Admissible Surplus Dynamics and
the Government Debt Puzzle

Pierre Collin-Dufresne (SFI \& EPFL) Julien Hugonnier (EPFL) Elena Perazzi (EPFL)

May 2023

High Debt Level

- Succession of crisis (Subprime, Covid, Ukraine) have resulted in extreme levels of Govt debt.
U.S. National Debt Over the Last 100 Years Inflation Adjusted-2022 Dollars

```
2022
Fiscal Year
```


Visit the Historical Debt Outstanding dataset to explore and download this data. The inflation data is sourced from the Bureau of Labor Statistics.

Federal Debt Trends Over Time, FY 1948-2022 Debt to Gross Domestic Product (GDP)

$$
\underset{\text { Fiscal vear }}{2022} \quad \underset{\text { Debt to GDP }}{124 \%}
$$

Visit the Historical Debt Outstanding dataset to explore and download this data. The GDP data is sourced from the Bureau of Economic Analysis.

Persistent Negative Government Surplus

- Questions sustainability of Gvt debt and fiscal policy.
- Yet, yields on US debt remain low.
\rightarrow The Government Debt Valuation Puzzle (Jiang, Lustig, van Nieuwerburgh, and Xiaolan (2022))

The Government Debt Puzzle

- Assuming (i) no-arbitrage and (ii) no-ponzi-schemes, JLNX obtain debt valuation equation:

Total Gvt Debt $=$ present value of future surpluses

- Using affine model for surplus and realistic SDF calibrated to debt and equity they find that US debt should be worth -129% of GDP instead of actual $+39 \%$:
\rightarrow Debt is overvalued by $\mathbf{1 6 8 \%}$ valuation GAP!

- Puzzling since Gvt bonds have non-negative payoffs!

Our Explanation

- We show that no-arbitrage implies Gvt debt should satisfy the debt valuation equation at all times and, when markets are incomplete, for all admissible SDFs for which it satisfies a transversality condition (TVC).
- This puts a high burden on the model specification: for most arbitrary surplus process, accumulated debt will not satisfy the TVC, especially if bond returns do not span all surplus shocks.
\rightarrow The valuation gap measures TVC $\neq 0$.
- We show how to specify an admissible surplus process so that debt can satisfy the TVC.
- Fitting such a process to historical data, we can match surplus and debt dynamics without giving rise to a Debt valuation puzzle.

Related Literature

- O'Connell and Zeldes (1988), Tirole (1985)
- Bohn (1995)
- Hansen, Roberds, Sargent (1991)
- Cochrane (2022)
- Bohn (1998), Campbell, Gao, Martin (2023)
- Blanchard (2019)
- Dumas, Ehling, Yang (2022), Brunnermeier, Merkel, and Sannikov (2022a,b)
- Belo, Collin-Dufresne, Goldstein (2015)

Road map

1. The Debt valuation puzzle
2. Two Examples (with and without a GAP)
3. General Theory
4. Empirical Model
5. Empirical results

The Debt Valuation puzzle

- JLNX use no-arbitrage model with exp-affine SDF M_{t} :

$$
\begin{aligned}
z_{t+1} & =\Phi z_{t}+\sum^{\frac{1}{2}} \epsilon_{t+1} \\
\frac{M_{t+1}}{M_{t}} & =e^{-r_{t}-\frac{1}{2} \Lambda_{t}^{\top} \Lambda_{t}-\Lambda_{t} \epsilon_{t+1}} \\
\Lambda_{t} & =\lambda_{0}+\lambda_{1} z_{t} \\
r_{t} & =r_{0}+r_{1} z_{t}
\end{aligned}
$$

- Estimate a VAR model for the surplus

$$
\mathrm{S}\left(z_{t}\right)=\mathrm{T}\left(z_{t}\right)-\mathrm{G}\left(z_{t}\right)
$$

- Infer debt dynamics from the accounting identity (AI):

$$
D_{t+1}=D_{t} R_{D}(t+1)-\mathrm{S}_{t+1}
$$

The Debt Valuation puzzle

- We prove that D_{t} satisfies ($\mathbf{A I}$) iff:

$$
D_{t}=E_{t}\left[\sum_{n=t+1}^{T} \frac{M_{n}}{M_{t}} S_{n}\right]+E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]
$$

- Taking the limit as $T \rightarrow \infty$ and assuming the TVC:

$$
\lim _{T \rightarrow \infty} E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]=0
$$

- We obtain the debt valuation equation

$$
D_{t}=E_{t}\left[\sum_{n=t+1}^{\infty} \frac{M_{n}}{M_{t}} S_{n}\right]
$$

Example I: generating a GAP

$$
\begin{aligned}
\mathrm{S}_{t+1} & =e^{-\kappa} \mathrm{S}_{t}+\sigma \epsilon_{t+1} \\
\frac{M_{t+1}}{M_{t}} & =e^{-r_{0}-\frac{1}{2} \lambda_{0}^{2}-\lambda_{0} \epsilon_{t+1}} \\
D_{t+1} & =D_{t} e^{r_{0}}-\mathrm{S}_{t+1}
\end{aligned}
$$

- We can compute explicitly:

$$
\begin{aligned}
V_{t}^{S} & =E_{t}\left[\sum_{n=t+1}^{\infty} \frac{M_{n}}{M_{t}} S_{n}\right] \\
& =\frac{S_{t}}{\left(e^{r_{0}+\kappa}-1\right)}-\frac{\sigma \lambda_{0}}{\left(1-e^{-\kappa}\right)} \frac{e^{r_{0}+\kappa}-e^{r_{0}}}{\left(e^{r_{0}}-1\right)\left(e^{r_{0}+\kappa}-1\right)}
\end{aligned}
$$

$\rightarrow V_{t}^{S}$ does not satisfy ($\mathbf{A I}$), that is

$$
V_{t+1}^{\mathrm{S}} \neq V_{t}^{\mathrm{S}} e^{r_{0}}-\mathrm{S}_{t+1}
$$

\rightarrow A valuation gap $G_{t}=D_{t}-V_{t}^{\mathrm{S}} \neq 0$ must appear!

Example II: closing the GAP

- Define $L_{t}=\frac{D_{t}}{C_{t}}$ with dynamics:

$$
\begin{aligned}
\log \frac{C_{t+1}}{C_{t}} & =\mu_{C}-\frac{1}{2} \sigma_{C}^{2}+\sigma_{C} \epsilon_{t+1} \\
L_{t+1} & =\left(1-e^{-\kappa}\right) \mu_{L}+e^{-\kappa} L_{t}+\sigma_{\ell} \epsilon_{t+1} \\
\frac{M_{t+1}}{M_{t}} & =e^{-r_{0}-\frac{1}{2} \lambda_{0}^{2}-\lambda_{0} \epsilon_{t+1}}
\end{aligned}
$$

- Infer from $\mathrm{Al}\left(\mathrm{S}_{t+1}=D_{t} e^{r_{0}}-D_{t+1}\right)$:

$$
\frac{S_{t+1}}{C_{t+1}}=L_{t} e^{r_{0}-\mu_{C}+\frac{1}{2} \sigma_{C}^{2}-\sigma_{C} \epsilon_{t+1}}-L_{t+1}
$$

- Since (AI) and (M) hold in this economy, we have

$$
V_{t, T}^{\mathrm{S}}:=\sum_{n=t+1}^{T} E_{t}\left[\frac{M_{n}}{M_{t}} \mathrm{~S}_{n}\right]=D_{t}-E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]
$$

$\Rightarrow \mathrm{GAP} G_{t}=D_{t}-V_{t, \infty}^{\mathrm{S}}=0$ iff $\lim _{T \rightarrow \infty} E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]=0(\mathrm{TVC})$

Example II: closing the GAP

- We compute explicitly $G_{t, T}:=D_{t}-V_{t, T}^{\mathrm{S}}=E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]=$

$$
C_{t} e^{\left(\mu_{c}-r_{0}-\sigma_{c} \lambda_{0}\right)(\mathbf{T}-\mathbf{t})}\left\{\mu_{L}+e^{-\kappa(T-t)} L_{t}-\sigma_{L}\left(\lambda_{0}-\sigma_{C}\right) \frac{1-e^{-\kappa(T-t)}}{1-e^{-\kappa}}\right\}
$$

- It follows:

$$
G_{t}=\lim _{T \rightarrow \infty} E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]=0 \Longleftrightarrow\left(\mu_{C}-r_{0}-\sigma_{C} \lambda_{0}\right)<0
$$

- TVC can hold even if $r_{0}<\mu_{C}$ (Bohn (1995)).
- This model nests the classic case where $M_{t}=C_{t}^{-\gamma}$, where
- $r_{0}=\rho+\gamma\left(\mu_{C}-\frac{1}{2} \sigma_{C}^{2}\right)-\frac{1}{2} \gamma^{2} \sigma_{C}^{2}$
- $\lambda_{0}=\gamma \sigma_{C}$.

Admissible Surplus Processes: a Theorem

1. (AI) is equivalent to (N) and implies that

$$
\begin{equation*}
\mathbb{E}_{\tau}\left[M_{\tau, t}^{\nu} D_{t}+\sum_{s=\tau+1}^{t} M_{\tau, s}^{\nu} T_{s}\right]=D_{\tau}+\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{t} M_{\tau, s}^{\nu} G_{s}\right] \tag{1}
\end{equation*}
$$

for all $\nu \in \mathcal{N}$ and $0 \leq \tau \leq t$.
3. (AI) and ($T V C^{*}$) jointly imply that

$$
\begin{equation*}
\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{\infty} M_{\tau, s}^{\mu} \boldsymbol{T}_{s}\right]=D_{\tau}+\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{\infty} M_{\tau, s}^{\mu} G_{s}\right] \tag{2}
\end{equation*}
$$

for all $\tau \geq 0$ and $\mu \in \mathcal{N}$ such that ($T V C^{*}$) holds. In particular, relative to any such process the present value of the spending claim is finite if and only if the present value of the tax claim is finite in which case

$$
\begin{equation*}
D_{\tau}=\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{\infty} M_{\tau, s}^{\mu}\left(T_{s}-G_{s}\right)\right] \tag{3}
\end{equation*}
$$

for all $\tau \geq 0$.

A realistic model of surplus and debt dynamics

- Propose a (more) realistic model for debt and admissible surplus dynamics consistent with data.
- Fit a realistic affine pricing kernel to both Treasury bond returns and the value-weighted CRSP market return.
- Questions
- Does an arbitrage-free model fit bond returns well?
- Are there sources of risk that are priced in the stock market that are not spanned by bond returns; and Is the government surplus driven by some of these 'unspanned' sources of risk?
- Does an admissible surplus process, such that (M), (AI), and (TVC) hold, fit the historical surplus series?

A pricing kernel for stocks and bonds

$$
\begin{aligned}
& \frac{M_{t+1}}{M_{t}}=\exp \left\{-r_{t}-\frac{1}{2} \lambda_{\mathrm{p}, t}^{\top} \lambda_{\mathrm{p}, t}-\lambda_{\mathrm{p}, t}^{\top} \epsilon_{\mathrm{p}, t+1}-\frac{1}{2} \lambda_{y, t}^{2}-\lambda_{y, t} \epsilon_{y, t+1}\right\} \\
& r_{t}=A^{1}+B^{1} \mathrm{p}_{t} \quad \lambda_{\mathrm{p}, t}=\sigma_{\mathrm{p}}^{-1}\left(\lambda_{\mathrm{p} 0}+\lambda_{\mathrm{p} 1} \mathrm{p}_{t}\right) \quad \lambda_{y, t}=\lambda_{y 0}+\lambda_{y 1} h_{t} \\
& \ln \frac{C_{t+1}}{C_{t}}=\mu_{C}+\mu_{C_{\mathrm{p}}}\left(\mathrm{p}_{t}-\overline{\mathrm{p}}\right)+\sigma_{C_{\mathrm{p}} \epsilon_{\mathrm{p}, t+1}}+\sigma_{C} \epsilon_{C, t+1} \\
& \ln \frac{Y_{t+1}}{Y_{t}}=\mu_{Y}+\mu_{Y_{\mathrm{p}}}\left(\mathrm{p}_{t}-\overline{\mathrm{p}}\right)+\sigma_{Y \mathrm{p}} \epsilon_{\mathrm{p}, t+1}+\sigma_{Y} \epsilon_{Y, t+1} \\
& \mathrm{p}_{t+1}= \\
& h_{t+1}=\overline{\mathrm{p}}+\Phi_{\mathrm{p}}\left(\mathrm{p}_{t}-\overline{\mathrm{p}}\right)+\sigma_{\mathrm{p}} \epsilon_{\mathrm{p}, t+1}\left(\mathrm{p}_{t}-\overline{\mathrm{p}}\right)+\Phi_{h}\left(h_{t}-\bar{h}\right)+\sigma_{h \mathrm{p}} \epsilon_{\mathrm{p}, t+1}+\sigma_{h Y} \epsilon_{Y, t+1}+\sigma_{h} \epsilon_{h, t+1}
\end{aligned}
$$

- Use 5 (p) factors for yields and (h) for equity premium .
- Affine pricing solution for ZC yields $Z C_{t}^{m}=A^{m}+B^{m} \mathrm{p}_{t}$
- and for Price-dividend ratio $\frac{P_{t}^{Y}}{Y_{t}} \approx e^{\bar{z}+z_{\mathrm{p}}\left(\mathrm{p}_{t}-\overline{\mathrm{p}}\right)+z_{h}\left(h_{t}-\bar{h}\right)}$.
- Identify three distinct priced shock components:

1. ϵ_{p} : risk-free discount rate shocks,
2. ϵ_{Y} : equity cash-flow shocks,
3. ϵ_{h} : equity discount rate shocks.

Estimation methodology

1. VAR estimation of p_{t} to identify ($\overline{\mathrm{p}}, \Phi_{\mathrm{p}}, \Sigma_{\mathrm{p}}$) and yield-curve shocks $\epsilon_{\mathrm{p}, t+1}$ with up to 5 PC
(Duffee (2011), De los Rios (2015), Adrian, Crump, Moench (2013)).
2. Regress $g_{Y}(t+1)$ onto $\mathrm{p}_{t}, \epsilon_{\mathrm{p}, t+1}$ to estimate $\mu_{Y}, \mu_{Y_{\mathrm{p}}}, \sigma_{Y_{p}}, \sigma_{Y}$ and dividend shocks $\epsilon_{Y, t+1}$.
3. Identify h_{t} and the parameters \bar{z}, z_{p} from a regression of $\log \frac{P_{t}^{Y}}{Y_{t}}$ onto p_{t} (with $z_{h}=1 \mathrm{wlog}$).
4. Identify the parameters $\left(\bar{h}, \Phi_{h \mathrm{p}}, \Phi_{h}, \sigma_{h Y}, \sigma_{h}\right)$ and the equity discount rate shocks $\epsilon_{h, t+1}$ from a regression of h_{t+1} onto $\mathrm{p}_{t}, h_{t}, \epsilon_{\mathrm{p}, t+1}, \epsilon_{Y, t+1}$.
5. Estimate risk-premia parameters $\lambda_{\mathrm{p} 0}, \lambda_{\mathrm{p} 1}, \lambda_{Y 0}, \lambda_{Y 1}$ from the cross-section of ZC yields and the log-stock-price to dividend ratio using the pricing formulas via asymptotic least squares estimator.
(Gourieroux, Montfort, Trognon (1985), Del Rios (2015)).
Parameter Estimates

The return on government debt

- We estimate

$$
\begin{equation*}
\hat{R}_{D}(t+1)=e^{r_{t}}+\sum_{m=1}^{M} \hat{\omega}_{m}\left(e^{r_{t}+r x_{t+1}^{m-1}}-e^{r_{t}}\right) \tag{4}
\end{equation*}
$$

- Where we decompose the weight in each maturity bond into its exposure to the principal component weights:

$$
\omega_{m}=\alpha_{1} w_{1, m}+\alpha_{2} w_{2, m}+\alpha_{3} w_{3, m}
$$

- So we estimate $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by OLS.

The admissible surplus process

- We estimate the \log debt to consumption ratio $\ell_{t}:=\ln \frac{D_{t}}{C_{t}}$ follows an AR2 process:

$$
\begin{aligned}
\ell_{t+1}= & \phi_{1} \ell_{t}+\phi_{2} \ell_{t-1}+\left(1-\phi_{1}-\phi_{2}\right) \bar{\ell} \\
& +\sigma_{\ell, \mathrm{p}} \epsilon_{\mathrm{p}, t+1}+\sigma_{\ell, y} \epsilon_{\mathrm{y}, t+1}+\sigma_{\ell, h} \epsilon_{h, t+1}+\sigma_{\ell} \epsilon_{\ell, t+1}
\end{aligned}
$$

- Then we infer the surplus from the AI condition:

$$
\begin{equation*}
\frac{S_{t+1}}{C_{t+1}}=e^{\ell_{t}-\ln \frac{C_{t+1}}{C_{t}}} \hat{R}_{D}(t+1)-e^{\ell_{t+1}} \tag{5}
\end{equation*}
$$

Data

- Yield curve data from Nasdaq website https://data.nasdaq.com/data/FED/SVENY-us-treasury-zerocoupon-yield-curve. 1 -year to 7 -year yields from June 1961. Longer yields, up to 20 years, from October 1981.
- Market value of US debt from Dallas FED website https://www.dallasfed.org/research/econdata/govdebt.
Monthly data from January 1942 to October 2022.
- Monthly returns on Gvt debt from 1790 from Hall, Payne, and Sargent.
- Stock value-weighted market portfolio (dividends, prices) from CRSP.
- Surplus from NIPA Table 3.2 from the Bureau of Economic Analysis (BEA).
- Other economic data (GDP, price level, aggregate consumption) from FRED database.

Implied versus NIPA surplus

Figure: Comparison between the surplus, in percentage of aggregate consumption, implied from the AI, and the NIPA surplus.

Log Debt to GDP dynamics

- Estimate AR2 for $\ell_{t}=\ln \frac{D_{t}}{C_{t}}$:

$$
\left(\ell_{t+1}-\bar{\ell}\right)=\phi_{1}\left(\ell_{t}-\bar{\ell}\right)+\phi_{2}\left(\ell_{t-1}-\bar{\ell}\right)+\epsilon_{\ell, t+1}
$$

Frequency	$\bar{\ell}$	$\mathrm{SE}(\bar{\ell})$	ϕ_{1}	$\mathrm{SE}\left(\phi_{1}\right)$	ϕ_{2}	$\mathrm{SE}\left(\phi_{2}\right)$	R^{2}
Quarterly	-0.158	0.403	1.272	0.056	-0.277	0.056	99.3%
Annual	-0.174	0.410	1.61	0.07	-0.66	0.08	97.1%

- Decompose residuals:

$$
\hat{\epsilon}_{\ell, t+1}=\sigma_{\ell, p} \hat{\epsilon}_{p, t+1}+\sigma_{\ell, y} \hat{\epsilon}_{y, t+1}+\sigma_{\ell, h} \hat{\epsilon}_{h, t+1}+\sigma_{\ell} \epsilon_{\ell, t+1}
$$

Frequency	$\sigma_{\ell, p}$	$\operatorname{SE}\left(\sigma_{\ell, p}\right)$	$\sigma_{\ell, y}$	$\operatorname{SE}\left(\sigma_{\ell, y}\right)$	$\sigma_{\ell, h}$	$\operatorname{SE}\left(\sigma_{\ell, h}\right)$	R^{2}
Quarterly	-0.014	0.002	-0.006	0.002	0.004	0.002	26%
Annual	-0.024	0.007	-0.001	0.006	0.008	0.006	29%

Is Debt to GDP stationary?

- The point estimates of the AR2 are consistent with stationarity (but close to the unit circle).
- Therefore we run the OLS regression:

$$
\Delta \ell_{t+1}=\alpha+\gamma \ell_{t}+\delta_{1} \Delta \ell_{t}+v_{t+1}
$$

and perform a one sided t-test for $\gamma<0$ using:

- the Augmented Dickey-Fuller test using the raw data with $\alpha \neq 0$ (ADF)
- the more efficient Elliott-Rothenberg-Stock (1996) test based on the demeaned data with $\alpha=0$ (ADF-GLS).

Test	γ	p-value	T-stat	Crit. Value (5\%)	Reject $\gamma \geq 0$
ADF	-0.0309	0.288	-2.020	-2.898	No
ADF-GLS	-0.0307	0.042	-2.019	-1.944	Yes

Admissible surplus

$$
\frac{\hat{S}_{t+1}}{C_{t+1}}=\exp \left(I_{t}-g_{C}(t+1)\right) \hat{R}_{D}(t+1)-\exp \left(\ell_{t+1}\right)
$$

with

$$
\hat{R}_{D}(t+1)=e^{r_{t}}+\sum_{m=1}^{M} \hat{\omega}_{m}\left(e^{r_{t}+r x_{t+1}^{\mathrm{p}, m}}-e^{r_{t}}\right)
$$

Does the valuation equation hold?

- In our model economy, we can show

$$
\begin{aligned}
V_{t, T} & :=\sum_{n=t+1}^{T} E_{t}\left[\frac{M_{n}}{M_{t}} S_{n}\right] \\
& =D_{t}-E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]
\end{aligned}
$$

- Thus, we can define the GAP:

$$
G_{t, T}:=D_{t}-V_{t, T}=E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]
$$

- We obtain an explicit solution:

$$
G_{t, T}=C_{t} e^{Q_{0, t}^{T}+Q_{\ell, t}^{T} \ell_{t}+Q_{\ell, t}^{T} \ell_{t-1}+Q_{\mathrm{p}, t}^{T} \mathrm{p}_{t}+Q_{h, t}^{T} h_{t}}
$$

Plot of $G_{t, T}$ as function of T

- $\lim _{T \rightarrow \infty} G_{t, T}=0$ for our estimated parameters.
\rightarrow The TVC holds.
\rightarrow Debt satisifes the valuation equation $D_{t}=V_{t, \infty}$.
\rightarrow There is no debt valuation puzzle for our estimated surplus and debt dynamics.

Decomposition implied by the model

- Log-Inearization of AI implies (Cochrane (2022)):

$$
\ell_{t} \approx \sum_{n=t+1}^{T}\left\{\frac{\mathrm{~S}_{n}}{C_{n}}+g_{C}(n)-\ln R_{d}(n)\right\}+\ell_{T}
$$

- The current level of debt to GDP can be decomposed into four components related to the future path of:
- Surplus to consumption,
- Consumption growth,
- (Log) Debt returns, and
- Future debt.
- Simulating 100,000 paths of the model starting from current state, we compute the expected path of each future component.

Decomposition: Expected Trajectory

T	ℓ_{0}	$\frac{D_{0}}{C_{0}}$	$\Sigma_{t=1}^{T} \hat{s}(t)$	$\Sigma_{t=1}^{T} g_{C}(t)$	$\Sigma_{t=1}^{T} r_{D}(t)$	ℓ_{T}	$\frac{D_{T}}{C_{T}}$
10 years	0.484	162%	0.161	0.631	0.417	0.124	115%
			(0.0007)	(0.0003)	(0.0002)	(0.0006)	
20 years	0.484	162%	0.096	1.256	0.884	-0.011	99%
			(0.001)	(0.0005)	(0.0006)	(0.0007)	

Decomposition: Quartiles

T	Quartile	ℓ_{0}	$\frac{D_{0}}{C_{0}}$	$\Sigma_{t=1}^{T} \hat{s}(t)$	$\Sigma_{t=1}^{T} g_{C}(t)$	$\Sigma_{t=1}^{T} r_{D}(t)$	ℓ_{T}	$\frac{D_{T}}{C_{T}}$
10 years	1	0.484	162%	0.392	0.697	0.462	-0.101	90%
10 years	4	0.484	162%	-0.105	0.566	0.372	0.348	109%
20 years	1	0.484	162%	0.389	1.366	1.017	-0.271	76%
20 years	4	0.484	162%	-0.242	1.148	0.753	0.245	128%

Conclusion

[^0]
Supplementary Material

No-arb and $\mathrm{AI} \Rightarrow$ Debt valuation

- (AI) and (M) imply:

$$
\begin{aligned}
& \sum_{n=t+1}^{T} E_{t}\left[\frac{M_{n}}{M_{t}} S_{n}\right]=\sum_{n=t+1}^{T} E_{t}\left[\frac{M_{n}}{M_{t}}\left(D_{n-1} R_{D}(n)-D_{n}\right)\right] \\
&=\sum_{n=t+1}^{T}\{E_{t}[\frac{M_{n-1}}{M_{t}} D_{n-1} \underbrace{E_{n-1}\left[\frac{M_{n}}{M_{n-1}} R_{D}(n)\right]}_{=1}]-E_{t}\left[\frac{M_{n}}{M_{t}} D_{n}\right]\} \\
&=\sum_{n=t+1}^{T}\left\{E_{t}\left[\frac{M_{n-1}}{M_{t}} D_{n-1}\right]-E_{t}\left[\frac{M_{n}}{M_{t}} D_{n}\right]\right\} \\
&=D_{t}-E_{t}\left[\frac{M_{T}}{M_{t}} D_{T}\right]
\end{aligned}
$$

- This holds for any valid SDF!

Derivation for example 2: how to close the gap

$$
\begin{align*}
V_{t, N}^{\mathrm{S}} & =\sum_{n=1}^{N} E_{t}\left[\frac{M_{t+n}}{M_{t}} \mathrm{~S}_{t+n}\right] \tag{6}\\
& =\sum_{n=1}^{N} E_{t}\left[\frac{M_{t+n}}{M_{t}}\left(D_{t+n-1} e^{r_{0}}-D_{t+n}\right)\right] \tag{7}\\
& =\sum_{n=1}^{N} E_{t}\left[E_{t+n-1}\left[\frac{M_{t+n}}{M_{t}}\right] D_{t+n-1} e^{r 0}\right]-\sum_{n=1}^{N} E_{t}\left[\frac{M_{t+n}}{M_{t}} D_{t}(8)\right. \\
& =\sum_{n=1}^{N} E_{t}\left[\frac{M_{t+n-1}}{M_{t}} D_{t+n-1}\right]-\sum_{n=1}^{N} E_{t}\left[\frac{M_{t+n}}{M_{t}} D_{t+n}\right] \tag{9}\\
& =D_{t}-E_{t}\left[\frac{M_{t+N}}{M_{t}} D_{t+N}\right] \tag{10}
\end{align*}
$$

Log-linearization of the (AI)

- Use the AI to write:

$$
\ln \left(\mathcal{S}_{t+1}+e^{\ell_{t+1}}\right)=\ell_{t}-g_{C}(t+1)+r_{D}(t+1)
$$

where $\mathcal{S}_{t}=\mathrm{S}_{t} / C_{t}, \ell_{t}=\ln D_{t} / C_{t}, r_{D}(t)=\ln R_{D}(t)$.

- Taylor expand LHS around $\mathcal{S}_{t}=\check{\mathrm{S}}$ and $\ell_{t}=\check{\ell}$ to get:

$$
\begin{aligned}
\rho_{0}+\rho_{\ell} \ell_{t+1}+\rho_{s} \mathcal{S}_{t+1} & =\ell_{t}-g_{C}(t+1)+r_{D}(t+1) \\
\rho_{0} & =\ln \left(\check{S}+e^{\check{\ell}}\right)-\rho_{\ell} \check{\ell}-\rho_{s} \check{S} \\
\rho_{\ell} & =\frac{e^{\check{\ell}}}{\check{S}+e^{\check{\ell}}} \\
\rho_{s} & =\frac{1}{\check{S}+e^{\check{\ell}}}
\end{aligned}
$$

- Iterate forward :
$\ell_{t}=\frac{\rho_{0}}{1-\rho_{\ell}}+\sum_{n=t+1}^{T} \rho_{\ell}^{n-t-1}\left\{\rho_{s} \mathcal{S}_{n}+g_{C}(n)-r_{d}(n)\right\}+\rho_{\ell}^{T-t} \ell_{T}$
- Pick $\check{S}=\check{\ell}=0$ to get the Cochrane decomposition.

Parameter Estimates

Process	Parameter	Estimated Value	Standard Error
p	\bar{p}	(0.240, -0.036, 0.006, 0.001, 0.0001)	(0.003, 0.0004, 0.0001, 0.000, 0.000)
	Φ	$\left(\begin{array}{rrrrr}0.854 & -0.015 & 0.001 & 0.002 & 0.001 \\ -0.120 & 0.677 & 0.005 & -0.016 & 0.007 \\ 0.872 & -0.803 & 0.113 & -0.070 & -0.033 \\ 6.960 & 1.920 & 0.239 & 0.409 & -0.047 \\ -0.158 & -0.506 & -2.456 & 0.014 & -0.005\end{array}\right)$	$\left(\begin{array}{rrrrr}0.003 & 0.000 & 0.005 & -0.023 & -0.0112 \\ 0.000 & 0.203 & -0.162 & 0.143 & -0.534 \\ 0.005 & -0.162 & 4.331 & -0.542 & 0.807 \\ -0.023 & 0.143 & -0.542 & 16.9 & -2.00 \\ -0.012 & -0.534 & 0.807 & -2.00 & 112\end{array}\right)$
	σ_{p}	$10^{-5}\left(\begin{array}{rrrrr}145.591 & 0.790 & -3.929 & -2.059 & -0.537 \\ 0.790 & 11.216 & 0.540 & -0.003 & 0.006 \\ -3.929 & 0.540 & 0.729 & 0.001 & 0.005 \\ -2.059 & -0.003 & 0.001 & 0.174 & 0.005 \\ -0.537 & 0.006 & 0.005 & 0.005 & 0.031\end{array}\right)$	$10^{-5}\left(\begin{array}{rrrrr}32.555 & 6.391 & 1.744 & 0.860 & 0.348 \\ 6.391 & 2.508 & 0.460 & 0.221 & 0.094 \\ 1.744 & 0.460 & 0.163 & 0.056 & 0.024 \\ 0.860 & 0.221 & 0.056 & 0.039 & 0.012 \\ 0.348 & 0.094 & 0.024 & 0.012 & 0.007\end{array}\right)$
g_{Y}	μ_{Y} $\mu_{Y p}$ $\sigma_{Y p}$ σ_{Y}	0.087 $(0.146,-0.584,0.302,18.61,-41.00)$ $(-0.009,0.013,-0.010,0.063,0.031)$ 0.107	0.015 $(0.143,0.662,4.571,10.10,26.18)$ $(0.015,0.015,0.015,0.016,0.016)$ 0.002
$g C$	μ_{C} $\mu_{C p}$ $\sigma_{C p}$ σ_{C}	0.065 $(0.089,0.524,-1.220,4.027,-0.285)$ $(0.007,0.005,-0.000,0.000,-0.001)$ 0.019	0.003 $(0.025,0.117,0.804,1.784,4.605)$ $(0.003,0.003,0.003,0.003,0.003)$ $6 * 10^{-} 5$
z	$\begin{gathered} \hline \bar{z} \\ z_{p} \\ \hline \end{gathered}$	$\begin{gathered} -2.533 \\ (-0.087,-0.069,-3.185,-9.523,4.714) \end{gathered}$	$\begin{gathered} \hline \hline 0.010 \\ (0.095,0.439,3.031,6.853,17.896) \\ \hline \end{gathered}$
h	h $\Phi_{h p}$ Φ_{h} $\sigma_{h p}$ $\sigma_{h Y}$ σ_{h}	$\begin{gathered} 0 \\ (0.009,-0.019,0.753,1.152,12.20) \\ -0.300 \\ (-0.001,-0.012,0.002,0.003,-0.004) \\ -0.053 \\ 0.055 \end{gathered}$	$\begin{gathered} \hline \hline 0 \\ (0.075,0.347,2.394,5.311,13.71) \\ 0.1162 \\ (0.008,0.008,0.008,0.008,0.008) \\ 0.008 \\ 5.6 * 10^{-4} \end{gathered}$
M	$\lambda_{0 p}$	(0.0140,-0.001, 0, 0,0)	(0.0001,0.0004,0,0,0)
	$\lambda_{1 p}$	$\left(\begin{array}{rrrrr} -0.055 & 1.140 & 0 & 0 & 0 \\ -0.018 & -0.137 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{rrrrr} 0.0002 & 0.022 & 0 & 0 & 0 \\ 0.000 & 0.0008 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$

Back

[^0]:

