU

1. Solutions

By writing $\widehat{Y}(s, n)=\widehat{X}(s, n)-\widehat{X_{M}}(s, n)$, we see that $\widehat{Y}(s, n)$ satisfies

$$
d \widehat{Y}(s, n)=d \widehat{X}(s, n)-\frac{M}{\langle n\rangle} \widehat{Y}(s, n) d s
$$

By solving this SDE, we obtain

$$
\widehat{Y}(s, n)=\int_{0}^{s} e^{-\frac{M}{\langle n\rangle}\left(s-s^{\prime}\right)} d \widehat{X}(s, n)
$$

for $|n| \leq M$ and $Y(s, n)=\widehat{X}(s, n)$ for $|n|>M$. Thus,

$$
\widehat{X_{M}}(s, n)=\widehat{X}(s, n)-\widehat{Y}(s, n)=\int_{0}^{s}\left(1-e^{-\frac{M}{\langle n\rangle}\left(s-s^{\prime}\right)}\right) d \widehat{X}(s, n) .
$$

i. By independence and Ito's isometry,

$$
\begin{aligned}
\mathbb{E}\left[X_{M}^{2}(x)\right] & =\sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} \int_{0}^{1}\left(1-e^{-\frac{M}{\langle n\rangle} s}\right)^{2} d s \\
& \lesssim \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} \\
& \sim \begin{cases}\log M & \text { if } d=2 \\
M & \text { if } d=3 .\end{cases}
\end{aligned}
$$

For the lower bound, we simply note that for $|n| \leq M$,

$$
1-e^{-\frac{M}{\langle n\rangle} s} \geq 1-e^{-\frac{1}{2} s}
$$

ii. By independence, Ito's isometry, and the Cauchy, we have

$$
\begin{aligned}
\mathbb{E}[2 & \left.\int_{\mathbb{T}^{d}} X X_{M} d x-\int_{\mathbb{T}^{d}} X_{M}^{2} d x\right] \\
& =\mathbb{E}\left[2 \int_{\mathbb{T}^{d}} Y X_{M} d x+\int_{\mathbb{T}^{d}} X_{M}^{2} d x\right] \\
& =\int_{\mathbb{T}^{d}} \mathbb{E}\left[X_{M}^{2}(x)\right] d x+2 \int_{\mathbb{T}^{d}} \mathbb{E}\left[Y(x) X_{M}(x)\right] d x \\
& =(2 \pi)^{d} \mathbb{E}\left[X_{M}^{2}(x)\right]+2(2 \pi)^{d} \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} \int_{0}^{1} e^{-\frac{M}{|n\rangle} s}\left(1-e^{-\frac{M}{\langle n\rangle} s}\right) d s \\
& \leq(2 \pi)^{d} \mathbb{E}\left[X_{M}^{2}(x)\right]+C(2 \pi)^{d} \sum_{|n| \leq M} \frac{1}{\langle n\rangle M} \\
& \sim \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} .
\end{aligned}
$$

iii. By Plancherel's identity and independence, we have

$$
\begin{aligned}
\mathbb{E}\left[\left|\int_{\mathbb{T}^{d}} X_{M} f d x\right|^{2}\right] & =\mathbb{E}\left[\left|\sum_{|n| \leq M} \widehat{X_{M}}(n) \widehat{f}(n)\right|^{2}\right] \\
& =\sum_{|n| \leq M} \mathbb{E}\left[\left|\widehat{X_{M}}(n)\right|^{2}\right]|\widehat{f}(n)|^{2} \\
& \lesssim \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}}|\widehat{f}(n)|^{2} \\
& \leq\|f\|_{H^{-1}} .
\end{aligned}
$$

iv. Note that one can write $: Y^{2}$: as the following multiple stochastic integral:

$$
: Y^{2}:=\sum_{n_{1}, n_{2} \in \mathbb{Z}^{d}} \int_{0}^{1} \int_{0}^{1} \widehat{Y}\left(t_{1}, n_{1}\right) \widehat{Y}\left(t_{2}, n_{2}\right) d W_{n_{1}}\left(s_{1}\right) d W_{n_{2}}\left(s_{2}\right) e^{i\left(n_{1}+n_{2}\right) x}
$$

By Ito's isometry for the multiple stochastic integral, we have

$$
\begin{aligned}
\mathbb{E}\left[\left|\int_{\mathbb{T}^{d}}:\left(X-X_{M}\right)^{2}: d x\right|^{2}\right] & =\mathbb{E}\left[\left|\int_{\mathbb{T}^{d}}: Y^{2}: d x\right|^{2}\right] \\
& =\sum_{n \in \mathbb{Z}^{d}} \mathbb{E}\left[|\widehat{Y}(1, n)|^{2}\right] \mathbb{E}\left[|\widehat{Y}(1,-n)|^{2}\right] \\
& =\sum_{|n| \leq M} \frac{1}{\langle n\rangle^{4}}\left(\int_{0}^{1} e^{-\frac{2 M}{|n\rangle} s} d s\right)^{2}+\sum_{|n|>M} \frac{1}{\langle n\rangle^{4}} \\
& \lesssim M^{-2} \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}}+M^{4-d} \\
& \lesssim \begin{cases}M^{-2} \log M & \text { if } d=2 \\
M^{-1} & \text { if } d=3 .\end{cases}
\end{aligned}
$$

v. By Plancherel's identity, the SDE solved by X_{M}, and Ito's isometry, we have

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{1}\left\|\frac{d}{d s} X_{M}(s)\right\|_{H^{1}}^{2} d s\right] & =\sum_{|n| \leq M}\langle n\rangle^{2} \mathbb{E}\left[\int_{0}^{1}\left|\frac{d}{d s} \widehat{X_{M}}(s, n)\right|^{2} d s\right] \\
& =M^{2} \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} \mathbb{E}\left[\int_{0}^{1}|\widehat{Y}(s, n)|^{2} d s\right] \\
& =M^{2} \sum_{|n| \leq M} \frac{1}{\langle n\rangle^{2}} \int_{0}^{1} e^{-\frac{2 M}{|n\rangle} s} d s \\
& \lesssim M \sum_{|n| \leq M} \frac{1}{\langle n\rangle} \\
& \lesssim M^{d} .
\end{aligned}
$$

Ruoyuan Liu, School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

Email address: ruoyuan.liu@ed.ac.uk

