Biochar : Production and testing in small-scale use

SIE project at SKIL, EPFL Mario Gall

Project overview

- > Produce biochar in a simple way
 - Stove construction
 - Pyrolysis of organic waste and wood
- > Test the fertilization capacity of biochar
 - Growth of Spinach and Radish
 - Comparison to compost fertilization and no fertilization
 - Production of a timelapse video of the radish growth

What is biochar?

"The solid product of thermal decomposition of organic matter at a temperature below 900°C under conditions of oxygen deficit"

(Godlewska et al. 2017)

= a stable form of organic matter

- Rich in nutrients
- Slowly degradable
- Porous with a large surface area

What is biochar?

"The solid product of thermal deco Difference temperature below 900°C under c

- = a stable form of organic matter
 Rich in nutrients
 Slowly degradable
 - Porous with a large surface area

Difference to fresh organic matter

- Long-term fertilizing effect
 - Reduced risk of leaching into the groundwater
 - No "fertilization peak" at the moment of application, but rather a constant effect
- > Improved soil properties
 - Better water retention
 - Increased ion exchange
 - Favorable structure for microorganisms

What is biochar?

"The solid product of thermal decomposition of organic matter at a temperature below 900°C under conditions of oxygen deficit"

- = a stable form of organic matter
 - Rich in nutrients
 - Slowly degradable

Porous with a large surface area

Difference to compost

- > Long-term fertilizing effect
 - Nutrient-stabilizing matrix
 (even more than in compost)

> Improved soil properties

- Better water retention
- Increased ion exchange
- Favorable structure for microorganisms

Why do we need biochar?

(Godlewska et al. 2017)

Part I: Stove construction

Concept: «Dome school biochar stove»

Original – 1.4L (*Kelpie Wilson 2010*)

Upscaled version – 200L (*Kristen Brandley 2013*)

My version – 20L

Stove construction

Lid with a central hole: Balance between air flow and heat retention

____ Inner can aeration: Escape pathway for pyrolysis gases

—— Zone of wood burning

—— Zone of biomass pyrolysis

Bottom aeration: Perforated inner can, large holes in outer can

Stove performance

- > Simple construction
- > Easy to use
- > It works
 - > Can also be used as a grill

- > Low temperature
- > Too much oxygen
 - \rightarrow Incomplete and heterogeneous pyrolysis
 - \rightarrow Big fuel (wood) requirement

Part II: Vegetable cultivation

Comparative approach: Biochar vs. Compost vs. Control

- Cultivate radish and spinach (spring crop)
- Same growth conditions (light, irrigation, pot size, sowing, ...)

Growth analysis

- Initial idea
- Leaf fluorescence
- Porous exchange
- Soil moisture
- Soil ion exchange capacity
- Harvest comparison

Growth analysis

- Initial idea
- Leaf fluorescence
- Porous exchange
- Soil moisture
- Soil ion exchange capacity
- Harvest comparison

Growth analysis

Adapted approach Harvest comparison
Timelapse video of growth

→ Focus only on productivity improvement!

Biochar: Production and testing in small-scale use

Mario Gall

Supervised by

Anders Meibom Samuel Cotture

SIE Project at SKIL, EPFL

Spring semester 2020

Sowing: March 4

March 21

March 30

Control

Biochar

Compost

April 11

, April 17 (harvest)

Control

Biochar

Compost

Results

Result discussion

> Radish: Same result for compost and biochar

- Cultivation for 44 days
- Control leads to much smaller radish
- > Spinach: Victory for the compost!
 - Cultivation for 61 days
 - Biochar improves growth, but not as much as compost
- → Biochar addition results in considerable improvement of soil fertility without being the outstanding solution.

Result discussion: Improvements

> Low significance

- No replicates (logistics)
- No measurements during the growth phase
- > Neglect of other aspects of biochar addition
 - Productivity improvement is only one aspect
 - Soil improvement?

- Sustainable cultivation?
- Environmental impact?

Conclusion

- > Produce biochar in a simple way
 - Stove construction
 - Pyrolysis of organic waste and wood
- > Test the fertilization capacity of biochar
 - Growth of Spinach and Radish
 - Comparison to compost fertilization and no fertilization
 - Production of a timelapse video of the radish growth

> Stove: Works, but not optimal

- Low temperature, too much O2
- High fuel consumption
- → Space for improvement, but good as a first solution
- > Biochar: Good fertilizer
 - Very interesting topic
 - More research required
 - Long-term effects to be studied

Conclusion – future scope

- > Pots will hopefully remain available
 - Interest from Campus durable
 - Storage at "Ferme de Bassenges"?
- > Many possible topics to be studied
 - Cultivation of other crops, during other cropping seasons
 - Long-term effect: same experiment every year
 - Soil analysis: Nutrient depletion, water retention, ...
 - Effect of different biochar loads

•••

Thanks for listening!

I hope you liked it as much as I did

Questions?