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Given a collection of absolutely continuous measures on Rd, we
consider the complementary problems of: determining their Fréchet
mean with respect to the L2-Wasserstein metric; and of construct-
ing their optimal multi-coupling in the mean square sense. While
both problems are of intrinsic probabilistic interest, they are also at
the core of several statistical challenges in image analysis, multivari-
ate dependence, nonparametric registration, and spatial statistics, to
name but a few. And, although they admit simple and explicit so-
lutions when d = 1, they have been elusive when d ≥ 2. To tackle
them, we exploit the relationship between the tangent bundle geom-
etry of Wasserstein space and the class of optimal transport maps.
This allows us to derive the gradient of the Fréchet functional, and
to characterise Karcher means and their relation to Fréchet means.
These results are then used to construct the empirical mean via gra-
dient descent. We determine the optimal descent step size, and show
that this renders descent equivalent to a classical Procrustes algo-
rithm. The key advantage of this algorithm is that it only requires
successive solutions to pairwise optimal transportation problems. We
prove that the algorithm converges to a Karcher mean in Wasserstein
distance, regardless of the starting point; and that the corresponding
Procrustes registration maps converge uniformly. Motivated by the
problem of registering warped multidimensional point processes, we
also consider the case of discrete observation, where one only observes
a finite sample or a point process from each measure. We construct
regularised estimators that are consistent for the Fréchet mean, and
uniformly consistent for the Procrustes registration maps.

1. Introduction. In nonparametric statistics for stochastic processes, one is con-
cerned with making inferences on the law of a process {X(t) : t ∈ K}, on the basis of
a sample of N realisations, {X1, . . . , XN}, often observed discretely, over a compact set
K ⊂ Rd. The case that has been most studied by far is that of Functional Data Analysis
(Ramsay and Silverman [52], Horváth & Kokoszka [37], Hsing & Eubank [38]) where
the process X is modelled as an element of a normed vector space, typically a separable
Hilbert space with d = 1. This setting captures an extremely rich variety of practical
problems, ranging from growth curves and electricity consumption, to DNA mechanics
and computational linguistics (see Wang et al. [57] for a compendious overview). Still,
there are important instances where a linear space is not the most natural framework to
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model the law of a stochastic process {X(t) : t ∈ K}. A key such exception, with mani-
fold manifestations in neurophysiology, imaging, and environmetrics, is that of processes
that are best modelled as distributions over the domain K ⊂ Rd, that is collections of
random measures {µ1, . . . , µN} rather than random functions {X1, . . . , XN} (Chiu et al.
[22], Kallenberg [39]). The total intensity itself may vary from realisation to realisation,
but this is often not the main source of variation to be modelled and understood. Rather,
the key variational feature of interest to the statistician is frequently that of deformation
(originating in morphometrics, Bookstein [18]). In fact, it is precisely deformations that
allow for more natural interpolation, extrapolation, and averaging of images.

Deformation-based variation may be the only source of variation: in this case, every
manifestation of the random function can be usually modelled as the deformation of a
template, according to a randomly selected element of a class of transformations (e.g.
Allassonnière et al. [5]). Or, it may be a first layer of variation, corresponding to a defor-
mation of the coordinate system, followed by a second layer where further stochasticity
is injected (for instance additive variation, if an image is observed with noise corruption,
e.g. Amit et al. [8], or sampling-based variation, if one observes samples from the density
corresponding to the deformed template, e.g. Panaretos & Zemel [49]). In the first case,
recovering the template and the transformations is the main focus of the analysis. In
the second case, the recovery of these two components corresponds to the problem of
registration, where one selects a common coordinate system, thus removing the effects
of warping/deformation, and then carries out a separate analysis of the additional level
of variation.

In either case, it is crucial to be able to estimate the underlying template, which can
be modelled as a Fréchet mean with respect to some metric structure; and to use the
Fréchet mean to recover the deformation maps, that register the individual realisations
{µ1, . . . , µN} to their Fréchet mean. Often, finding the Fréchet mean and finding the
registration maps are interwoven problems. These interwoven problems generalise the
concept of a Procrustes analysis (Gower [33]; Dryden & Mardia [25]), as carried out in
shape theory: Euclidean configurations are replaced by measures, and the group of rigid
motions (or similarities) is replaced by a class of deformations. Obviously, the methods
and algorithms for estimating a mean and carrying out a registration/Procrustes analysis
are inextricably linked with the geometry one considers for the measures, which can be
a matter of modelling choice or of first principles. In this paper, we choose to study the
problem of averaging and registration when the measures {µ1, . . . , µN} are normalised
to a common intensity (assumed 1) and are viewed as elements of the L2-Wasserstein
space. We choose this setting as it can be seen to be the natural analogue of using
L2[0, 1] for functions X, in the case of measures. This analogy is valid in a very strong
sense when K = [0, 1] ⊂ R. In this case, it can be seen that the L2-Wasserstein metric
induces the L2[0, 1] geometry on the quantile functions of the measures {µ1, . . . , µN}.
This allows one to explicitly determine the Fréchet mean, and use it as a template for
registration, thus producing a Procrustes Analysis in the space of measures, which can
be elegantly interpreted through the prism of probabilistic coupling (e.g. Bolstad et al.
[16], Gallon et al. [30], Dupuy et al. [26]). Indeed, Panaretos & Zemel [49] show that
the choice of the Wasserstein space is essentially the canonical choice when modelling
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deformations of measures and point processes on [0, 1], and exploit the connection to
L2 in order to determine Fréchet means, registration maps, and related central limit
theorems. Similar arguments have also been made for K ⊆ Rd, where the Wasserstein
setting has been shown to possess desirable properties, at least for parametric families
of random measures (see, e.g. Bigot & Klein [13], Agulló-Antoĺın et al. [3]).

In the language of Wasserstein space and optimal transportation, averaging is the
problem of finding a Fréchet mean, whereas registration is the problem of constructing
an optimal multicoupling. Both problems admit simple and explicit solutions in the
case of measures on R, owing to the flat nature of the Wasserstein space when d = 1.
However, no explicit solutions are possible in general in the multivariate case, and the
construction of algorithms yielding the Fréchet mean and/or the optimal multicoupling
has been elusive. Progress has been made by considering restrictions and/or variants of
the problem that allow relaxation to a tractable version (Boissard et al. [15], Bonneel
et al. [17], Cuturi & Doucet [23]; see Section 3 for more details). The purpose of this
paper is to constructively solve the Fréchet averaging and optimal multicoupling problem
without such workarounds.

Our main contributions are:

1. We show how knowledge of the Fréchet mean gives an explicit solution to the
optimal multicoupling problem (Section 3), by coupling each sample measure to
the Fréchet mean (Theorem 1). This reduces the problem of multicoupling to
determining the mean and the Procrustes maps mapping it to each sample measure.

2. We determine the gradient of the Fréchet functional (Section 4.2, Theorem 2), and
characterise Karcher means via its zeroes (Corollary 1, Section 4.3). We also give
criteria for determining when a Karcher mean is a Fréchet mean (Theorem 3).

3. We construct a gradient descent algorithm (Algorithm 1), find its optimal stepsize
(Lemma 2), and show that with this stepsize, it is equivalent to a Procrustes
algorithm (Section 5). This reduces the determination of the mean to the successive
solution of pairwise optimal transport problems.

4. We provide a convergence analysis of the algorithm (Sections 5.2 and 5.3). In
particular we prove that the gradient iterate converges to a Karcher mean in the
Wasserstein metric (Theorem 4); and that the the induced transportation maps
converge uniformly to the Procrustes maps (required for optimal mutlicoupling;
Theorem 5).

5. We prove that our results are stable under discrete observation (Section 6). That
is, if one does not observe the actual measures {µ1, . . . , µN}, but random samples
or point processes with these measures as distributions/intensities, we construct
regularised nonparametric estimators of the Fréchet means and Procrustes maps,
and prove that they are consistent as sample size increases (Theorems 6 and 7).

Before presenting our main results, we first provide a short introduction to Wasserstein
space in Section 2. Our results are then developed in Sections 3 through 6. Section 7
gathers all proofs, for the sake of tidiness, and Section 6.4 studies several examples. An
online Supplement [62] provides further details omitted from the main paper.
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2. Optimal Transportation and Wasserstein Space. The reason the Wasser-
stein space arises as the natural space to capture deformation-based variation of random
measures lies in its deep connection with the problem of optimal transportation of mea-
sure. This consists in solving the Monge problem (Villani [56]): given a pair of measures
(µ, ν), find a mapping tνµ : Rd 7→ Rd such that tνµ#µ = ν, and∫

Rd

∥∥tνµ(x)− x
∥∥2

dµ(x) ≤
∫
Rd
‖q(x)− x‖2 dµ(x),

for any other q such that q#µ = ν. Here, “#” denotes the push-forward operation,
where [t#µ](A) = µ(t−1(A)) for all Borel sets A of Rd. The map tνµ is called an optimal
transport plan, and a solution to this problem yields an optimal deformation of µ into
ν with respect to the transport cost given by squared Euclidean distance.

An optimal transport map may fail to exist, and instead, one may need to solve the
relaxed Monge problem, known as the Kantorovich problem (Villani [56]). Here instead
of seeking a map tνµ#µ = ν, one seeks a distribution ξ on Rd×Rd with marginals µ and
ν, minimising the functional ∫

Rd×Rd
‖x− y‖2 dξ(x, y)

over all measures ξ on Rd × Rd with marginals µ and ν. In probabilistic terms, ξ yields
a coupling of random variables X ∼ µ and Y ∼ ν that minimises the quantity

E‖X − Y ‖2,

over all possible couplings of X and Y . It can be shown that when the measure µ
is regular (absolutely continuous with respect to Lebesgue measure), the Kantorovich
problem reduces to the Monge problem, and the optimal coupling ξ is supported on the
graph of the function. That is, the optimal coupling exists, is unique, and can be realised
by a proper transport map tνµ.

One may consider the space P2(R2) of all probability measures µ on Rd with finite vari-
ance (that is,

∫
Rd‖x‖

2 dµ(x) <∞) as a metric space, endowed with the L2-Wasserstein
distance

d(µ, ν) = inf
ξ∈Γ(µ,ν)

√∫
Rd×Rd

‖x− y‖2 dξ(x, y),

where Γ(µ, ν) is the set of probability measures on Rd × Rd with marginals µ and ν.
The induced metric space is colloquially called Wasserstein space and will form the
geometrical context for our study of deformation-based variation of random measures.
This space has been used extensively in statistics, as it metrises the topology of weak
convergence, and convergence with respect to the metric yields both convergence in law,
as well as convergence of the first two moments (for instance, in applications to the
bootstrap, see e.g. Bickel & Freedman [11]).

The appropriateness of this distance when modeling deformations of measures be-
comes clear based on our previous remark concerning regularity: one can imagine an
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initial regular template µ, that is deformed according to maps qi to yield new mea-
sures µi = (qi)#µ. It is then natural to quantify the distance of the template to its
perturbations by means of the minimal transportation (or deformation) cost

d(µ, µi) =

√∫
Rd

∥∥∥tµiµ (x)− x
∥∥∥2

dµ(x).

That the distance can be expressed via a proper map, is due to the assumed regularity
of µ. Note that the maps qi themselves will, in general, not be identifiable. But they can

be assumed to be exactly optimal, i.e. qi = tµ
i

µ as a matter of parsimony, and in any
case without loss of generality. These maps will also solve the registration problem: a

map of the form tµ
i

µ − i, with i the identity mapping, shows how the coordinate system
of µ should be deformed to be registered to the coordinate system of ν.

This raises the question of how to characterise the optimal transportation maps. For
instance, in the one-dimensional case, if µ and ν are probability measures on R, and µ
is diffuse we may write

(2.1) tνµ = G−1
ν ◦Gµ,

where Gµ(t) =
∫ t
−∞ dµ(x), Gν(t) =

∫ t
−∞ dν(x) are their distribution functions and G−1

ν

is the quantile function of ν. This characterises optimal maps in one dimension as non-
decreasing functions. More generally, when one has measures on Rd, the class of optimal
maps can be seen to be that of monotone maps (see Section 7.5), defined as fields
t : Rd → Rd that are obtained as gradients of convex functions ϕ : Rd → R,

t = ∇ϕ.

This is known as Brenier’s characterisation (Villani [56, Theorem 2.12]). With these
basic definitions in place, we are now ready to consider the problem of finding a Fréchet
mean of a collection of measures – the latter viewed as the common template measure
that was deformed to give rise to these measures.

3. Fréchet Means and Optimal Multicoupling. The notion of a Fréchet mean
(Fréchet [28]) generalises that of the mean in a normed vector space to a general metric
space. Though it has primarily been studied on Riemannian manifolds, the generality of
its definition allows it to be used very broadly: it replaces the usual “sum of squares”,
with a “sum of squared distances”, the Fréchet functional. A closely related notion is
that of a Karcher mean (Karcher [40]; Le [44]), a term that describes stationary points
of the sum of squares functional, when the latter is differentiable. See Kendall [41], and
Kendall & Le [42] for an overview and a detailed review, respectively. In the context
of Wasserstein space, a Fréchet mean of a collection of measures {µ1, . . . , µN}, is a
minimiser of the Fréchet functional

(3.1) F (γ) :=
1

2N

N∑
i=1

d2(µi, γ)
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over elements γ in the Wasserstein space P2(Rd), and a Karcher mean is a stationary
point of F . The functional will be finite for any γ ∈ P2(Rd), provided that it is so for
some γ0. Interestingly, Fréchet himself [29] considered the Wasserstein metric between
probability measures on R, and some refer to this as the Fréchet distance (e.g. Dowson
& Landau [24]). In general, existence and uniqueness of a Fréchet mean can be subtle,
but Agueh & Carlier [2] have shown that it will uniquely exist in the Wasserstein space,
provided that some regularity is asserted. Here and in the following, we call a measure
regular if it is absolutely continuous with respect to Lebesgue measure (this condition
can be slightly weakened [2]).

Proposition 1 (Agueh & Carlier [2]). Let {µ1, . . . , µN} be a collection in the Wasser-
stein space of measures P2(Rd). If at least one of the measures is regular with bounded
density, then their Fréchet mean exists, is unique, and is regular.

We will now show that, once the Fréchet mean µ̄ of {µ1, . . . , µN} has been determined,
it may be used to optimally multi-couple the measures {µ1, . . . , µn} in Rd×N , in terms
of pairwise mean square distances, thus providing a solution to the multidimensional
Monge–Kantorovich problem considered by Gangbo & Świȩch [31]. That is, µ̄ can be
used to construct a random vector whose marginals are as concentrated as possible
in terms of pairwise mean-square distance, subject to the constraint of having laws
{µ1, . . . , µN}.

Our first result shows precisely how:

Theorem 1 (Optimal Multicoupling via Fréchet Means). Let {µ1, . . . , µN} be regu-
lar probability measures in P2(Rd), one with bounded density, and let µ̄ be their (unique)
Fréchet mean with respect to the Wasserstein metric. Let Z ∼ µ̄ and define

X = (X1, . . . , XN ), Xi = tµ
i

µ̄ (Z), i = 1 . . . , N,

where tµ
i

µ̄ is the optimal transport plan pushing µ̄ forward to µi. Then Xi ∼ µi for
i = 1, . . . , N and furthermore,

N∑
i=1

N∑
j=i+1

E‖Xi −Xj‖2 ≤
N∑
i=1

N∑
j=i+1

E‖Yi − Yj‖2

for any other Y = (Y1, . . . , YN ) such that Yi ∼ µi, i = 1, . . . , N .

In the language of shape theory, the Fréchet mean µ̄ may be used as a template
to jointly register the collection of measures, just as Euclidean configurations can be
registered to their Procrustes mean by a Procrustes analysis (Goodall [32]). Only in this
case, instead of the similarity group of shape theory, registration is deformation based,

by means of the collection of maps {tµ
i

µ̄ }Ni=1, where tµ
i

µ̄ is the optimal transport map

tµ
i

µ̄ #µ̄ = µi.
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By analogy to shape theory, we shall refer to these as Procrustes maps. These yield a
common coordinate system (corresponding to µ̄) where one can best compare samples
from each measure, similarly to “quantile renormalisation” in one dimension, e.g. Bol-
stad et al. [16], Gallon et al. [30]. The Procrustes maps can also be used in order to
produce a Principal Component Analysis, capturing the main modes of deformation-
based variation (Boissard et al. [15], Bigot et al. [12], Panaretos & Zemel [49]).

Clearly, the problem of determining the Fréchet mean and the problem of Procrustes
analysis are complementary: solution of one immediately gives a solution to the other.
This complementarity is exemplified in shape theory, where Procrustes analysis is used
as the canonical method precisely to find the mean with respect to the Procrustes metric.
Still, with the exception of the case d = 1, neither problem can be solved explicitly in
the Wasserstein space. Important progress has been made by considering work-arounds
that modify, restrict, or approximate the problem (Cuturi & Doucet [23]; Bonneel et al.
[17]; Boissard et al. [15]), but one might ask for algorithms with general applicability
and with provable convergence guarantees.

Our main contribution will be to provide a solution to both the determination of the
Fréchet mean and the registration maps (i.e. the multi-coupling), avoiding such work-
arounds. Our departure point is the Procrustean heuristic: in Procrustes analysis, one
typically starts from an arbitrary template, and sequentially registers every observation
in a pairwise fashion to that template; once all observations are registered, they are
averaged, producing an updated template (Gower [33]; Dryden & Mardia [25, p. 90]).
The same idea could be applied in the Wasserstein space, precisely in order to use
the feasibility of the pairwise problem. However, there is a priori no guarantee that
this approach would work (convergence of Procrustes algorithms is subtle even in finite
dimensions, see for instance Le [44, 45] and Groisser [34]). The key will be to connect
Procrustes analysis to gradient descent: this is done in the next section.

4. Wasserstein Geometry and the Gradient of the Fréchet Functional. In
this section, we determine the conditions for the Fréchet derivative of the Fréchet func-
tional (Equation (3.1)) to be well defined, and determine its functional form. Further-
more, we characterise Karcher means and give criteria for their optimality, opening the
way for the determination of the Fréchet mean. The key to our analysis will be to exploit
the tangent bundle over the Wasserstein space of regular measures.

4.1. The Tangent Bundle. Let P2(Rd) be the Wasserstein space of probability mea-
sures µ on Rd such that

∫
Rd‖x‖

2 dµ(x) is finite, as defined in Section 2. An absolutely
continuous measure on Rd will be called regular. When µ0 ∈ P2(Rd) is regular and

µ1 ∈ P2(Rd), the transportation map tµ
1

µ0 uniquely exists, in which case there is a unique

geodesic curve between µ0 and µ1. Using again the notation i for the identity map, this
geodesic is given by

µt =
[
i + t(tµ

1

µ0 − i)
]

#µ0, t ∈ [0, 1].
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This curve is known as McCann’s interpolation (McCann [47], Villani [56]). The tangent
space at an arbitrary µ ∈ P2(Rd) is then (Ambrosio et al. [7, Definition 8.4.1, p. 189])

Tanµ = TanµP2(Rd) = {∇ϕ : ϕ ∈ C∞c (Rd)}
L2(µ)

,

where C∞c (Rd) denotes infinitely differentiable functions ϕ : Rd → R with compact
support, and the closure operation is taken with respect to the space L2(µ). Note the
interesting fact that the closure operation is the only aspect of the tangent space that
directly involves the measure µ. An equivalent definition, which is more useful to us, is
given by Ambrosio et al. [7, Definition 8.5.1, p. 195]:

Tanµ = {λ(r− i) : r optimal between µ and r#µ;λ > 0}L
2(µ)

,

that is, we take the collection of r’s that are optimal maps from µ to r#µ; i.e. the gra-
dients of convex functions. This is a linear space (not just a cone) by the first definition,
even though it is not obvious from the second. The definitions are equivalent by Theo-
rem 8.5.1 of Ambrosio et al. [7, p. 195]. As was mentioned above, when µ0 ∈ P2(Rd) is

regular, every measure µ1 ∈ P2(Rd) admits a unique optimal map tµ
1

µ0 that pushes µ0

forward to µ1. Thus, the exponential map

expµ0(r− i) = r#µ0

is surjective, and its inverse, the log map

logµ0(µ1) = tµ
1

µ0 − i,

is well-defined throughout P2(Rd). In particular, the geodesic
[
i + t(tµ

1

µ0 − i)
]

#µ0 is

mapped bijectively to the line segment t(tµ
1

µ0 − i) ∈ Tanµ0 through the log map.

4.2. Gradient of the Fréchet functional. We will now exploit the tangent bundle
structure described in the previous section in order to determine the gradient of the
empirical Fréchet functional. Fix µ0 ∈ P2(Rd) and consider the function

F0 : P2(Rd)→ R, F0(µ) =
1

2
d2(µ, µ0).

When µ is regular, we have that ([7, Corollary 10.2.7, p. 239]), for any µ0

lim
ν→µ

F0(ν)− F0(µ) +

∫
Rd
〈tµ0

µ (x)− x, tνµ(x)− x〉dµ(x)

d(ν, µ)
= 0,

where the convergence ν → µ is with respect to the Wasserstein distance. The integral
above can be seen as the inner product

〈tµ0

µ − i, tνµ − i〉
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in the space L2(µ) that includes as a (closed) subspace the tangent space Tanµ. In terms
of this inner product and the log map, we can write

F0(ν)− F0(µ) = −〈logµ(µ0), logµ(ν)〉+ o(d(ν, µ)), ν → µ,

so that F0 is Fréchet-differentiable at µ with derivative

F ′0(µ) = − logµ(µ0) = −
(
tµ

0

µ − i
)
∈ Tanµ.

We have proven:

Theorem 2 (Gradient of the Fréchet Functional). Fix a collection of measures
µ1, . . . , µN ∈ P2(Rd). When γ is regular, the Fréchet functional

(4.1) F (γ) =
1

2N

N∑
i=1

d2(γ, µi), γ ∈ P2(Rd).

is Fréchet-differentiable, and its gradient satisfies

(4.2) F ′(γ) = − 1

N

N∑
i=1

logγ(µi) = − 1

N

N∑
i=1

(
tµiγ − i

)
.

4.3. Karcher and Fréchet Means. We can now characterise Karcher means, and also
show that the empirical Fréchet mean must be sought amongst them:

Corollary 1. Let µ1, . . . , µN ∈ P2(Rd) be regular measures, one of which with
bounded density. A measure µ is a Karcher mean of {µi} if and only if

1

N

N∑
i=1

(
tµiµ − i

)
= 0, µ− almost everywhere.

Furthermore, the Fréchet mean of {µi} is itself a Karcher mean, i.e. satisfies F ′(µ) = 0
µ-almost everywhere.

In fact, the corollary suggests that a Karcher mean is “almost” a Fréchet mean:
Agueh and Carlier [2] show by convex optimisation methods that if

∑N
i=1 (tµiµ − i) = 0

everywhere on Rd (rather than just µ-almost everywhere), then µ is in fact the unique
Fréchet mean. Thus one hopes that this “gap of measure zero” can be bridged: that a
sufficiently regular Karcher mean should in fact be a Fréchet mean. We now show that
this is indeed the case; if µ1, . . . , µN ∈ P2(Rd) are smooth measures with convex support,
then a smooth Karcher mean of same support must be the unique Fréchet mean:

Theorem 3 (Optimality Criterion for Karcher Means). Let µi for i = 1, . . . , N be
probability measures on an open convex X ⊆ Rd whose densities gi are bounded and
strictly positive on X and let µ be a regular Karcher mean of {µi} with density f . Then
µ is the unique Fréchet mean of {µi}, provided one of the following holds:
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1. X = Rd, f is bounded and strictly positive, and the densities f, g1, . . . , gN are of
class C1;

2. X is bounded, µ(X) = 1, f is bounded, and the densities f, g1, . . . , gN are bounded
from below on X.

Remark 1. In the first condition, the C1 assumption can be weakened to Hölder
continuity of the densities for some exponent α ∈ (0, 1].

Remark 2. We conjecture that a stronger result should be valid: specifically, if
µ1, . . . , µN satisfy the conditions of Theorem 3, then we conjecture the Fréchet func-
tional F to in fact have a unique Karcher mean, coinciding with the Fréchet mean.

5. Gradient Descent and Procrustes Analysis.

5.1. Elements of the Algorithm. Let µ1, . . . , µN ∈ P2(Rd) be regular and let γj ∈
P2(Rd) be a regular measure, representing our current estimate of the Fréchet mean of
µ1, . . . , µN at step j. Following the discussion above, it makes sense to introduce a step
size τj > 0, and to follow the steepest descent of F given by the negative of the gradient:

γj+1 = expγj
(
−τjF ′(γj)

)
=

[
i + τj

1

N

N∑
i=1

logγ(µi)

]
#γj =

[
i + τj

1

N

N∑
i=1

(tµ
i

γj − i)

]
#γj .

In order to guarantee that the descent is well-defined, we must make sure that the
gradient itself will remain well-defined as we iterate over j. In view of Theorem 2, this
requires showing that γj+1 remains regular whenever γj is regular. This is indeed the
case, at least if the step size is contained in [0, 1]:

Lemma 1 (Regularity of the iterates). If γ0 is regular and τ0 ∈ [0, 1] then so is γ1.

Lemma 1 suggests that the step size must be restricted to [0, 1]. The next result sug-
gests that the objective function essentially tells us that the optimal step size, achieving
the maximal reduction of the objective function (thus corresponding to an approximate
line search), is exactly equal to 1:

Lemma 2 (Optimal Stepsize). If γ0 ∈ P2(Rd) is regular then

F (γ1)− F (γ0) ≤ −‖F ′(γ0)‖2
[
τ − τ2

2

]
.

and the bound on the right-hand side of the last display is minimised when τ = 1.

In light of the results in Lemmas 1 and 2, one needs only concentrate on the case
τj = 1. This has an interesting ramification: when τ = 1, the gradient descent iteration
is structurally equivalent to a Procrustes analysis. Specifically, the gradient descent
algorithm proceeds by iterating the two steps of a Procrustes analysis (Gower [33];
Dryden & Mardia [25, p. 90]):
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Algorithm 1 Gradient Descent via Procrustes Analysis

(A) Set a tolerance threshold ε > 0.

(B) For j = 0, let γj be an arbitrary regular measure.

(C) For i = 1, . . . , N solve the (pairwise) Monge problem and find the optimal transport map tµ
i

γj

from γj to µi.

(D) Define the map Tj = N−1 ∑N
i=1 tµ

i

γj .

(E) Set γj+1 = Tj#γj , i.e. push-forward γj via Tj to obtain γj+1.

(F) If ‖F ′(γj+1)‖ < ε, stop, and output γj+1 as the approximation of µ̄ and tµ
i

γj+1
as the approximation

of tµ
i

µ̄ , i = 1, . . . , N . Otherwise, return to step (C).

(1) Registration: Each of the measures {µ1, . . . , µN} is registered to the current tem-

plate γj , via the optimal transportation (registration) maps tµ
i

γj . In geometrical
terms, the measures {µ1, . . . , µN} are lifted to the tangent space at γj (via the log
map), and their linear representation on the tangent space is expressed in local

coordinates which coincide with the maps tµ
i

γj − i = logγj (µ
i). These can be seen

as a common coordinate system for {µ1, . . . , µN}, i.e. a registration.
(2) Averaging: The registered measures are averaged coordinate-wise, using the com-

mon coordinates system by the registration step (1). In geometrical terms, the

linear representation of {µ1, . . . , µN} afforded by their local coordinates tµ
i

γj − i =
logγj (µ

i) is averaged linearly. The linear average is then retracted back onto the
manifold via the exponential map to yield the estimate at the (j + 1)-step.

That the gradient descent reduces to Procrustes analysis is not simply of aesthetic
value. It is of the essence, as it shows that the algorithm relies entirely on solving a succes-
sion of pairwise optimal transportation problems, thus reducing the determination of the
Fréchet mean to the classical Monge problem of optimal transportation (e.g. Benamou
and Brenier [10], Haber et al. [35], Chartrand et al. [20]). After all, this is precisely the
point of a Procrustes algorithm: exploiting the (easier) problem of pairwise registration
to solve the (harder problem) of multi-registration. An additional practical advantage is
that Procrustes algorithms are easily parallelisable, since one can distribute the solution
of the pairwise transport problems at each step j. Any regular measure can serve as
an initial point for the algorithm, for instance one of the µi. The gradient/Procrustes
iteration is presented succinctly as Algorithm 1.

5.2. Convergence of the Algorithm. In order to tackle the issue of convergence, we
will use an approach that is specific to the nature of optimal transportation. The reason
is that Hessian type arguments that are used to prove similar convergence results for
gradient descent on Riemmanian manifolds (Afsari et al. [1]) or Procrustes algorithms
(Le [45], Goissard [34]) do not apply here, since the Fréchet functional may very well
fail to be twice differentiable. Still, this specific geometry of Wasserstein space affords
some advantages; for instance, we will place no restriction on the starting point for the
iteration, except that it be regular:
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Theorem 4 (Limit Points are Karcher Means). Let µ1, . . . , µN ∈ P2(Rd) be abso-
lutely continuous probability measures, one of which with bounded density. Then, the se-
quence generated by Algorithm 1 stays in a compact set of the Wasserstein space P2(Rd),
and any limit point of the sequence is a Karcher mean of (µ1, . . . , µN ).

In view of Corollary 1, this immediately implies:

Corollary 2 (Wasserstein Convergence of Gradient Descent). Under the condi-
tions of Theorem 4, if F has a unique stationary point, then the sequence {γj} generated
by Algorithm 1 converges to the Fréchet mean of {µ1, . . . , µN} in the Wasserstein metric,

d(γj , µ̄)
j→∞−→ 0.

Of course, combining Theorem 4 with Theorem 3 shows that the conclusion of Corol-
lary 2 holds when the appropriate assumptions on {µi} and the Karcher mean µ are
satisfied. The proof of Theorem 4 is elaborate, and is constructed via a series of in-
termediate results in a separate section (Section 7.3.1) in the interest of tidiness. The
main challenge is that the standard condition used for convergence of gradient descent
algorithms, that gradients be Lipschitz, fails to hold in this setup. Indeed, F is not dif-
ferentiable on discrete measures, and these constitute a dense subset of the Wasserstein
space.

5.3. Uniform Convergence of Procrustes Maps. We conclude our analysis of the al-
gorithm by turning to the Procrustes maps tµ̄

µi
, which optimally couple each sample

observation µi to their Fréchet mean µ̄. These are the key objects required for the so-
lution of the multicoupling problem (as established in Theorem 1), and one would use
the limit of t

γj
µi

in j as their approximation. However, the fact that d(γj , µ̄)→0 does

not immediately imply the convergence of t
γj
µi

to tµ̄
µi

: the Wasserstein convergence only
means that certain integrals of the warp maps converge. Still, convergence of the warp
maps does hold, indeed uniformly so on compacta, µ̄-almost everywhere:

Theorem 5 (Uniform Convergence of Procrustes Maps). Under the conditions of
Corollary 2, there exist sets A,B1, . . . , BN ⊆ Rd such that µ̄(A) = 1 = µ1(B1) = · · · =
µN (BN ) and

sup
Ω1

∥∥∥tµiγj − tµ
i

µ̄

∥∥∥ j→∞−→ 0, sup
Ω2

∥∥∥tγjµi − tµ̄
µi

∥∥∥ j→∞−→ 0, i = 1, . . . , N,

for any pair of compacta Ω1 ⊆ A, Ω2 ⊆ Bi, where the sequence t
γj
µi

and tµ
i

γj =
(
t
γj
µi

)−1
are

the Procrustes maps generated by Algorithm 1. If in addition all the measures µ1, . . . , µN

have the same support, then one can choose the sets so that B1 = · · · = BN .

6. Discrete Observation and Registration of Warped Point Processes. In
practice, it may be the case that we are unable to fully observe the measures {µ1, . . . , µN}.
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Instead, we may have access to discrete versions, {µ′1, . . . , µ′N}, where each µ′i is a finite
measure corresponding to a sample of size ni from µi. More generally, we might have
point processes {Π̃1, . . . , Π̃N} on Rd with corresponding mean measures {Λ1, . . . ,ΛN},
where we have switched to the notation Λi = µi that is perhaps more natural in the
context of point process intensities. Two natural questions that extend the development
in Section 3 are:

1. Is it possible to still construct a proxy for the Fréchet mean of {Λ1, . . . ,ΛN}, based
on {Π̃1, . . . , Π̃N}?

2. If {Π̃1, . . . , Π̃N} are viewed as warped point processes, is there a way to register
them by carrying out a Procrustes analysis?

In fact, the problem of registration of point processes within a functional data analysis
context, number (2) above, is a topic of intense current research (Panaretos & Zemel
[49], Wu & Srivastava [61], Wu et al. [58], Patriarca et al. [50], Cheng et al. [21], Lu &
Marron [46], Hadjipantelis et al. [36]). Panaretos & Zemel [49] show that, in a certain
sense, the two problems (1) and (2) are complementary, and the canonical solution
to (2) requires the solution to (1), similarly to the discussion in Section 3. Progress
so far, however, has been restricted to the one-dimensional case, driven in most cases
by the modelling of neuronal firing times (Wu & Srivastava [59, 60]). Nevertheless,
multidimensional situations are clearly of potential interest: rather than registering the
firing times of a specific neuron over N individuals, one may wish to jointly register the
firing times of d neurons per individual.

We will describe how both (1) and (2) can be solved, by means of the techniques
introduced earlier in the paper.

6.1. Discretely Observed Random Measures. Let λ be a regular probability measure
with a strictly positive density on a convex compact K ⊂ Rd of positive Lebesgue
measure1, and let {Π1, . . . ,ΠN} be i.i.d point processes with intensity measure λ,

E[Πi(A)] = λ(A),

for all Borel subsets A ⊆ K. Instead of observing the true processes {Π1, . . . ,ΠN}, we
are able to observe warped versions

Π̃i := Ti#Πi, i = 1, . . . , N,

with conditional warped mean measures

E[Π̃i|Ti] = E[Ti#Πi|Ti] = Λi = Ti#λ,

where the {Ti : Rd → Rd} are i.i.d random homeomorphisms on K, satisfying the
properties of

1In applied settings, the point processes will be observed on a bounded observation window K. For
this reason as well as the sake of simplicity, we restrict our discussion to a given compact set (but remark
that it could be extended to unbounded observation windows subject to further conditions).
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1. Unbiasedness: the Fréchet mean of Λi = Ti#λ is λ.
2. Regularity: Ti is a gradient of a convex function on K.

The importance and canonicity of these two assumptions has been discussed in depth in
Panaretos & Zemel [49, Section 3.3]. In brief, unbiasedness stipulates that the warp maps
do not deform the template λ on average – in other words, the intensity measure Ti#λ of
Π̃i has Fréchet mean λ. Regularity assumes that the deformation maps are identifiable,
by asking them to be optimal transport maps (in view of Brenier’s characterisation).
Notice that this is a reasonable assumption for an additional reason: it requires that
orientation be preserved (for instance, if K = [0, 1]2 representing the time domain for
the firing times of two neurons, it is not allowed that a warp map affect the lexicographic
ordering of the firing times; see Section 7.5).

6.2. Regularised Procrustes Registration. Our strategy will be to estimate the un-
known structural mean measure λ, and the maps Ti non-parametrically by smoothing
the observed point processes {Π̃1, . . . , Π̃N}. Once λ and {Ti} have been estimated, the
processes {Π̃1, . . . , Π̃N} can be registered by applying the inverses of the estimated maps
Ti. The following Proposition guarantees that the estimands considered are identifiable.

Proposition 2 (Identifiability). Let Λ be a random probability measure on Rd, d ≥
1. If Λ is almost surely regular and supported on a convex compact set K, the population
Fréchet functional

γ 7→ E
[
d2(Λ, γ)

]
,

is strictly convex over probability measures γ on Rd, and has a (unique) minimum λ.
Consequently, the optimal transportation map T := tΛ

λ is uniquely defined almost surely.

Generalising the approach of Panaretos & Zemel [49], our procedure follows the steps:

1. Regularisation: Estimate Λi = Ti#λ by a regular kernel estimator Λ̂i restricted on
K,

(6.1) Λ̂i =
1

m

m∑
j=1

δ{xj} ∗ ψσ
[δ{xj} ∗ ψσ](K)

∣∣∣∣
K

,

where ψ : Rd → (0,∞) is a unit-variance isotropic density function, ψσ(x) =
σ−dψ(x/σ) for σ > 0 (more generally, ψ could be non-isotropic, having a bandwidth
matrix, but we focus on the isotropic case for simplicity), and Π̃i is the sum of
dirac masses

∑m
j=1 δ{xi}. If Π̃i contains no points (that is, m = 0), define Λ̂i to be

the (normalised) Lebesgue measure on K.
2. Fréchet Mean Estimation: Estimate λ by the empirical Fréchet mean λ̂ of Λ̂1, . . . , Λ̂N ,

using the Procrustes Algorithm 1.
3. Procrustes Analysis: Estimate Ti by the optimal transportation map of λ̂ onto Λ̂i,

as given by the final step in the iteration of Algorithm 1. Estimate the map T−1
i

by T̂−1
i = T̂−1

i .
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4. Registration: Register the observed point processes to a common coordinate system

by defining Π̂i = T̂−1
i #Π̃i.

In the next section, we will prove that our estimates are consistent for their population
version, as the number of observed processes, and the number of points per process
diverge.

6.3. Consistency. To establish consistency, we will use the dense asymptotics regime
of functional data analysis, adapted to the current setting. We will consider a setup
where the number of observed point processes n diverges, and the (mean) number of
points in each observed process, E[Π̃i(K)], diverge too. Here we use the index notation
“n” rather than “N” to emphasize that the index is no longer held fixed. Specifically,

let (Π
(n)
1 ,Π

(n)
2 , . . . ,Π

(n)
n )∞n=1 be a triangular array of row-independent and identically

distributed point processes on K following the same infinitely divisible distribution and
having mean measure τnλ, where τn > 0 are constants. Let T1, . . . , Tn be independent
and identically distributed realisations of a random homeomorphism T of K satisfying

the unbiasedness and regularity assumptions of Section 6.1. Let Π̃
(n)
i = Ti#Π

(n)
i and set

Λi = Ti#λ = τ−1
n E[Π̃

(n)
i |Ti]. Suppose that Λ̂i is an estimator of Λi, constructed by kernel

smoothing of Π
(n)
i using a (possibly random) bandwidth σ

(n)
i , as described in the previous

section. Correspondingly, let Π̃
(N)
i = Ti#Π

(n)
i and set Λi = Ti#λ = τ−1

n E[Π̃
(n)
i |Ti].

Theorem 6 (Consistency of the regularised Fréchet Mean). If τn/ log n → ∞ and

σn = maxi σ
(n)
i

p→ 0 then

1. For any i,
d(Λ̂i,Λi)

p→ 0;

2. The estimator λ̂n is strongly consistent

d(λ̂n, λ)
as→ 0.

If the smoothing is carried out independently across trains, that is, σ
(n)
i depends only on

Π̃
(n)
i , then the result still holds if merely τn →∞.

If E
[
Π

(1)
1

]4
<∞,

∑
n τ
−2
n <∞ and σn

as→ 0 then convergence almost surely holds.

Remark 3. There is no lower bound on σn, and it can vanish at any rate, provided
it is strictly positive. In practice, however, if σn is very small, then the densities of Λ̂i
will have very high peaks, and the constant Cµ in Proposition 4 (with µi = Λ̂i) will be
large (essentially proportional to 1/σn). The proof of Proposition 3 suggests that this
may slow down the convergence of Algorithm 1.

Our next two results concern the (uniform) consistency of the Procrustes registration
procedure. Though the results themselves parallel their one-dimensional counterparts,
their proofs are entirely different, and substantially more involved (because the geometry
of monotone mappings in Rd is far more rich than the geometry of monotone maps on
R). In particular, we have:



16 Y. ZEMEL & V.M. PANARETOS

Theorem 7 (Consistency of Procrustes Maps). Under the same conditions of The-
orem 6, for any i and any compact set Ω ⊆ int(K),

sup
x∈Ω
‖T̂−1

i (x)− T−1
i (x)‖ p→ 0, sup

x∈Ω
‖T̂i(x)− Ti(x)‖ p→ 0.

The same remarks at the end of the statement of Theorem 6 apply here as well.

Corollary 3 (Consistency of Procrustes Registration). Under the same conditions
of Theorem 6, the registration procedure is consistent: for any i

d

(
Π̂i

Π̂i(K)
,

Πi

Πi(K)

)
p→ 0, n→∞,

provided one of the following conditions holds:

1. Every point of the boundary of K is exposed, that is, for any y ∈ ∂K there exists
α ∈ Rd such that

〈y, α〉 > 〈y′, α〉, y′ ∈ K \ {y}.

2. The warp map Ti is strictly monotone

0 < 〈Ti(x′)− Ti(x), x′ − x〉, x, x′ ∈ int(K), x 6= x′.

The first condition is satisfied by any ellipsoid in Rd and more generally if the boundary
of K can be written as ∂K = {x : ϕK(x) = 0}, for a strictly convex function ϕK . Indeed,
if α creates a supporting hyperplane to K at y and 〈α, y〉 = 〈α, y′〉 for y 6= y′, then as
ϕK is strictly convex on the line segment [y, y′], it is impossible that y′ ∈ K without
the hyperplane intersecting the interior of K. Although this condition excludes some
interesting cases, perhaps most prominently polyhedral sets such as K = [0, 1]d, such
sets can be approximated by convex sets that do satisfy it (Krantz [43, Proposition 1.12]).

As for the second condition, in general it will hold almost surely. Indeed, as Ti#λ = Λi
and both measures are absolutely continuous, there exists a λ-null set N such that Ti
is strictly monotone outside N [7, Proposition 6.2.12]. By assumption λ has a strictly
positive density on K, so that λ-null subsets of K are precisely the Lebesgue null subsets
of K. In that sense, this condition is not overly restrictive, and will most likely be satisfied
under additional regularity assumptions on the warp maps Ti and, possibly, K.

6.4. Illustrative Examples. As an illustration, we implement Algorithm 1 in several
scenarios for which pairwise optimal maps can be calculated explicitly at every iteration,
allowing for fast computation without error propagation. More details on the calculations
and properties of each individual scenario can be found in Section 3 of the supplement
[62].
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Fig 1. Densities of bimodal Gaussian mixture (left) and a mixture of Gaussian with gamma (right), with
the Fréchet mean density in light blue.

6.4.1. The case d = 1. When the measures are supported on the real line, the optimal
maps have the explicit expression given in Equation (2.1) and one may apply Algorithm 1
starting from one of these measures. Figure 1 plots N = 4 univariate densities and the
Fréchet mean yielded by the algorithm in two different scenarios. At the left, the densities
were generated as

(6.2) f i(x) =
1

2
φ

(
x−mi

1

σi1

)
+

1

2
φ

(
x−mi

2

σi2

)
,

with φ the standard normal density, and the parameters generated independently as

mi
1 ∼ U [−13,−3], mi

2 ∼ U [3, 13], σi1, σ
i
2 ∼ Gamma(4, 4).

At the right of Figure 1, we used a mixture of a shifted gamma and a Gaussian:

(6.3) f i(x) =
3

5

β3
i

Γ(3)
(x−mi

3)2e−βi(x−3) +
2

5
φ(x−mi

4),

with
βi ∼ Gamma(4, 1), mi

3 ∼ U [1, 4], mi
4 ∼ U [−4,−1].

The resulting Fréchet mean density for both settings is shown in thick light blue, and
can be seen to capture the bimodal nature of the data. Even though the Fréchet mean
of Gaussian mixtures is not a Gaussian mixture itself, it is approximately so, provided
that the peaks are separated enough. Figure 8(a) shows the Procrustes maps pushing
the Fréchet mean µ̄ to the measures µ1, . . . , µN in each case. If one ignores the “middle
part” of the x axis, the maps appear (approximately) affine for small values of x and for
large values of x, indicating how the peaks are shifted. In the middle region, the maps
need to “bridge the gap” between the different slopes and intercepts of these affine maps.
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Fig 2. Density plots of the four product measures of the measures in Figure 1.
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Fig 3. Density plot of the Fréchet mean of the measures in Figure 2.

6.4.2. Independence. We next take measures µi on R2, having independent marginal
densities f iX as in (6.2), and f iY as in (6.3). Figure 2 shows the density plot of N = 4 such
measures, constructed as the product of the measures from Figure 1. One can distinguish
the independence by the “parallel” structure of the figures: for every pair (y1, y2), the
ratio g(x, y1)/g(x, y2) does not depend on x (and vice versa, interchanging x and y).
Figure 3 plots the density of the resulting Fréchet mean. We observe that the Fréchet
mean captures the four peaks, and their location. Furthermore, the parallel nature of
the figure is preserved in the Fréchet mean. Indeed, we prove in the supplement [62]
that, unsurprisingly, the Fréchet mean is a product measure.

6.4.3. Common Copulas. Let µi be a measure on R2 with density

gi(x, y) = c(F iX(x), F iY (y))f iX(x)f iY (y),

where f iX and f iY are random densities on the real line with distribution functions F iX and
F iY , and c is a copula density. Figure 4 shows the density plot of N = 4 such measures,
with f iX generated as in (6.2), f iY as in (6.3), and c is the Frank(−8) copula density,
while Figure 5 plots the density of the Fréchet mean obtained. (For ease of comparison
we use the same realisations of the densities that appear in Figure 1.) The Fréchet mean
can be seen to preserve the shape of the density, having four clearly distinguished peaks.
Figure 8(b), depicting the resulting Procrustes maps, allows for a clearer interpretation:
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Fig 4. Density plots of four measures in R2 with Frank copula of parameter −8.
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Fig 5. Density plot of the Fréchet mean of the measures in Figure 4.

for instance the leftmost plot (in black) shows more clearly that the map splits the mass
around x = −2 to a much wider interval; and conversely a very large amount mass is
sent to x ≈ 2. This rather extreme behaviour matches the peak of the density of µ1

located at x = 2.
The first three scenarios are examples of situations where the measures {µi} are

compatible with each other in the sense that tµ
k

µj
◦tµ

j

µi
= tµ

k

µi
. Boissard et al. [15] tackle the

problem of finding the Fréchet mean in such a setting, by means of the iterated barycentre.
In the supplementary material [62] we show that Algorithm 1 will always converges to
the Fréchet mean, provided the initial point γ0 is compatible with {µi} (for instance, if
γ0 = µi). In fact, we show that convergence is established after a single iteration of the
algorithm. Since optimal maps are gradients of convex potentials, they must have positive
definite derivatives. Under regularity conditions, admissibility is essentially equivalent

to the commutativity of the d× d matrices ∇tµ
k

µj
(tµ

j

µi
(x)) and ∇tµ

j

µi
(x) for µi-almost any

x. We next discuss examples where this condition fails.

6.4.4. Gaussian measures. Suppose that each µi follows a non-degenerate multivari-
ate Gaussian distribution with mean 0 and covariance matrix Si. The optimal maps are
known to be linear and admit the explicit formula (Dowson and Landau [24]; Olkin and
Pukelsheim [48])

tji = S
1/2
j [S

1/2
j SiS

1/2
j ]−1/2S

1/2
j .
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Fig 6. Density plot of four Gaussian measures in R2.
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Fig 7. Density plot of the Fréchet mean of the measures in Figure 6.

If the initial point γ0 is another Gaussian measure with covariance matrix Γ0, then by
the linearity of the maps one sees that γk ∼ N (0,Γk) for some positive definite Γk. Thus,
one can calculate the optimal maps at each iteration; in the supplement [62] we prove
that γk must converge to the unique Fréchet mean, which is also a Gaussian measure.

Notice that the Gaussian measures {µi} will be compatible if SiSj = SjSi, but they
might well fail to be. Thus, the algorithm does not converge in one step. We observed,
however, rapid convergence of the iterates of Algorithm 1 to the Fréchet mean, even for
rather large values of N and d. Figure 6 shows density plots of N = 4 centred Gaussian
measures on R2 with covariances Si ∼Wishart(I2, 2), and Figure 7 shows the density of
the resulting Fréchet mean. In this particular example, the algorithm needed 11 iterations
starting from the identity matrix. The corresponding Procrustes registration maps are
displayed in Figure 8(c). It is apparent from the figure that these maps are linear, and
after a more careful reflection one can be convinced that their average is the identity.
The four plots in the figure are remarkably different, in accordance with the measures
themselves having widely varying condition numbers and orientations; µ3 and more so
µ4 are very concentrated, so the registration maps “sweep” the mass towards zero. In
contrast, the registration maps to µ1 and µ2 spread the mass out away from the origin.

6.4.5. Partially Gaussian Trivariate Measures. We now apply Algorithm 1 in a situ-
ation that entangles two of the previous settings. Let U be a 3×3 real orthogonal matrix
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(a) One-dimensional example: Procrustes registration maps tµ
i

µ̄ from the Fréchet mean µ̄ to the
four measures {µi} in Figure 1. The left plot corresponds to the bimodal Gaussian mixture, and
the right plot to the Gaussian/gamma mixture.
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(b) Common copula example: Procrustes registration maps tµ
i

µ̄ (depicted as a vector field {tµ
i

µ̄ (x)−x : x ∈ R2})
from the Fréchet mean µ̄ of Figure 5 to the four measures {µi} of Figure 4. The colours match those of Figure 1.
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(c) Gaussian example: Procrustes registration maps tµ
i

µ̄ (depicted as a vector field {tµ
i

µ̄ (x) − x : x ∈ R2}) from
the Fréchet mean µ̄ of Figure 7 to the four measures {µi} of Figure 6. The order corresponds to that of Figure 6
(left to right and top to bottom).

Fig 8. Procrustes registration maps for the one-dimensional, common copula, and Gaussian examples.
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Fig 9. The set {v ∈ R3 : gi(v) = 0.0003} for i = 1 (black), the Fréchet mean (light blue), i = 2, 3, 4 in
red, green and dark blue respectively.

with columns U1, U2, U3 and let µi have density

gi(y1, y2, y3) = gi(y) = f i(U t3y)
1

2π
√

detSi
exp

−(U t1y, U
t
2y)(Si)−1

(Ut1y
Ut2y

)
2

 ,
with f i bounded density on the real line and Si ∈ R2×2 positive definite. We simulated
N = 4 such densities with f i as in (6.2) and Si ∼ Wishart(I2, 2). We apply Algo-
rithm 1 to this collection of measures and find their Fréchet mean (in Section 3 of the
supplementary material [62] we provide precise details on how the optimal maps were
calculated). Figure 9 shows level set of the resulting densities for some specific values.
The bimodal nature of f i implies that for most values of a, {x : f i(x) = a} has four
elements. Hence the level sets in the figures are unions of four separate parts, with each
peak of f i contributing two parts that form together the boundary of an ellipsoid in
R3 (see Figure 10). The principal axes of these ellipsoids and their position in R3 differ
between the measures, but the Fréchet mean can be viewed as an average of those in
the some sense.

In terms of orientation (principal axes) of the ellipsoids, the Fréchet mean is most
similar to µ1 and µ2, whose orientations are similar to one another.
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Fig 10. The set {v ∈ R3 : gi(v) = 0.0003} for i = 3 (left) and i = 4 (right), with each of the four
different inverses of the bimodal density f i corresponding to a colour.

In the most general examples, one might not be able to analytically obtain the optimal
maps at each iteration. In such situations, one needs to resort to numerical schemes such
as Benamou and Brenier [10], Haber et al. [35] or Chartrand et al. [20] to obtain the
N optimal maps at each iteration. Usually such schemes are iterative themselves, so
one must take care in managing propagation of errors resulting from using approximate
rather than exact transport maps.

7. Proofs of Formal Statements. Our proofs will require us to establish some
analytical results that are intrinsic to the optimal transportation problem. These are
essential for the proofs, especially of our main results, and some are non-trivial. For
tidiness, we will state and prove these results separately at the end of this section (Section
7.5), developing our main results first, and referring to the analytical background when
necessary.

7.1. Proofs of Statements in Section 3.

Proof of Theorem 1. The optimisation problem

min
Yi∼µi

E
N∑
i=1

N∑
j=i+1

‖Yi − Yj‖2 = min
ξ∈Γ(µ1,...,µN )

∫
RNd

N∑
i=1

N∑
j=i+1

‖ti − tj‖2 dξ(t1, . . . , tN )

is equivalent to minimising

G(ξ) =
1

2N

∫
RNd

N∑
i=1

∥∥∥∥∥∥ti − 1

N

N∑
j=1

tj

∥∥∥∥∥∥
2

dξ(t1, . . . , tN ), ξ ∈ Γ(µ1, . . . , µN ),

and Agueh and Carlier [2, Proposition 4.2] show that minµ F (µ) = minξ G(ξ).
Since µ̄ is regular [2, Proposition 5.1], X is well-defined and has joint distribution

ξ′ = h#µ̄, h : Rd → RNd, h =
(
tµ

1

µ̄ , . . . , t
µN

µ̄

)
.
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Since the coordinates of h have mean identity (see [2, Equation (3.9)] or Corollary 1),

G(ξ′) =
1

2N

∫
Rd

N∑
i=1

‖tµ
i

µ̄ − i‖2 dµ̄ =
1

2N

N∑
i=1

d2(µ̄, µi) = F (µ̄) = inf
µ
F (µ).

Thus ξ′ is optimal.

7.2. Proofs of Statements in Section 4.

Proof of Corollary 1. The characterisation of Karcher means is immediate from
Theorem 2. The fact that the Fréchet mean µ satisfies

∑N
i=1 (tµiµ − i) = 0 µ-almost

everywhere follows by a result of Agueh and Carlier [2]. For an alternative proof using
the tangent bundle, see the supplementary material [62].

Proof of Theorem 3. The result exploits Caffarelli’s regularity theory for Monge–
Ampère equations. In the first case, by Theorem 4.14(iii) in Villani [56] there exist C1

(in fact, C2,α) convex potentials ϕi on Rd with tµ
i

µ = ∇ϕi, so that tµ
i

µ (x) is a singleton

for all x ∈ Rd. The set {x ∈ Rd :
∑

tµ
i

µ (x)/N 6= x} is µ-negligible (and hence Lebesgue-
negligible) and open by continuity. It is therefore empty, so F ′(µ) = 0 everywhere, and
µ is the Fréchet mean (see the discussion after Corollary 1).

In the second case, by a theorem of Caffarelli [19], and the same argument, we have∑
tµ

i

µ (x)/N = x for all x ∈ X. Since X is convex, there must exist a constant C such
that

∑
ϕi(x) = C + N‖x‖2/2 for all x ∈ X. Hence Equation (3.9) in [2] holds with Rd

replaced by X. Repeating the proof of Proposition 3.8 in [2], we see that µ minimises
F on P2(X), the set of measures supported on X. (All the integrals that appear in the
proof can be taken on X, where we know the inequality holds). Again by convexity of
X, the minimiser of F must be in P2(X) (see the proof of Proposition 2).

7.3. Proofs of Statements in Section 5.

Proof of Lemma 1. By [7, Proposition 6.2.12] there exists a γ0-null set Ai such

that on Rd \ Ai, tµ
i

γ0 is differentiable, ∇tµ
i

γ0 > 0 (positive definite), and tµ
i

γ0 is strictly
monotone

〈tµiγ0
(x)− tµ

i

γ0
(x′), x− x′〉 > 0, x, x′ /∈ Ai, x 6= x′.

Since tγ1
γ0 = (1 − τ)i + τN−1

∑N
i=1 tµ

i

γ0 , it stays strictly monotone (hence injective) and
∇tγ1

γ0 > 0 outside A = ∪Ai, which is a γ0-null set.
Let h0 denote the density of γ0 and set Σ = Rd \ A. Then tγ1

γ0 |Σ is injective and
{h0 > 0} \ Σ is Lebesgue negligible because

0 = γ0(A) = γ0(Rd \ Σ) =

∫
Rd\Σ

h0(x) dx =

∫
{h0>0}\Σ

h0(x) dx,

and the integrand is strictly positive. Since |det∇tµ
i

γ0 | > 0 on Σ we obtain that γ1 =

tµ
i

γ0#γ0 is absolutely continuous by [7, Lemma 5.5.3].
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Proof of Lemma 2. Let Si = tµ
i

γ0 be the optimal map from γ0 to µi, and set Wi =
Si − i. Then

(7.1) 2NF (γ0) =

N∑
i=1

d2(γ0, µ
i) =

N∑
i=1

∫
Rd
‖Si − i‖2 dγ0 =

N∑
i=1

〈Wi,Wi〉 =

N∑
i=1

‖Wi‖2,

with the inner product being in L2(γ0). By definition

γ1 =

(1− τ)i +
τ

N

N∑
j=1

Sj

#γ0 =

(1− τ)S−1
i +

τ

N

N∑
j=1

Sj ◦ S−1
i

#µi.

This is a map that pushes forward µi to γ1 (not necessarily optimally). Hence

d2(γ1, µ
i) ≤

∫
Rd

∥∥∥∥∥∥
(1− τ)S−1

i +
τ

N

N∑
j=1

Sj ◦ S−1
i

− i

∥∥∥∥∥∥
2

Rd

dµi.

Now µi = Si#γ0, which means that
∫
f dµi =

∫
(f ◦ Si) dγ0 for any measurable f . This

change of variables gives

d2(γ1, µ
i) ≤

∫
Rd

∥∥∥∥∥∥
(1− τ)i +

τ

N

N∑
j=1

Sj

− Si
∥∥∥∥∥∥

2

Rd

dγ0 =

∥∥∥∥∥∥−Wi +
τ

N

N∑
j=1

Wj

∥∥∥∥∥∥
2

L2(γ0)

.

The norm is always in L2(γ0), regardless of i. Developing the squares, summing over
i = 1, . . . , N and using (7.1) gives

2NF (γ1) ≤
N∑
i=1

‖Wi‖2 − 2
τ

N

N∑
i,j=1

〈Wi,Wj〉+
τ2

N2

N∑
i,j,k=1

〈Wj ,Wk〉

= 2NF (γ0)− 2Nτ

∥∥∥∥∥
N∑
i=1

1

N
Wi

∥∥∥∥∥
2

+Nτ2

∥∥∥∥∥
N∑
i=1

1

N
Wi

∥∥∥∥∥
2

,

and recalling that Wi = Si − i yields

F (γ1)− F (γ0) ≤ τ2 − 2τ

2

∥∥∥∥∥ 1

N

N∑
i=1

Wi

∥∥∥∥∥
2

= −‖F ′(γ0)‖2
[
τ − τ2

2

]
.

Since τ − τ2/2 is clearly maximised at τ = 1, the proof is complete.

7.3.1. Proof of Theorem 4. We will prove the theorem by establishing the following
facts:

1. The sequence ‖F ′(γj)‖ converge to zero as j →∞.
2. The sequence {γj} is stays in a compact subset of P2(Rd).
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3. The mapping γ 7→ ‖F ′(γ)‖2 is continuous.

The first two are relatively straightforward, and are proven in the form of the following
two Lemmas.

Lemma 3. The objective value of the Fréchet functional decreases at each step of
Algorithm 1, and ‖F ′(γj)‖ vanishes as j →∞.

Proof. The first statement is clear from Lemma 2, from which it also follows that

1

2

k∑
j=0

‖F ′(γj)‖2 ≤
k∑
j=0

F (γj)− F (γj+1) = F (γ0)− F (γk+1) ≤ F (γ0).

Consequently, the series at the left-hand side converges whence ‖F ′(γj)‖2 → 0.

Lemma 4. The sequence generated by Algorithm 1 stays in a compact subset of the
Wasserstein space P2(Rd).

Proof. For any ε > 0 there exists a compact convex set Kε such that µi(Kε) >

1− ε/N for i = 1, . . . , N . Let Ai = (tµ
i

γj )
−1(Kε), A = ∩Ni=1A

i. Then γj(A
i) > 1− ε/N , so

that γj(A) > 1− ε. Since Kε is convex, Tj(x) ∈ Kε for any x ∈ A, so that

γj+1(Kε) = γj(T
−1
j (Kε)) ≥ γj(A) > 1− ε, j = 0, 1, . . . .

We shall now show that any weakly convergent subsequence of {γj} is in fact convergent
in the Wasserstein space. By Theorem 7.12 in Villani [56], it suffices to show that

(7.2) lim
R→∞

sup
j∈N

∫
{x:‖x‖>R}

‖x‖2 dγj(x) = 0.

For simplicity, we shall show this under the stronger assumption that the measures
µ1, . . . , µN have a finite third moment

(7.3)

∫
Rd
‖x‖3 dµi(x) ≤M(3), i = 1, . . . , N.

In Section 2 of the supplementary material [62] we show that (7.2) holds even if (7.3)
does not.

For any j ≥ 1 it holds that

∫
Rd
‖x‖3 dγj(x) =

∫
Rd

∥∥∥∥∥ 1

N

N∑
i=1

tµ
i

γj−1
(x)

∥∥∥∥∥
3

dγj−1(x) ≤ 1

N

N∑
i=1

∫
Rd
‖tµiγj−1

(x)‖3 dγj−1(x)

=
1

N

N∑
i=1

∫
Rd
‖x‖3 dµi(x) ≤M(3).
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This implies that for any R > 0 and any j > 0,∫
{x:‖x‖>R}

‖x‖2 dγj(x) ≤ 1

R

∫
{x:‖x‖>R}

‖x‖3 dγj(x) ≤ 1

R
M(3),

and (7.2) follows.

The third statement (continuity of the gradient) is much more subtle to establish. We
will prove it in two steps: first we establish a Proposition, giving sufficient conditions
for the third statement to hold true. Then, we will verify that the conditions of the
Proposition are satisfied in the setting of Theorem 5, in the form of a Lemma and a
Corollary. We start with the proposition.

Proposition 3 (Continuity of F ′). Let µ1, . . . , µN ∈ P2(Rd) be given regular mea-
sures, and consider a sequence γn of regular measures that converges in P2(Rd) to a regu-
lar measure γ. If the densities of γn are uniformly bounded, then ‖F ′(γn)‖2 → ‖F ′(γ)‖2.

Proof. The regularity of γn and γ implies that F is indeed differentiable there, and
so it needs to be shown that∥∥∥∥∥ 1

N

N∑
i=1

tµ
i

γn − i

∥∥∥∥∥
2

L2(γn)

−→

∥∥∥∥∥ 1

N

N∑
i=1

tµ
i

γ − i

∥∥∥∥∥
2

L2(γ)

, n→∞.

Denote the integrands by gn and g respectively. At a given x ∈ Rd, gn(x) can be unde-

fined, either because some tµ
i

γn(x) is empty, or because they can be multivalued. Redefine
gn(x) at such points by setting it to 0 in the former case and choosing an arbitrary rep-
resentative otherwise. Since the set of these ambiguity points is a γn-null set (because
γn is absolutely continuous), this modification does not affect the value of the integral∫
gn dγn. Apply the same procedure to g. Then gn and g are finite and nonnegative

throughout Rd. Absolute continuity of γ, Remark 2.3 in [4] and Proposition 5 imply
together that the set of points where g is not continuous is a γ-null set.

Next, we approximate gn and g by bounded functions as follows. Since γn converge
in the Wasserstein space, they satisfy (7.2) by [56, Theorem 7.12]. It is easy to see that
this implies the uniform absolute continuity

(7.4) ∀ε > 0∃δ > 0∀j ≥ 1∀A ⊆ Rd Borel : γj(A) ≤ δ =⇒
∫
A
‖x‖2 dγj(x) < ε.

The δ’s can be chosen in such a way that (7.4) holds true for the finite collection
{µ1, . . . , µN} as well. Fix ε > 0, set δ = δε as in (7.4), and let An = {x : gn(x) ≥ 4R},
where R = Rε ≥ 1 is such that (using (7.2))

∀i ∀n :

∫
{‖x‖2>R}

‖x‖2 dγn(x) +

∫
{‖x‖2>R}

‖x‖2 dµi(x) <
δ

2N
.

The bound

gn(x) ≤ 2‖x‖2 +
2

N

N∑
i=1

‖tµiγn(x)‖2,
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implies that

An ⊆ {x : ‖x‖2 > R} ∪
N⋃
i=1

{x : ‖tµiγn(x)‖2 > R}.

To deal with the sets in the union observe that (since tµ
i

γn is γn-almost surely injective),

γn({x : ‖tµiγn(x)‖2 > R}) = µi({x : ‖x‖2 > R}) < δ

2N
,

so that γn(An) < δ. We use this in conjunction with (7.4) to bound∫
An

gn(x) dγn(x) ≤ 2

∫
An

‖x‖2 dγn(x) +
2

N

N∑
i=1

∫
An

‖tµiγn(x)‖2 dγn(x)

≤ 2ε+
2

N

N∑
i=1

∫
tµ
i
γn (An)

‖x‖2 dµi(x) ≤ 4ε,

where we have used the measure-preservation property µi(tµ
i

γn(An)) = γn(An) < δ.
Define the truncation gn,R(x) = min(gn(x), 4R). Then 0 ≤ gn−gn,R ≤ gn1{gn > 4R},

so ∫
[gn(x)− gn,R(x)] dγn(x) ≤

∫
An

gn(x) dγn(x) ≤ 4ε, n = 1, 2, . . . .

The analogous truncated function gR satisfies

(7.5) 0 ≤ gR(x) ≤ 4R ∀x ∈ Rd and {x : gR is continuous } is of γ-full measure.

Let E = supp(γ). Proposition 6 (Section 7.5) implies pointwise convergence of tµ
i

γn(x)

to tµ
i

γ (x) for any i = 1, . . . , N and any x ∈ E \ N , where N = ∪Ni=1N i and

N i = (E \ Eden) ∪ {x : tµ
i

γ (x) contains more than one element}.

Thus, gn and g are univalued functions defined throughout Rd, and gn → g pointwise on
x ∈ E \ N (for whatever choice of representatives selected to define gn); consequently,
gn,R → gR on E \ N .

In order to restrict the integrands to a bounded set we invoke the tightness of the
sequence (γn) and introduce a compact set Kε such that γn(Rd \Kε) < ε/R for all n.
Clearly, gn,R → gR on E′ = Kε ∩ E \ N , and by Egorov’s theorem (valid as Leb(E′) ≤
Leb(Kε) < ∞), there exists a Borel set Ω = Ωε ⊆ E′ on which the convergence is
uniform, and Leb(E′ \ Ω) < ε/R. Let us write∫

gn,R dγn −
∫
gR dγ =

∫
gR d(γn − γ) +

∫
Ω
(gn,R − gR) dγn +

∫
Rd\Ω

(gn,R − gR) dγn,

and bound each of the three integrals at the right-hand side as n→∞.
The first integral vanishes as n→∞, by (7.5) and the Portmanteau lemma (Lemma 9,

Section 7.5). For a given Ω, the second integral vanishes as n→∞, since gn,R converge
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to gR uniformly. The third integral is bounded by 8Rγn(Rd \ Ω). The latter set is a
subset of N ∪ (E′ \ Ω) ∪ (Rd \ E) ∪ (Rd \Kε), where the first set is Lebesgue-negligible
and the second has Lebesgue measure smaller than ε/R. The hypothesis of the densities
of γn implies that γn(A) ≤ CLeb(A) for any Borel set A ⊆ Rd and any n ∈ N; it follows
from this and γn(Rd \Kε) < ε/R that∣∣∣∣∣
∫
Rd\Ω

(gn,R − gR) dγn

∣∣∣∣∣ ≤ 8R(Cε/R+ γn(Rd \ E) + ε/R) = 8
(
Rγn(Rd \ E) + Cε+ ε

)
.

Write the open set E1 = Rd\E as a countable union of closed sets Ak with Leb(E1\Ak) <
1/k, and conclude that

lim sup
n→∞

γn(E1) ≤ lim sup
n→∞

γn(Ak) + lim sup
n→∞

γn(E1 \Ak) ≤ γ(Ak) +
C

k
=
C

k
,

where we have used the Portmanteau lemma again, Ak ∩ supp(γ) = ∅ and γn(A) ≤
CLeb(A). Consequently, for all k

lim sup
n→∞

∣∣∣∣∫ gn,R dγn −
∫
gR dγ

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣
∫
Rd\Ω

(gn,R − gR) dγn

∣∣∣∣∣ ≤ 8RεC

k
+ 8(C + 1)ε.

Letting k →∞, then incorporating the truncation error yields

lim sup
n→∞

∣∣∣∣∫ gn dγn −
∫
g dγ

∣∣∣∣ ≤ 8(C + 1)ε+ 8ε.

The proof is complete upon noticing that ε is arbitrary.

Our proof will now be complete if we show that the sequence γk generated by the
algorithm satisfies the assumptions of the last Proposition. First we show that limits of
the sequence are indeed regular.

Proposition 4 (Sequence has bounded density). Let µi have density gi for i =
1, . . . , N and let γ0 be a regular probability measure. Then the density of γ1 is bounded by
a constant Cµ = min{Nd−1 maxi ‖gi‖∞, Nd mini ‖gi‖∞} that depends only on {µ1, . . . , µN}.

Proof. Let hi be the density of γi. By the change of variables formula, for γ0-almost
any x

h1(tγ1
γ0

(x)) =
h0(x)

det∇tγ1
γ0(x)

; gi(tµ
i

γ0
(x)) =

h0(x)

det∇tµ
i

γ0(x)
.

Fiedler [27] shows that if B1 and B2 are d× d positive semidefinite matrices with eigen-
values 0 ≤ αi, βi, then

det(B1 +B2) ≥
d∏
i=1

(αi + βi).
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The right-hand side contains 2d nonnegative summands of which two are detB1 and
detB2, and so we see that det(B1 + B2) ≥ detB1 + detB2. (One can show the stronger
result d

√
det(B1 +B2) ≥ d

√
detB1+ d

√
detB2.) Since ∇tγ1

γ0 is an average of N d×d positive
semidefinite matrices, we obtain

h1(tγ1
γ0

(x)) =
Ndh0(x)

det
∑
∇tµ

i

γ0(x)
≤ Ndh0(x)∑

det∇tµ
i

γ0(x)
= Nd

[
N∑
i=1

1

gi(tµ
i

γ0(x))

]−1

≤ Nd

[
N∑
i=1

1

‖gi‖∞

]−1

.

Let Σ be the set of points where this inequality holds; then γ0(Σ) = 1. Hence

γ1(tγ1
γ0

(Σ)) = γ0[(tγ1
γ0

)−1(tγ1
γ0

(Σ))] ≥ γ0(Σ) = 1.

Thus γ1-almost surely,

h1 ≤ Nd

[
N∑
i=1

1

‖gi‖∞

]−1

≤ min

{
Nd−1 max

i
‖gi‖∞, Nd min

i
‖gi‖∞

}
= Cµ.

For Cµ to be finite it suffices that ‖gi‖∞ be finite for some i.

Our task is now essentially complete. All that remains is to show:

Corollary 4 (Limits are regular). Every limit of the sequence generated by Algo-
rithm 1 is absolutely continuous provided the density of µi is bounded for some i.

Proof. Each γk (k = 1, 2, . . . ) has a density that is bounded by the finite constant
Cµ. For any open set O, lim inf γk(O) ≤ CµLeb(O), so any limit point γ of (γk) is
such that γ(O) ≤ CµLeb(O) by the Portmanteau lemma. It follows that γ is absolutely
continuous with density bounded by Cµ. We note that Agueh and Carlier [2] show that
the density of the Fréchet mean is bounded by Nd mini ‖gi‖∞ ≥ Cµ, a slightly weaker
bound.

Proof of Theorem 5. Let E = supp(µ̄) and setAi = Eden∩{x : tµ
i

µ̄ (x) is multivalued}.
By Corollary 5 µ̄(Ai) = 1. Choose A = ∩Ni=1A

i and apply Proposition 6. This proves the
first assertion.

Now let Ei = supp(µi) and set Bi = (Ei)den ∩ {x : tµ̄
µi

(x) is univalued}. Since µi is

regular, µi(Bi) = 1. Apply Proposition 6. If in addition E1 = · · · = EN then µi(B) = 1
for B = ∩Bi.

7.4. Proofs of Statements in Section 6.

Proof of Proposition 2. This is essentially a consequence of Corollary 2.9 in
Álvarez–Esteban et al. [6], and we provide the details in Section 4 of the supplementary
material [62].

As part of our proofs, we will need to control the Wasserstein distance between the
regularised measures and their true counterparts:
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Lemma 5. The smooth measure Λ̂i defined by (6.1) satisfies

(7.6) d2

(
Λ̂i,

Π̃i

Π̃i(K)

)
≤ Cψ,Kσ2 if σ ≤ 1 and Π̃i(K) > 0,

where Cψ,K is a (finite) constant that depends only on ψ and K.

We prove the lemma in the supplementary material [62, Section 4].

Remark 4. There is no need for ψ to be isotropic: it is sufficient that merely

δψ(r) = inf
‖x‖≤r

ψ(x) > 0, r > 0,

which is satisfied as long as ψ is continuous and strictly positive.

We now remark that a trivial extension of [49, Lemma 3] yields:

Lemma 6 (Number of points per process is O(τn)). If τn/ log n → ∞, then there
exists a constant CΠ > 0, depending only on the distribution of the Π’s, such that

lim inf
n→∞

min1≤i≤n Π
(n)
i (K)

τn
≥ CΠ almost surely.

In particular, there are no empty point processes, so the normalisation is well-defined.

Proof of Theorem 6. The proof is very similar to the proof of Theorem 1 in
Panaretos and Zemel [49], and we give the details in the supplementary material [62].

Proof of Theorem 7. The argument is considerably different than the case d = 1
considered in [49], and brings into play the geometry of convex functions in Rd. Let i be
a fixed integer and for n ≥ i set

µn = Λ̂i; νn = λ̂n; µ = Λi; ν = λ; un = T̂−1
i ; u = T−1

i .

We wish to show that un → u uniformly on compact sets, using our knowledge that{
µn → µ;

νn → ν;
un#µn = νn; u#µ = ν; un, u optimal.

This follows from Proposition 6 below. To verify the conditions, notice that all the
measures are supported on K = E, a compact and convex set. Furthermore µn, µ and ν
all have strictly positive densities there, so their support is exactly K. Continuity of u on
int(K) follows from the assumptions that Ti and T−1

i are continuous. The finiteness in
(7.7) follows from the compactness of K, and the uniqueness follows from the regularity
of µ.

The same proposition can be applied to show convergence of T̂i to Ti uniformly on
Ω ⊆ int(K): one needs to reverse the roles of µn and νn and of µ to ν, and notice that
ν too is regular, which guarantees the uniqueness in (7.7).
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Proof of Corollary 3. The square of the distance is∫
K
‖T̂−1

i (Ti(x))− x‖2 d
Πi

Πi(K)
,

and this is well-defined (that is, Πi(K) > 0) almost surely for n large enough by Lemma
6. Since λ(∂K) = 0, almost surely there are no points on the boundary and the integral
can be taken on the interior of K. Let Ω ⊆ int(K) be compact and split the integral to
Ω and its complement. Then∫

int(K)\Ω
‖T̂−1

i (Ti(x))− x‖2 d
Πi

Πi(K)
≤ d2

K

Πi(int(K) \ Ω)

τn

τn
Πi(K)

as→ d2
Kλ(int(K) \ Ω),

by the law of large numbers. Since the interior of K can be written as a countable union
of compact sets, the right-hand side can be made arbitrarily small by selection of Ω.

Let us now consider the integral on Ω. Since∫
Ω
‖T̂−1

i (Ti(x))− x‖2 d
Πi

Πi(K)
≤ sup

x∈Ω
‖T̂−1

i (Ti(x))− x‖2 = sup
y∈Ti(Ω)

‖T̂−1
i (y)− T−1

i (y)‖2

and Ti(Ω) is compact, we only need to show that it is included in int(K) in order to
apply Theorem 7. Suppose towards contradiction that y = Ti(x) ∈ ∂K for x ∈ int(K).
Let α ∈ Rd \ {0} with 〈y, α〉 ≥ sup〈K,α〉. Let x′ = x + tα for t > 0 small enough such
that x′ ∈ int(K). Then y′ = Ti(x

′) ∈ K, so that

0 ≤ 〈y′ − y, x′ − x〉 = t〈y′ − y, α〉.

Either condition in the statement of the corollary imply that y′ = y, in contradiction to
Ti being injective.

7.5. Monotone Operators, Optimal Transportation, Stochastic Convergence. This sec-
tion contains the statements and proofs of analytical results needed in our proofs, cul-
minating in Proposition 6. The latter is the backbone result needed for the proofs of
Theorem 7, Theorem 4 (more precisely, Proposition 3) and Theorem 5. Rather than
start with all the background definitions we will define the necessary objects en route.

We shall follow the notation and terminology of Alberti and Ambrosio [4]. Let u be a

set-valued function (or multifunction) on Rd, that is, u : Rd → 2R
d
. It is said that u is

monotone if

〈y2 − y1, x2 − x1〉 ≥ 0 whenever yi ∈ u(xi) (i = 1, 2).

When d = 1, the definition reduces to u being a nondecreasing (set-valued) function.
It is said that u is maximal if no points can be added to its graph while preserving
monotonicity:{

〈y′ − y, x′ − x〉 ≥ 0 whenever y ∈ u(x)
}

=⇒ y′ ∈ u(x′).
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We sometimes use the notation (x, y) ∈ u to mean y ∈ u(x). Note that u(x) can be
empty, even when u is maximal.

The relevance of monotonicity stems from the fact that subdifferentials of convex
functions are monotone. That is, if ϕ : Rd → R ∪ {∞} is lower semicontinuous and
convex (and not identically infinite), then u = ∂ϕ is maximally monotone [4, Section 7],
where

∂ϕ(x) = {y : ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 for any z}

is the subdifferential of ϕ at x. Here u(x) = ∅ if ϕ(x) =∞.
We will use extensively the continuity of u at points where it is univalued.

Proposition 5 (Continuity at Singletons). Let u be a maximal monotone function,
and suppose that u(x) = {y} is a singleton. Then u is nonempty on some neighbourhood
of x and it is continuous at x: if xn → x and yn ∈ u(xn), then yn → y.

Proof. See [4, Corollary 1.3(4)]. Notice that this result implies that differentiable
convex functions are continuously differentiable [53, Corollary 25.5.1].

It turns out that when u is univalued, monotonicity is a local property. To state the
result in the general form that we shall use, we need to introduce the notion of points
of Lebesgue density.

Let Br(y) = {x : ‖x− y‖ < r} for r ≥ 0 and y ∈ Rd. A point x0 is of Lebesgue density
of a measurable set G ⊆ Rd if for any ε > 0 there exists tε > 0 such that

Leb(Bt(x0) ∩G)

Leb(Bt(x0))
> 1− ε, 0 < t < tε.

We denote the set of points of Lebesgue density of G by Gden. Clearly, Gden lies between
int(G) and G. Stein and Shakarchi [55, Chapter 3, Corollary 1.5] show that almost any
point of G is in Gden. By the Hahn–Banach theorem, Gden ⊆ int(conv(G)).

Lemma 7 (Density Points and Distance). Let x0 be a point of Lebesgue density of a
measurable set G ⊆ Rd. Then

δ(z) = inf
x∈G
‖z − x‖ = o(‖z − x0‖), as z → x0.

This result was given as an exercise in [55]; for completeness we provide a full proof
in the supplementary material [62].

Lemma 8 (Local Monotonicity). Let u be a maximal monotone function such that
u(x0) = {y0}. Suppose that x0 is a point of Lebesgue density of a set G satisfying

〈y − y∗, x− x0〉 ≥ 0 ∀x ∈ G ∀y ∈ u(x).

Then y∗ = y0. In particular, the result is true if the inequality holds on G = O \N with
∅ 6= O open and N Lebesgue negligible.
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Proof. Set zt = x0 + t(y∗− y0) for t > 0 small. It may be that zt /∈ G; but Lemma 7
guarantees existence of xt ∈ G with ‖xt−zt‖/t→ 0. By Proposition 5 u(xt) is nonempty
for t small enough. For yt ∈ u(xt),

0 ≤ 〈yt − y∗, xt − x0〉 = 〈yt − y∗, xt − zt〉+ 〈yt − y∗, zt − x0〉
= 〈yt − y∗, xt − zt〉+ t〈yt − y0, y

∗ − y0〉 − t‖y∗ − y0‖2.

Rearrangement, division by t > 0 and application of the Cauchy–Schwartz inequality
gives

‖y∗ − y0‖2 ≤ ‖yt − y0‖‖y∗ − y0‖+ t−1‖xt − zt‖ (‖yt − y0‖+ ‖y∗ − y0‖) .

As t↘ 0 the right-hand side vanishes, since yt → y0 (Proposition 5) and ‖xt−zt‖/t→ 0.
It follows that y∗ = y0.

This concludes the necessary discussion on monotone operators. We will now state
some necessary results on optimal transportation maps, and specifically their conver-
gence properties. Consider the following setting: let {µn}, {νn} be two sequences of
probability measures on Rd that converge weakly to µ and ν respectively. Let πn be an
optimal coupling between µn and νn having finite cost, which is supported on the graph
of a subdifferential of a proper (not identically infinite) convex lower semicontinuous
function ϕn [56, Chapter 2]. The set-valued function un = ∂ϕn that maps x to the subd-
ifferential of ϕn at x is maximally monotone [4, Section 7]. The appropriate functions for
µ and ν will be denoted by ϕ and u = ∂ϕ and the optimal coupling by π. This setting
will be succinctly referred to by the equation

(7.7)
µn → µ
νn → ν

πn finite optimal for µn, νn (un = ∂ϕn)#µn = νn
π unique optimal for µ, ν (u = ∂ϕ)#µ = ν.

We notice now that uniqueness of π and the stability of optimal transportation imply that
πn converge weakly to π (even if πn is not unique); see Schachermayer and Teichmann
[54, Theorem 3]. This weak convergence will be used in the following form:

Lemma 9 (Portmanteau). Weak convergence of Borel probability measures µk to µ
on Rd is equivalent to any of the following conditions:

(I) for any open set G, lim inf µk(G) ≥ µ(G);
(II) for any closed set F , lim supµk(F ) ≤ µ(F );

(III)
∫
hdµk →

∫
hdµ for any bounded measurable h whose set of discontinuity points

is a µ-null set.

Proof. The equivalence with the first two conditions is classical and can be found
in Billingsley [14, Theorem 2.1]; for the third, see Pollard [51, Section III.2].

We shall now translate this into convergence of un to u under certain regularity
conditions.
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Proposition 6 (Uniform Convergence of Optimal Maps). In the setting of Display
(7.7), denote E = supp(µ).

Let Ω be a compact subset of Eden on which u is univalued, where Eden is the set
of points of Lebesgue density of E. Then un converges to u uniformly on Ω: un(x) is
nonempty for all x ∈ Ω and all n > NΩ, and

sup
x∈Ω

sup
y∈un(x)

‖y − u(x)‖ → 0, n→∞.

In particular, if u is univalued throughout int(E) (so that ϕ ∈ C1 there), then uniform
convergence holds for any compact Ω ⊂ int(E).

Corollary 5 (Pointwise convergence µ-almost surely). If in addition µ is absolutely
continuous then un(x)→ u(x) µ-almost surely.

Proof. The set of points x ∈ E for which Ω = {x} fails to satisfy the conditions of
Proposition 6 is included in

(E \ Eden) ∪ {x ∈ int(conv(E)) : u(x) contains more than one point}.

(Since u is nonempty on int(conv(E)) by [4, Corollary 1.3(2)].) Both sets are Lebesgue-
negligible (see [4, Remark 2.3] for the latter), and µ is absolutely continuous.

Remark 5. In the setting of Theorem 7, E is convex, µ is absolutely continuous,
and u is univalued on int(E), so one can take any Ω ⊆ int(E), without the need to
introduce Lebesgue density. The more general statement of the proposition is used in the
proof of Proposition 3, where we have no control on the support of γ or the regularity of
the transport maps.

We split the proof Proposition 6 into two steps: (1) Limit points of the graphs of un
are in the graph of u (Lemma 11); (2) Points in the graphs of un stay in a bounded set
(Proposition 7). Each of these points will be proven using one intermediate lemma.

Lemma 10 (Points in the limit graph are limit points). Assume (7.7). For any x0 ∈
supp(µ) such that u(x0) = {y0} is a singleton there exists a subsequence (xnk , ynk) ∈ unk
that converges to (x0, y0).

Proof. Since u = ∂ϕ is a maximal monotone function [4, Section 7] that is univalued
at x0, it is continuous there (Proposition 5). This means that for any ε > 0 there exists
δ > 0 such that if x ∈ Bδ(x0) = {x : ‖x − x0‖ < δ} then u(x) is nonempty and
if y ∈ u(x), then ‖y − y0‖ < ε. Take εk → 0 and corresponding δk → 0, and set
Bk = Bδk(x0), Vk = Bεk(y0). Then u(Bk) ⊆ Vk, so

π(Bk×Vk) = π{(x, y) : x ∈ Bk, y ∈ u(x)∩Vk} = π{(x, y) : x ∈ Bk, y ∈ u(x)} = µ(Bk) > 0,

because Bk is a neighbourhood of x0 ∈ supp(µ). Since Bk × Vk is open, we have by the
Portmanteau lemma that πn(Bk × Vk) > 0 for n large. Consequently, there exists nk
such that

πnk(Bk × Vk) > 0 and nk →∞ as k →∞.
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Since πnk is concentrated on the graph of unk , it follows that there exist (xnk , ynk) ∈ unk
with ‖xnk − x0‖ < δk and ‖ynk − y0‖ < εk. Hence (xnk , ynk)→ (x0, y0).

Lemma 11 (Limit points are in the limit graph). Assume that (7.7) holds and denote
E = supp(µ). If a subsequence (xnk , ynk) ∈ unk converges to (x0, y

∗), where x0 is a point
of Lebesgue density of E, and u(x0) is a singleton, then y∗ = u(x0). In particular, the
statement is true if x0 ∈ int(E) and u(x0) is a singleton.

Proof. The set N ⊆ Rd of points where u contains more than one element is
Lebesgue negligible [4, Remark 2.3]. There exists a neighbourhood V of x0 on which u is
nonempty (Proposition 5). Thus, x0 is a point of Lebesgue density ofG = (E∩V )\N , and
u(x) is a singleton for every x ∈ G. Fix such an x and set y = u(x). By Lemma 10 (applied
to {unk}∞k=1 at x) there exist sequences x′nkl

→ x and y′nkl
→ y with (x′nkl

, y′nkl
) ∈ unkl .

Consequently,

〈y − y∗, x− x0〉 = lim
l→∞
〈y′nkl − ynkl , x

′
nkl
− xnkl 〉 ≥ 0.

This holds for any (x, y) ∈ u such that x ∈ G. Since x0 is a point of Lebesgue density of
G (and u is maximal), it follows from Lemma 8 that y∗ = u(x0).

Let B∞ε (x0) = {x : ‖x− x0‖∞ < ε} be the `∞ ball around x0 and B
∞
ε (x0) its closure.

Lemma 12 (Continuity of Convex Hulls). Let Z = {zi} ⊆ Rd be a set of points
whose convex hull, conv(Z), includes B∞ρ (x0) and let Z̃ = {z̃i} be a set of points such

that ‖z̃i − zi‖∞ ≤ ε. Then the convex hull of Z̃ includes B∞ρ−ε(x0).

For a proof, see the supplementary material [62].

Proposition 7 (Boundedness). Suppose that (7.7) holds, and fix a compact Ω ⊆
int(conv(supp(µ))). Then for n > N(Ω) sufficiently large, un(x) is nonempty for all
x ∈ Ω and un(Ω) is bounded uniformly.

Proof. Denote E = supp(µ) and its convex hull by F = conv(E). There exists
δ = δ(Ω) > 0 such that the closed `∞-ball, B

∞
3δ(Ω), is included in int(F ). Cover Ω by

a finite union of B∞δ (ωj), and denote by Q be the finite set of vertices of ∪jB
∞
3δ(ωj).

Since Q is included in the convex hull of E, each point in Q can be written as a convex
combination of elements of E. We conclude that there exists a finite set Z = {z1, . . . , zm}
of points in E whose convex hull includes B∞3δ (ωj) for any j.

Let Bi = B∞δ (zi). Since Bi is an open neighbourhood of zi ∈ E = supp(µ), the
Portmanteau lemma implies that when n is large, µn(Bi) > εi = µ(Bi)/2 for any i =
1, . . . ,m. Let ε = mini εi > 0. Since {νn} is a tight sequence, there exists a compact set
Kε such that νn(Kε) > 1 − ε for any integer n. In particular, there exist xni ∈ Bi and
yni ∈ un(xni) such that yni ∈ Kε. Application of Lemma 12 to

Z̃ = Xn = {xn1, . . . , xnm}
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and noticing that by definition ‖xni − zi‖∞ ≤ δ yields

conv(Xn) = conv({xn1, . . . , xnm}) ⊇ B∞3δ−δ(ωj) = B∞2δ (ωj) for all j.

For each ω ∈ Ω there exists j such that ‖ω − ωj‖∞ ≤ δ, so that conv(Xn) ⊇ B∞δ (ω) ⊇
Bδ(ω), since `2-balls are smaller than `∞-balls. Summarising: conv(Xn) ⊇ Bδ(Ω).

By [4, Lemma 1.2(4)] it follows that for any ω ∈ Ω and any y0 ∈ un(ω),

‖y0‖ ≤
[supx,z∈Xn ‖x− z‖][maxx∈Xn infy∈un(x) ‖y‖]

d(ω,Rd \ conv(Xn))
≤ 1

δ

[
sup
k,l
‖xnk − xnl‖

] [
max
i

inf
y∈un(xni)

‖y‖
]
.

Now observe that the infimum at the right-hand side is bounded by ‖yni‖ ≤ supy∈Kε ‖y‖.
Furthermore, ‖xnk − xnl‖ ≤ 2

√
dδ + ‖zk − zl‖. Hence

∀ω ∈ Ω ∀y0 ∈ un(ω) : ‖y0‖ ≤
1

δ

(
2
√
dδ + max

k,l
‖zk − zl‖

)
sup
y∈Kε

‖y‖,

and the right-hand side is independent of n. We may therefore conclude that for n large
enough, un(Ω) stays in a compact set; it is nonempty by [4, Corollary 1.3(2)].

Proof of Proposition 6. By Proposition 7 when n > NΩ is large, un(x) 6= ∅ for
all x ∈ Ω and

sup
x∈Ω

sup
y∈un(x)

‖y‖ ≤ CΩ,d <∞, n > NΩ,

where CΩ,d is a constant that depends only on Ω (and the dimension d).
Suppose that the converse is true, and uniform convergence does not hold. Then there

exist ε > 0 and subsequences ynk ∈ unk(xnk) such that xnk ∈ Ω and

‖ynk − u(xnk)‖ > ε, k = 1, 2, . . . .

The xnk ’s lie in the compact set Ω, whereas by Proposition 7 the ynk ’s lie in the ball
of radius CΩ,d centred at the origin. Therefore, up to the extraction of a subsequence,
we have xnk → x ∈ Ω and ynk → y. By Lemma 11, y = u(x). But u is continuous at x
(Proposition 5), whence

ε < ‖ynk − u(xnk)‖ ≤ ‖ynk − y‖+ ‖y − u(x)‖+ ‖u(x)− u(xnk)‖ → 0, k →∞,

a contradiction.

8. Concluding Remarks. While the algorithm and the convergence analysis in
this work were discussed in the context of absolutely continuous measures, it is worth
mentioning the possibility of applying it to discrete measures in some special cases.
Specifically, suppose that each measure µi is uniform on a set of M distinct points,
{xim}Mm=1. Define as in Anderes et al. [9] the set

S =
1

N

{
x1
m1

+ · · ·+ xNmN : 1 ≤ mi ≤M, i = 1, . . . , N
}
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of averages of choices of points from the supports of {µi}. Let γ0 be an initial measure,
uniform on M distinct points as well. There exist optimal maps (not necessarily unique)
from γ0 to each µi, and they can be averaged to yield γ1. If |S| = MN (that is, the
collection {xim} satisfies a general-position-type condition), then γ1 will be concentrated
onM points as well, and one may carry out further iterations. A conceptual problem with
this application is that the Fréchet functional is not differentiable at discrete measures,
so Algorithm 1 can no longer be viewed as gradient descent (but can still be seen as
Procrustes averaging). Also, the Fréchet mean itself may fail to be unique. In simulations
we observed very rapid convergence of this iteration to a Karcher mean, but the specific
limit depended quite heavily on the initial point, and was usually not a Fréchet mean.
For problems of moderate size, one can recast the problem of minimising the Fréchet
functional as a linear program [9] and find an exact Fréchet mean. In fact, Anderes et
al. [9] treat the more general problem where the measures are supported on a different
number of points and are not constrained to be uniform on their supports.

SUPPLEMENTARY MATERIAL

Online Supplement: “Fréchet Means in Wasserstein space: Gradient Descent and Pro-
crustes Analysis”
(URL to go here). The online supplement contains more details on the simulation experiments, additional
discussion, as well as those proofs that were omitted from the main paper.
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SUPPLEMENT TO: “FRÉCHET MEANS IN WASSERSTEIN SPACE:
GRADIENT DESCENT AND PROCRUSTES ANALYSIS”

By Yoav Zemel and Victor M. Panaretos

Ecole Polytechnique Fédérale de Lausanne

1. Introduction. This supplement includes four Sections. Section 2 contains the
proof that no further requirement except for finite second moments is needed for the
convergence of the algorithm presented in the article. Section 3 contains further details
and theoretical results pertaining to the simulation scenarios described in Section 6.4 of
the article. Finally, Section 4 contains the proofs that do not appear in the article itself,
and Section 5 concludes with some additional discussion.

2. A complete proof of Lemma 4 in the article. In this section we show that
condition (7.3) in the article is not needed for (7.2) to hold. The idea is that (7.2) only
requires a tiny bit more than finite second moments, and that is provided in Lemma 2.2.
Throughout this section, all functions are assumed nonnegative (possibly infinite-valued)
and defined on [0,∞) unless explicitly stated otherwise. We write f(x) ∈ ω(g(x)) or
f ∈ ω(g) if f(x)/g(x)→∞ as x→∞.

Lemma 2.1. Let f be integrable. Then there exists a continuous nondecreasing func-
tion g ∈ ω(1) such that fg is integrable.

Proof. Set F (x) =
∫∞
x f(t) dt and g(x) = [F (x)]−1/2. Then a change of variables

gives ∫ ∞
0
f(x)g(x) dx =

∫ ∞
0
f(x)[F (x)]−1/2 dx =

∫ F (0)

0
u−1/2 du = 2

√
‖f‖1 <∞,

and g(x)→∞ because F (x)→ 0 as x→∞ by dominated convergence.

Lemma 2.2. Let X be a random variable with EX2 <∞. Then there exists a convex
nondecreasing function H(x) ∈ ω(x2) such that EH(X) <∞.

Proof. Since

∞ > EX2 =

∫ ∞
0

P(X2 > t) dt,

there exists a function g as in Lemma 2.1 such that

∞ >

∫ ∞
0

P(X2 > t)g(t) dt =

∫ ∞
0

P(X2 > G−1(u)) du =

∫ ∞
0

P(G(X2) > u) du = EG(X2),

1
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where G is the primitive of g and G(0) = 0. The properties of g imply that G is convex
and invertible, and that for y < x,

G(x) ≥
∫ x

y
g(t) dt ≥

∫ x

y
g(y) dt = (x− y)g(y),

which, combined with g(y)→∞ as y →∞, yields

lim inf
x→∞

G(x)

x
≥ g(y)→∞, y →∞,

so that G(x) ∈ ω(x). The function H(x) = G(x2) then has all the desired properties.

Proposition 2.3. Equation (7.2) of the article holds if merely∫
Rd

‖x‖2 dµi(x) <∞, i = 1, . . . , N.

Proof. Let Xi = ‖Zi‖ where Zi ∼ µi. Then there exist functions gi as in Lemma 2.1
with ∫ ∞

0
P(X2

i > t)gi(t) dt <∞, i = 1, . . . , N.

The same holds with gi replaced by g = mini g
i, which is still continuous, nondecreasing

and divergent. Setting H as in Lemma 2.2, we see that H(x) ∈ ω(x2) and

M i = EH(Xi) =

∫
Rd

H(‖x‖) dµi(x) <∞, i = 1, . . . , N.

Convexity of H and ‖ · ‖ combined with monotonicity of H yield∫
Rd

H(‖x‖) dγj(x) =

∫
Rd

H

(∥∥∥∥∥ 1

N

N∑
i=1

tµ
i

γj−1
(x)

∥∥∥∥∥
)

dγj−1(x)

≤ 1

N

N∑
i=1

∫
Rd

H(‖tµiγj−1
(x)‖) dγj−1(x) =

1

N

N∑
i=1

∫
Rd

H(‖x‖) dµi(x) ≤M,

where M =
∑N

i=1M
i/N . This implies that for any R > 0 and any j > 0,∫

{x:‖x‖>R}
‖x‖2 dγj(x) ≤ sup

y>R

y2

H(y)

∫
{x:‖x‖>R}

H(‖x‖) dγj(x) ≤M sup
y>R

y2

H(y)
,

and (7.2) follows because H(y) ∈ ω(y2).
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3. Details for the illustrative examples in Section 6.4. In this section we
provide further details for finding the optimal maps in the examples of Section 6.4 in
the article and theoretical results about the Fréchet mean and the behaviour of the
algorithm. Throughout this section, µ1, . . . , µN are given measures and γ0 is the initial
point of Algorithm 1. We begin with two lemmas regarding compatibility of the measures
as defined in Section 6.4.

Lemma 3.1 (Compatibility and Convergence). If tµ
i

µ1
◦ tµ

1

γ0 = tµ
i

γ0 and tµ
j

µ1
◦ tµ

1

µi
= tµ

j

µi

(in the relevant L2 spaces) for all i and all j, then Algorithm 1 converges after a single
step.

Proof. For all i, j and k we have tµ
k

µj
◦ tµ

j

µi
= tµ

k

µi
, so that the optimal maps are

admissible, and

γ1 =

[
1

N

N∑
i=1

tµ
i

γ0

]
#γ0 =

[
1

N

N∑
i=1

tµ
i

µ1
◦ tµ1γ0

]
#γ0 =

[
1

N

N∑
i=1

tµ
i

µ1

]
#µ1.

Boissard et al. [4] show that this is indeed the Fréchet mean.

When d = 1, all (diffuse) measures are compatible with each other, and Algorithm 1
converges after one step. Generally, the algorithm requires the calculation of N pairwise
optimal maps, and this can be reduced toN−1 if γ0 = µ1. This is the same computational
complexity as the calculation of the iterated barycentre proposed in [4].

Measures on Rd that have a common dependence structure are compatible with each
other. More precisely, we say that C : [0, 1]d → [0, 1] is a copula if there exists a random
vector U with U [0, 1] margins and such that

P(U1 ≤ u1, . . . , Ud ≤ ud) = C(u1, . . . , ud), ui ∈ [0, 1].

In other words, a copula is the restriction to [0, 1]d of the probability distribution function
of some d-dimensional random variable with uniform margins. See, for example, Nelsen
[6] for an overview. Given a measure µ on Rd with distribution function G and marginal
distribution functions Gj , the copula associated with µ is a copula such that

G(a1, . . . , ad) = µ((−∞, a1]× · · · × (−∞, ad]) = C(G1(a1), . . . , Gd(ad)).

This equation defines C uniquely if each marginal Gi is continuous, which we shall
assume for simplicity. (If some Gi is discontinuous then C might not be unique, but it
always exists, see [6, Chapter 2].)

Lemma 3.2 (Compatibility and Copulae). Let µ, ν ∈ P2(Rd) be regular. Then µ and
ν have the same associated copula if and only if tνµ takes the separable form

(3.1) tνµ(x1, . . . , xd) = (T1(x1), . . . , Td(xd)), Ti : R→ R.
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Proof. If µ and ν have the same copula then

G(G−1
1 (u1), . . . , G−1

d (ud)) = C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud)),

where G−1
j (uj) is any number satisfying Gj(G

−1
j (uj)) = uj (such numbers exist because

Gj is surjective), and similarly for F−1
j . Consequently, F (x1, . . . , xd) = G(T1(x1), . . . , Td(xd))

with Tj = G−1
j ◦ Fj . It follows that ν = (T1, . . . , Td)#µ, and this map is optimal, hence

equals tνµ, because the Tj ’s are nondecreasing.
One proves the converse implication similarly: if tνµ takes this form, then each Tj needs

to be nondecreasing. Since it must push Fj forward to Gj , we have Tj = G−1
j ◦ Fj , and

this yields the above equality for the copula.

It is easy to see that if the optimal maps between each µi and each µj are of the
form (3.1), then {µi} are compatible with other. This follows from this property holding
for each marginal, and the possibility of working with the marginals separately; it has
already been observed by Boissard et al. [4, Proposition 4.1]. This explains why the
algorithm converges in one iteration for the example with the Frank copula.

Next, we give a convergence analysis for the Gaussian example.

Theorem 3.3 (Convergence in Gaussian case). Let µi ∼ N (0, Si) for Si positive def-
inite, and let the initial point γ0 = N (0,Γ0) for positive definite Γ0. Then the sequence of
iterates generated by Algorithm 1 converges to the unique Fréchet mean of (µ1, . . . , µN ).

Proof. We first observe that for any centred measure µ with covariance matrix S,

d2(µ, δ0) = trS,

where δ0 is a dirac mass at the origin. (This follows from the singular value decomposition
of S.) Next, each iteration stays (centred) Gaussian, say N (0,Γk), because the optimal
maps are linear; and since the iterates are absolutely continuous (Lemma 1), each Γk is
nonsingular.

Proposition 4 implies that detΓk is bounded below uniformly; on the other hand,

0 ≤ trΓk = d2(γk, δ0)

is bounded uniformly, because {γk} stays in a Wasserstein-compact set by Lemma 4.
Let C1 = infk detΓk > 0 and C2 = supk trΓk < ∞. Then each eigenvalue λ of Γk is
nonnegative, bounded above by C2, and satisfies

C1 ≤ detΓk ≤ λCd−1
2 =⇒ λ ≥ C1C

1−d
2 = C3 > 0.

The matrices Γk stay in a bounded set, and each limit point Γ is positive definite because
xtΓx ≥ C3‖x‖2 for all x ∈ Rd. Each limit point γ of γk is a Karcher mean by Theorem 4,
and the limit must follow a N (0,Γ) distribution with Γ (nonsingular) limit point of
Γk (e.g., by Lehmann–Scheffé’s theorem). Since F ′(γ) = 0 everywhere on Rd, γ is the
Fréchet mean by the discussion after Corollary 1. Every limit of γk is the Fréchet mean
and the sequence is compact, so γk must converge to the Fréchet mean.
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In order to deal with the last example of Section 6.4, we need two more results. The
first involves coupling measures of dimensions greater than one, while the second shows
the equivariance of the Fréchet mean with respect to rotations.

Invoking the independence copula C(u1, . . . , ud) = u1 . . . ud, a special case of Lemma 3.2
above is when the marginals of µ and ν are independent. In this independence case, it
is possible in fact to replace the marginals by measures of arbitrary dimension:

Lemma 3.4. Let µ1, . . . , µN and ν1, . . . , νN be regular measures in P2(Rd1) and
P2(Rd2) with (unique) Fréchet means µ and ν respectively. Then the independent cou-
pling µ⊗ ν is the Fréchet mean of µ1 ⊗ ν1, . . . , µN ⊗ νN .

By induction (or a straightforward modification of the proof), one can show that the
Fréchet mean of (µi⊗ νi⊗ ρi) is µ⊗ ν ⊗ ρ, and so on. While we are confident this result
should already be known, we could not find a reference, and thus we provide a full proof
for completeness.

Proof. Agueh and Carlier [1, Proposition 3.8] show that there exist convex lower
semicontinuous potentials ψi on Rd1 and ϕi on Rd2 whose gradients push µ forward to
µi and ν to νi respectively, and such that

1

N

N∑
i=1

ψ∗i (x) ≤ ‖x‖
2

2
, x ∈ Rd1 ;

1

N

N∑
i=1

ϕ∗i (y) ≤ ‖y‖
2

2
, y ∈ Rd2 ,

with equality µ- and ν-almost surely respectively. It is easy to see that the extensions
ψ̃i(x, y) = ψi(x) and ϕ̃i(x, y) = ϕi(y) defined on Rd1+d2 are convex lower semicontinuous
functions whose sum φi is a convex function satisfying

φ∗i (x, y) = (ψ̃i + ϕ̃i)
∗(x, y) = ψ∗i (x) + ϕ∗i (y).

Clearly ∇φi#(µi ⊗ νi) = µ⊗ ν and

1

N

N∑
i=1

φ∗i (x, y) ≤ ‖x‖
2

2
+
‖y‖2

2
=
‖(x, y)‖2

2
, (x, y) ∈ Rd1+d2 ,

with equality µ⊗ν-almost surely. By the same Proposition 3.8 in [1], µ⊗ν is the Fréchet
mean.

Lemma 3.5. If µ is the Fréchet mean of the regular measures µ1, . . . , µN , one with
bounded density, and U is orthogonal, then U#µ is the Fréchet mean of U#µ1, . . . , U#µN .

Proof. Bonneel et al. sketch a proof of this statement in [5, Proposition 1], and
it also appears implicitly in Boissard et al. [4, Proposition 4.1]; we give an alternative
argument here.
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If x 7→ ϕ(x) is convex, then x 7→ ϕ(U−1x) is convex with gradient U∇ϕ(U−1x) at
(almost all) x and conjugate x 7→ ϕ∗(U−1x). If ϕi are convex potentials with ∇ϕi#µ =
µi, then ∇(ϕi ◦ U−1) pushes U#µ forward to U#µi and by [1, Proposition 3.8]

1

N

N∑
i=1

(ϕi ◦ U−1)∗(Ux) =
1

N

N∑
i=1

ϕ∗i (x) ≤ ‖x‖
2

2
=
‖Ux‖2

2

with equality for µ-almost any x. A change of variables y = Ux shows that the set of
points y such that

∑
(ϕi ◦ U−1)∗(y) < N‖y‖2/2 is (U#µ)-negligible, completing the

proof.

We apply these results in the context of the simulated example in Section 6.4 in the
article. If Y = (y1, y2, y3) ∼ µi, then the random vector (x1, x2, x3) = X = U−1Y has
joint density

f i(x3) exp

[
−

(x1, x2)(Σi)−1
(
x1
x2

)
2

]
1

2π
√

detΣi
,

so the probability law of X is ρi ⊗ νi with ρi centred Gaussian with covariance matrix
Σi and νi having density f i on R. By Lemma 3.4, the Fréchet mean of (U−1#µi) is the
product measure of that of (ρi) and that of (νi); by Lemma 3.5, the Fréchet mean of
(µi) is therefore

U#(N (0,Σ)⊗ f), f = F ′, F−1(q) =
1

N

N∑
i=1

F−1
i (q), Fi(x) =

∫ x

−∞
f i(s) ds,

where Σ is the Fréchet–Wasserstein mean of Σ1, . . . ,ΣN .
Starting at an initial point γ0 = U#(N (0,Σ0) ⊗ ν0), with ν0 having continuous dis-

tribution Fν0 , the optimal maps are U ◦ ti0 ◦ U−1 = ∇(ϕi0 ◦ U−1) with

ti0(x1, x2, x3) =

(
tΣj

Σ0
(x1, x2)

F−1
j ◦ Fν0(x3)

)
the gradients of the convex function

ϕi0(x1, x2, x3) = (x1, x2)tΣi

γ0

(
x1

x2

)
+

∫ x3

0
F−1
j (Fν0(s)) ds,

where we identify tΣi

γ0 with the positive definite matrix (Σi)1/2[(Σi)1/2Σ0(Σi)1/2]−1/2(Σi)1/2

that pushes forward N (0,Σ0) to N (0,Σi). Due to the one-dimensionality, the algorithm
finds the third component of the rotated measures after one step, but the convergence
of the Gaussian component requires further iterations.

4. Proofs omitted from the article.
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Proof of Corollary 1, Section 4.3. The characterisation of Karcher means fol-
lows immediately from Theorem 2. Now suppose that µ ∈ P2(Rd) is regular and F ′(µ) 6=
0 ∈ L2(µ). The function S = N−1

∑N
i=1 t

µi
µ is a gradient of a convex function and

lim
ν→µ

F (ν)− F (µ) + 〈S − i, tνµ − i〉L2(µ)

‖tνµ − i‖L2(µ)
= lim

ν→µ

F (ν)− F (µ) +
∫
〈S(x)− x, tνµ(x)− x〉 dµ(x)

d(ν, µ)
= 0.

By assumption W = S − i 6= 0 ∈ L2(µ). The measure νs = [i + s(W − i)]#µ with
s ∈ (0, 1) is such that d(νs, µ) = s‖W‖L2(µ) and

0 = lim
s→0+

F (νs)− F (µ) +
∫
〈W (x), sW (x)〉dµ(x)

s‖W‖L2(µ)
= lim

s→0+

F (νs)− F (µ)

s‖W‖L2(µ)
+ ‖W‖L2(µ).

This means that when s is small enough, F (νs) < F (µ), so µ cannot be the minimiser
of F . Since µ̄ has to be regular [1, Proposition 5.1], necessity of F ′(µ̄) = 0 is proven.

4.1. Proofs of statements from Section 6 of the article.

Proof of Proposition 2. WriteM(γ) = E[d2(Λ, γ)]. We first establish (weak) con-
vexity. Indeed, for given measures γ and ρ and 0 < t < 1,

tMω(γ) + (1− t)Mω(ρ) = t

∫
Rd×Rd

(x− y)2 dπω,γ(x, y) + (1− t)
∫
Rd×Rd

(x− y)2 dπω,ρ(x, y)

=

∫
Rd×Rd

(x− y)2 d[tπω,γ + (1− t)πω,ρ],

where πω,γ is the optimal coupling between Λ = Λ(ω) and γ. The measure tπω,γ + (1−
t)πω,ρ is a coupling between Λ and tγ + (1 − t)ρ, and this shows that Mω is convex
without any regularity assumptions on Λ. To upgrade to strict convexity when Λ is
regular, observe firstly that M is finite on the set of probability measures supported on
K. If Λ is regular, then optimal measures are supported on graphs of functions:

πω,γ(A×B) = Λ(A ∩ T−1
1 (B))

πω,ρ(A×B) = Λ(A ∩ T−1
2 (B))

πω,tγ+(1−t)ρ(A×B) = Λ(A ∩ T−1
3 (B))

[tπω,γ + (1− t)πω,ρ](A×B) = tΛ(A ∩ T−1
1 (B)) + (1− t)Λ(A ∩ T−1

2 (B)).

The measure tπω,γ + (1− t)πω,ρ is supported on the graph of two functions, T1 and T2.
It can only be optimal if it is supported on the graph of one function, and this will only
happen if T1 = T2, Λ-almost surely, that is, if γ = ρ. (See [3, Corollary 2.9] for a rigorous
proof.) We can thus conclude that

Λ regular =⇒ M strictly convex.

Since M was already shown to be weakly convex in any case, it follows that

P(Λ regular) > 0 =⇒ M strictly convex.
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Now we turn to the existence of a solution (once existence is established, uniqueness will
follow from strict convexity). Let projK : Rd → K denote the projection onto the set K,
which is well-defined since K is closed and convex, and of course satisfies

‖x− y‖ ≥ ‖x− projK(y)‖, x ∈ K, y ∈ Rd.

Since Λ is concentrated on K, the above inequality holds Λ-almost surely with respect
to x. Let T be the optimal map from Λ to γ (a proper map almost surely, as argued
above). Observe that

d2(Λ, γ) =

∫
K
‖T (x)− x‖2 dΛ ≥

∫ K

‖projK(T (x))− x‖2 dΛ ≥ d2(Λ,projK#γ),

since (projK ◦ T )#Λ = projK#(T#Λ) = projK#γ. This measure is concentrated on K,
and taking expectations gives M(γ) ≥ M(projK#γ). Hence, the infimum of M equals
the infimum of M on P(K), the collection of probability measures supported on K (or
else, we could project all the remaining mass to K to reduce the total cost further). The
restriction of M to P(K) is a continuous functional on a compact set (measures whose
support is contained in a common compactum are a compact set in Wasserstein space),
and existence follows.

Proof of Lemma 5. It is assumed that ψ(z) = ψ1(‖z‖) with ψ1 non-increasing,
strictly positive and ∫

Rd

ψ(z) dz = 1 =

∫
Rd

‖z‖2ψ(z) dz.

Let Ψ(A) =
∫
Aψ(x) dx be the corresponding probability measure and recall that ψσ(x) =

σ−dψ(x/σ) for σ > 0.
For y ∈ K set µ̃y = δ{y}∗ψσ and its restricted renormalized version µy = (1/µ̃y(K))µ̃y|K ,

so that Λ̂i = (1/m)
∑m

j=1 µxj , and it is assumed that m ≥ 1 and xj ∈ K (because
Λi(K) = 1).

One way (certainly not optimal, unless m = 1) to couple Λ̂i with Π̃i/m is to send the
1/m mass of µxj to xj . This gives

d2(Λ̂i, Π̃i/m) ≤ 1

m

m∑
j=1

d2(µxj , δ{xj}) =
1

m

m∑
j=1

1

µ̃xj (K)

∫
K
‖x− xj‖2ψσ(x− xj) dx.

However, for an arbitrary y ∈ K,

1

µ̃y(K)

∫
K
‖x− y‖2ψσ(x− y) dx =

1

µ̃y(K)
σ2

∫
(K−y)/σ

‖z‖2ψ(z) dz.

The last displayed integral is bounded by 1. Hence, we seek a lower bound, uniformly in
y and σ, for

µ̃y(K) =

∫
K
ψσ(x− y) dx =

∫
(K−y)/σ

ψ(x) dx = Ψ

(
K − y
σ

)
.
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Since K−y is a convex set that contains the origin, the collection of sets {σ−1(K−y)}σ>0

is increasing as σ ↘ 0. Consequently, if σ ≤ 1,

Ψ

(
K − y
σ

)
≥ Ψ(K − y) =

∫
K−y

ψ(x) dx ≥
∫
K−y

ψ1(dK) dx = ψ1(dK)Leb(K) > 0.

Here dK = sup{‖x− y‖ : x, y ∈ K} is the (finite) diameter of K, and we have used the
monotonicity of ψ1.

It follows that for Cψ,K = [ψ1(dK)Leb(K)]−1 <∞ (depending only on ψ and K),

(4.1) d2(µy, δy) ≤ Cψ,Kσ2, y ∈ K, σ ≤ 1.

Since the bound is uniform in y, the proof is complete. In the context of Remark 4 in
the article, one simply needs to replace the term ψ1(dK) in Cψ,K by δψ(dK).

Remark 1. The upper bound (4.1) can be easily seen to be tight (up to constant): if
y = 0 and K = [0, 1]d, then σ−2d2(µy, δy)→ 2d as σ ↘ 0.

Proof of Theorem 6. Convergence in probability in part (1) follows as in [7, pp.
793–794], using (7.6). For convergence almost surely, let a = (a1, . . . , ad) ∈ Rd. A
straightforward generalisation of the argument in [7, pp. 794–795] gives

P

(
Π̃i((−∞, a])

τn
− Λi((−∞, a])→ 0

)
= 1,

where for −∞ ≤ ai ≤ bi ≤ ∞ (i = 1, . . . , d) we denote

(a, b] = (a1, b1]× · · · × (ad, bd].

Consequently

P

(
Π̃i((−∞, a])

τn
− Λi((−∞, a])→ 0 for any a ∈ Qd

)
= 1.

For a general a ∈ Rd there exist sequences ak ↗ a ↙ bk with ak, bk ∈ Qd (that is,
aki ↗ ai ↙ bki for any coordinate i). Since for any k

Π̃i((−∞, a])

τn
−Λi((−∞, a]) ≤ Π̃i((−∞, bk])

τn
−Λi((−∞, bk])+Λi((−∞, bk])−Λi((−∞, a]),

it follows that with probability one

lim sup
n→∞

Π̃i((−∞, a])

τn
− Λi((−∞, a]) ≤ Λi

(
(−∞, bk] \ (−∞, a]

)
→ 0, k →∞,

as the sequence of sets at the right-hand side converges monotonically to the empty set.
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Similarly, with probability one

lim inf
n→∞

Π̃i((−∞, a])

τn
−Λi((−∞, a]) ≥ Λi

(
(−∞, a] \ (−∞, ak]

)
→ Λi((−∞, a] \ (−∞, a)),

and the right-hand side vanishes because Λi is assumed absolutely continuous (the set
(−∞, a] \ (−∞, a) is union of d d − 1-dimensional rays). Specifying a = ∞ shows that
almost surely Π̃i(K)/τn → 1 and we conclude that almost surely Π̃i/Π̃i(K)→ Λi weakly.
Further, d(Λ̂i, Π̃i/Ni)→ 0 since σn → 0 by Lemma 5.

We sketch the main ideas of the proof of (2); more details can be found in [7, pp.
795–797]. We wish to show that

M̂n(γ) =
1

n

n∑
i=1

d2(Λ̂i, γ)→ Ed2(Λi, γ) = M(γ), uniformly in γ.

In order to do this we write

M̂n(γ)−M(γ) =
[
M̂n(γ)−Mn(γ)

]
+ [Mn(γ)−M(γ)] ,

where we introduce the empirical Fréchet functional

Mn(γ) =
1

n

n∑
i=1

d2(Λi, γ).

Since for any three probability measures on K it holds that

d(µ, ν) ≤
√

sup
γ∈P (K2)

∫
K2

‖x− y‖2 dγ(x, y) ≤
√

sup
x,y∈K

‖x− y‖2 = dK <∞;

|d2(µ, ρ)− d2(ν, ρ)| = |d(µ, ρ) + d(ν, ρ)||d(µ, ρ)− d(ν, ρ)| ≤ 2dKd(µ, ν),

we see that

sup
γ∈P (K)

|M̂n(γ)−Mn(γ)| ≤ 2dK
n

n∑
i=1

d
(

Λ̂i,Λi

)
=

2dK
n

n∑
i=1

Xni = 2dKXn.

Each Xni is a function of Ti, Π
(n)
i and σ

(n)
i , and 0 ≤ Xni ≤ dK . If σ

(n)
i is a function

of Π̃
(n)
i = Ti#Π

(n)
i only, then Xni are iid across i. Part (1) shows that Xn1 → 0 in

probability and by the bounded convergence theorem EXn = EXn1
p→ 0 and therefore

the above expression converges to 0 in probability. In general, L1-convergence of ran-
dom variables does not guarantee convergence almost surely. As we deal with averages,
however, almost sure convergence can be established: let Yni = Xni−EXni ∈ [−dK , dK ].
Then Yni are mean zero iid random variables, so that

P
(∣∣Xn − EXn

∣∣ > ε
)

= P
(
Y

4
n > ε4

)
≤
nE
[
Y 4
n1

]
+ 3n(n− 1)E

[
Y 2
n1

]
ε4n4

≤
3 max(d4

K , d
2
K)

ε4n2
.
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By the Borel–Cantelli lemma, |Xn − EXn|
as→ 0, hence Xn

as→ 0.
If the smoothing is not carried out independently across trains, then Xni may be corre-

lated across i. In that case, one can introduce the functionalM∗n(γ) = n−1
∑n

i=1 d
2
(

Π̃i/Ni, γ
)

and proceed as in [7]. For M∗n to be well-defined one may use Lemma 6 and that requires
τn/ log n→∞.

Finally, observe that by the strong law of large numbers Mn(γ)
as→ M(γ) for all

γ ∈ P (K). That the convergence is uniform follows from the equicontinuity of the
collection {Mn}∞n=1 (they are 2dK-Lipschitz). We have thus established

sup
γ∈P (K)

|M̂n(γ)−M(γ)| as→ 0, n→∞.

By standard arguments, the minimiser λ̂n of M̂n converges to the minimiser λ∗ of M ,
since the latter is unique by Proposition 2. But λ∗ = λ by the hypothesis.

4.2. Proofs of statements from Section 7.5 of the article.

Proof of Lemma 7. For any 1 > ε > 0 there exists 0 < tε such that for t < tε,

Leb(Bt(x0) ∩G)

Leb(Bt(x0))
> 1− εd.

Fix z such that t = t(z) = ‖z−x0‖ < tε. The intersection of Bt(x0) with B2εt(z) includes
a ball of radius εt centred at y = (1− ε)z, so that

Leb(Bt(x0) ∩B2εt(z))

Leb(Bt(x0))
≥ Leb(Bεt(y))

Leb(Bt(x0))
= εd.

It follows that G∩B2εt(z) is nonempty. In other words: for any ε > 0 there exists tε such
that if ‖z − x0‖ < tε, then there exists x ∈ G with ‖z − x‖ ≤ 2εt(z) = 2ε‖z − x0‖. This
means precisely that δ(z) = o(‖z − x0‖) as z → x0.

Proof of Lemma 12. Assume ε < ρ (there is nothing to prove otherwise). Take a
corner of the `∞ ball of radius ρ′ < ρ around x0,

y = x0 + ρ′(e1, . . . , ed), ed ∈ {±1},

and write y =
∑
aizi as a (finite) convex combination of elements of Z. Then ỹ =∑

aiz̃i ∈ conv(Z̃) is such that ‖ỹ − y‖∞ ≤ ε. It follows that ỹ lies at the same quadrant
as y with each coordinate larger in absolute value than ρ′− ε. In other words, ỹ is “more
extreme” than the corner

x0 + (ρ′ − ε)(e1, . . . , ed)

of the `∞-ball B∞ρ′−ε(x0). Since this is true for all the corners, conv(Z̃) ⊇ Bρ′−ε(x0) for
any ρ′ < ρ. Now let ρ′ ↗ ρ to conclude.
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5. Further Discussion. During the review process, a referee brought to our at-
tention independent parallel work by Álvarez-Esteban et al. [2], that had concurrently
been submitted for publication to a different journal. An Associate Editor suggested
that we offer a brief comparison. Álvarez-Esteban et al. [2] also independently arrived at
the same algorithm for determination of a Fréchet mean, and also showed convergence
to a local minimum. Their motivation of the algorithm and their proof of convergence
differ substantially from ours. Indeed, our algorithm is motivated by the geometry of the
Wasserstein space, and is obtained as a gradient descent; while the one in [2] is moti-
vated as a fixed point iteration through the special case of Gaussian measures, where it
is known [1] that the Fréchet mean is the unique solution to a certain matrix equation.
Also, rather than directly use the geometry of monotone operators in Rd, the authors of
[2] take advantage of an almost-sure representation result on the optimal transportation
maps in order to prove convergence of their algorithm. Other key differences distin-
guishing our own contributions include the determination of the gradient of the Fréchet
functional (Theorem 2), the criterion for determining when a local minimum is the global
Fréchet mean (Theorem 3), and the parallels to Procrustes analysis (Section 5.1).

More importantly, [2] focusses on the algorithm itself, but does not make contact
with the problem of optimal multicoupling and its applications to registration, which are
arguably the main statistical reasons motivating the determination of a Fréchet mean. In
contrast, these are a core part of our development and results, as we address the optimal
multicoupling problem (Theorem 1), prove uniform convergence of the Procrustes maps
required for multicoupling (Theorem 5), and give a detailed treatment of the statistical
problem of nonparametric registration of multidimensional point processes, including
asymptotic theory (Section 6).
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Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
E-mail: victor.panaretos@epfl.ch

yoav.zemel@epfl.ch

mailto:victor.panaretos@epfl.ch
mailto:yoav.zemel@epfl.ch

	Introduction
	Optimal Transportation and Wasserstein Space
	Fréchet Means and Optimal Multicoupling
	Wasserstein Geometry and the Gradient of the Fréchet Functional
	The Tangent Bundle
	Gradient of the Fréchet functional
	Karcher and Fréchet Means

	Gradient Descent and Procrustes Analysis
	Elements of the Algorithm
	Convergence of the Algorithm
	Uniform Convergence of Procrustes Maps

	Discrete Observation and Registration of Warped Point Processes
	Discretely Observed Random Measures
	Regularised Procrustes Registration
	Consistency
	Illustrative Examples
	The case d=1
	Independence
	Common Copulas
	Gaussian measures
	Partially Gaussian Trivariate Measures


	Proofs of Formal Statements
	Proofs of Statements in Section 3
	Proofs of Statements in Section 4
	Proofs of Statements in Section 5
	Proof of Theorem 4

	Proofs of Statements in Section 6
	Monotone Operators, Optimal Transportation, Stochastic Convergence

	Concluding Remarks
	Supplementary Material
	References
	Author's addresses
	supp_material.pdf
	Introduction
	A complete proof of Lemma 4 in the article
	Details for the illustrative examples in Section 6.4
	Proofs omitted from the article
	Proofs of statements from Section 6 of the article
	Proofs of statements from Section 7.5 of the article

	Further Discussion
	References
	Author's addresses


