Admissible Surplus Dynamics and the Government Debt Puzzle

Pierre Collin-Dufresne (SFI & EPFL) Julien Hugonnier (EPFL) Elena Perazzi (EPFL)

May 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

High Debt Level

Succession of crisis (Subprime, Covid, Ukraine) have resulted in extreme levels of Govt debt.

source: US Treasury

▲□▶▲□▶▲□▶▲□▶ □ のQの

Persistent Negative Government Surplus

- Questions sustainability of Gvt debt and fiscal policy.
- > Yet, yields on US debt remain low.
- → The Government Debt Valuation Puzzle (Jiang, Lustig, van Nieuwerburgh, and Xiaolan (2022))

< ロ > < 同 > < 回 > < 回 >

The Government Debt Puzzle

Assuming (i) no-arbitrage and (ii) no-ponzi-schemes, JLNX obtain debt valuation equation:

Total Gvt Debt = present value of future surpluses

- Using affine model for surplus and realistic SDF calibrated to debt and equity they find that US debt should be worth -129% of GDP instead of actual +39%:
- \rightarrow Debt is overvalued by 168% valuation GAP!

Puzzling since Gvt bonds have non-negative payoffs!

Our Explanation

- We show that no-arbitrage implies Gvt debt should satisfy the debt valuation equation at all times and, when markets are incomplete, for all admissible SDFs for which it satisfies a transversality condition (TVC).
- This puts a high burden on the model specification: for most arbitrary surplus process, accumulated debt will not satisfy the TVC, especially if bond returns do not span all surplus shocks.
- \rightarrow The valuation gap measures **TVC** \neq **0**.
- We show how to specify an admissible surplus process so that debt can satisfy the TVC.
- Fitting such a process to historical data, we can match surplus and debt dynamics without giving rise to a Debt valuation puzzle.

Related Literature

- O'Connell and Zeldes (1988), Tirole (1985)
- Bohn (1995)
- Hansen, Roberds, Sargent (1991)
- Cochrane (2022)
- Bohn (1998), Campbell, Gao, Martin (2023)
- Blanchard (2019)
- Dumas, Ehling, Yang (2022), Brunnermeier, Merkel, and Sannikov (2022a,b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Belo, Collin-Dufresne, Goldstein (2015)

- 1. The Debt valuation puzzle
- 2. Two Examples (with and without a GAP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 3. General Theory
- 4. Empirical Model
- 5. Empirical results

The Debt Valuation puzzle

JLNX use no-arbitrage model with exp-affine SDF M_t :

$$\begin{aligned} z_{t+1} &= \Phi z_t + \Sigma^{\frac{1}{2}} \epsilon_{t+1} \\ \frac{M_{t+1}}{M_t} &= e^{-r_t - \frac{1}{2} \Lambda_t^\top \Lambda_t - \Lambda_t \epsilon_{t+1}} \\ \Lambda_t &= \lambda_0 + \lambda_1 z_t \\ r_t &= r_0 + r_1 z_t \end{aligned}$$

Estimate a VAR model for the surplus

$$S(z_t) = T(z_t) - G(z_t)$$

Infer debt dynamics from the accounting identity (AI):

$$D_{t+1} = D_t R_D(t+1) - S_{t+1}$$

・ロト・四ト・モート ヨー うへの

The Debt Valuation puzzle

• We prove that D_t satisfies (AI) iff:

$$D_t = E_t \left[\sum_{n=t+1}^T \frac{M_n}{M_t} S_n \right] + E_t \left[\frac{M_T}{M_t} D_T \right]$$

• Taking the limit as $T \to \infty$ and assuming the **TVC**: $\lim_{T\to\infty} E_t \left[\frac{M_T}{M_t} D_T \right] = 0$

We obtain the debt valuation equation

$$D_t = E_t \left[\sum_{n=t+1}^{\infty} \frac{M_n}{M_t} \mathbf{S}_n
ight]$$

Example I: generating a GAP

$$\begin{array}{rcl} {\rm S}_{t+1} & = & e^{-\kappa} {\rm S}_t + \sigma \epsilon_{t+1} \\ \frac{M_{t+1}}{M_t} & = & e^{-r_0 - \frac{1}{2} \lambda_0^2 - \lambda_0 \epsilon_{t+1}} \\ D_{t+1} & = & D_t e^{r_0} - {\rm S}_{t+1} \end{array}$$

We can compute explicitly:

$$V_t^{S} = E_t \left[\sum_{n=t+1}^{\infty} \frac{M_n}{M_t} S_n\right] \\ = \frac{S_t}{(e^{r_0+\kappa}-1)} - \frac{\sigma\lambda_0}{(1-e^{-\kappa})} \frac{e^{r_0+\kappa}-e^{r_0}}{(e^{r_0}-1)(e^{r_0+\kappa}-1)}$$

 $\rightarrow V_t^{\mathrm{S}}$ does not satisfy (AI), that is

$$V_{t+1}^{\mathrm{S}}
eq V_t^{\mathrm{S}} e^{r_0} - \mathrm{S}_{t+1}$$

 \rightarrow A valuation gap $G_t = D_t - V_t^S \neq 0$ must appear!

Example II: closing the GAP

• Define
$$L_t = \frac{D_t}{C_t}$$
 with dynamics:

$$\log \frac{C_{t+1}}{C_t} = \mu_C - \frac{1}{2}\sigma_C^2 + \sigma_C \epsilon_{t+1} \\ L_{t+1} = (1 - e^{-\kappa})\mu_L + e^{-\kappa}L_t + \sigma_\ell \epsilon_{t+1} \\ \frac{M_{t+1}}{M_t} = e^{-r_0 - \frac{1}{2}\lambda_0^2 - \lambda_0 \epsilon_{t+1}}$$

► Infer from AI
$$(S_{t+1} = D_t e^{r_0} - D_{t+1})$$
:
 $\frac{S_{t+1}}{C_{t+1}} = L_t e^{r_0 - \mu_C + \frac{1}{2}\sigma_C^2 - \sigma_C \epsilon_{t+1}} - L_{t+1}$

Since (AI) and (M) hold in this economy, we have $V_{t\tau}^{\mathrm{S}} := \sum_{n=t+1}^{T} E_t [\frac{M_n}{M_*} S_n] = D_t - E_t [\frac{M_T}{M_*} D_T]$ $\Rightarrow \text{ GAP } G_t = D_t - V_{t,\infty}^{S} = 0 \text{ iff } \lim_{T \to \infty} E_t [\frac{M_T}{M_t} D_T] = 0 \text{ (TVC)}$

Example II: closing the GAP

► We compute explicitly
$$G_{t,T} := D_t - V_{t,T}^{\mathrm{S}} = E_t [\frac{M_T}{M_t} D_T] = C_t e^{(\mu_{\mathsf{C}} - \mathbf{r}_0 - \sigma_{\mathsf{C}}\lambda_0)(\mathsf{T} - \mathsf{t})} \left\{ \mu_L + e^{-\kappa(T-t)} L_t - \sigma_L (\lambda_0 - \sigma_C) \frac{1 - e^{-\kappa(T-t)}}{1 - e^{-\kappa}} \right\}$$

It follows:

$$G_t = \lim_{T \to \infty} E_t \left[\frac{M_T}{M_t} D_T \right] = 0 \iff (\mu_C - r_0 - \sigma_C \lambda_0) < 0$$

► This model nests the classic case where $M_t = C_t^{-\gamma}$, where ► $r_0 = \rho + \gamma(\mu_C - \frac{1}{2}\sigma_C^2) - \frac{1}{2}\gamma^2\sigma_C^2$ ► $\lambda_0 = \gamma\sigma_C$.

Admissible Surplus Processes: a Theorem

1. (AI) is equivalent to (N) and implies that

$$\mathbb{E}_{\tau}\left[M_{\tau,t}^{\nu}D_{t}+\sum_{s=\tau+1}^{t}M_{\tau,s}^{\nu}T_{s}\right]=D_{\tau}+\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{t}M_{\tau,s}^{\nu}G_{s}\right]$$
(1)

for all $\nu \in \mathcal{N}$ and $0 \leq \tau \leq t$.

3. (AI) and (TVC*) jointly imply that

$$\mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{\infty} M_{\tau,s}^{\mu} T_{s}\right] = D_{\tau} + \mathbb{E}_{\tau}\left[\sum_{s=\tau+1}^{\infty} M_{\tau,s}^{\mu} G_{s}\right]$$
(2)

for all $\tau \geq 0$ and $\mu \in \mathcal{N}$ such that (TVC^*) holds. In particular, relative to any such process the present value of the spending claim is finite if and only if the present value of the tax claim is finite in which case

$$D_{\tau} = \mathbb{E}_{\tau} \left[\sum_{s=\tau+1}^{\infty} M^{\mu}_{\tau,s} \left(T_s - G_s \right) \right]$$
(3)

for all $\tau \geq 0$.

A realistic model of surplus and debt dynamics

- Propose a (more) realistic model for debt and admissible surplus dynamics consistent with data.
- Fit a realistic affine pricing kernel to both Treasury bond returns and the value-weighted CRSP market return.
- Questions
 - Does an arbitrage-free model fit bond returns well?
 - Are there sources of risk that are priced in the stock market that are not spanned by bond returns; and Is the government surplus driven by some of these 'unspanned' sources of risk?
 - Does an admissible surplus process, such that (M), (AI), and (TVC) hold, fit the historical surplus series?

A pricing kernel for stocks and bonds

$$\begin{split} \frac{M_{t+1}}{M_t} &= \exp\left\{-r_t - \frac{1}{2}\lambda_{\mathrm{p},t}^\top \lambda_{\mathrm{p},t} - \lambda_{\mathrm{p},t}^\top \epsilon_{\mathrm{p},t+1} - \frac{1}{2}\lambda_{y,t}^2 - \lambda_{y,t} \epsilon_{y,t+1}\right\}\\ r_t &= A^1 + B^1 \mathrm{p}_t \quad \lambda_{\mathrm{p},t} = \sigma_{\mathrm{p}}^{-1} (\lambda_{\mathrm{p}0} + \lambda_{\mathrm{p}1} \mathrm{p}_t) \quad \lambda_{y,t} = \lambda_{y0} + \lambda_{y1} h_t \end{split}$$

$$\begin{split} &\ln \frac{C_{t+1}}{C_t} = \mu_C + \mu_{Cp}(\mathbf{p}_t - \bar{\mathbf{p}}) + \sigma_{Cp}\epsilon_{\mathbf{p},t+1} + \sigma_C\epsilon_{C,t+1} \\ &\ln \frac{Y_{t+1}}{Y_t} = \mu_Y + \mu_{Yp}(\mathbf{p}_t - \bar{\mathbf{p}}) + \sigma_{Yp}\epsilon_{\mathbf{p},t+1} + \sigma_Y\epsilon_{Y,t+1} \\ &p_{t+1} = \bar{\mathbf{p}} + \Phi_p(\mathbf{p}_t - \bar{\mathbf{p}}) + \sigma_p\epsilon_{\mathbf{p},t+1} \\ &h_{t+1} = \bar{h} + \Phi_{hp}(\mathbf{p}_t - \bar{\mathbf{p}}) + \Phi_h(h_t - \bar{h}) + \sigma_{hp}\epsilon_{\mathbf{p},t+1} + \sigma_h\gamma\epsilon_{Y,t+1} + \sigma_h\epsilon_{h,t+1} \end{split}$$

- Use 5 (p) factors for yields and (h) for equity premium .
- Affine pricing solution for ZC yields $ZC_t^m = A^m + B^m p_t$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- and for Price-dividend ratio $\frac{P_t^Y}{Y_t} \approx e^{\bar{z} + z_p(p_t \bar{p}) + z_h(h_t \bar{h})}$.
- Identify three distinct priced shock components:
 - 1. $\epsilon_{\rm p}$: risk-free discount rate shocks,
 - 2. ϵ_Y : equity cash-flow shocks,
 - 3. ϵ_h : equity discount rate shocks.

Estimation methodology

- 1. VAR estimation of p_t to identify $(\bar{p}, \Phi_p, \Sigma_p)$ and yield-curve shocks $\epsilon_{p,t+1}$ with up to 5 PC (Duffee (2011), De los Rios (2015), Adrian, Crump, Moench (2013)).
- 2. Regress $g_{Y}(t+1)$ onto $p_t, \epsilon_{p,t+1}$ to estimate $\mu_{Y}, \mu_{Yp}, \sigma_{Yp}, \sigma_{Y}$ and dividend shocks $\epsilon_{Y,t+1}$.
- 3. Identify h_t and the parameters \bar{z}, z_p from a regression of $\log \frac{P_t^Y}{Y_t}$ onto p_t (with $z_h = 1$ wlog).
- 5. Estimate risk-premia parameters $\lambda_{p0}, \lambda_{p1}, \lambda_{Y0}, \lambda_{Y1}$ from the cross-section of ZC yields and the log-stock-price to dividend ratio using the pricing formulas via asymptotic least squares estimator.

(Gourieroux, Montfort, Trognon (1985), Del Rios (2015)).

Parameter Estimates

We estimate

$$\hat{R}_D(t+1) = e^{r_t} + \sum_{m=1}^M \hat{\omega}_m(e^{r_t + r x_{t+1}^{m-1}} - e^{r_t})$$
 (4)

Where we decompose the weight in each maturity bond into its exposure to the principal component weights:

$$\omega_m = \alpha_1 w_{1,m} + \alpha_2 w_{2,m} + \alpha_3 w_{3,m}$$

So we estimate $\alpha_1, \alpha_2, \alpha_3$ by OLS.

We estimate the log debt to consumption ratio l_t := ln D_t/C_t follows an AR2 process:

$$\ell_{t+1} = \phi_1 \ell_t + \phi_2 \ell_{t-1} + (1 - \phi_1 - \phi_2) \overline{\ell} \\ + \sigma_{\ell,p} \epsilon_{p,t+1} + \sigma_{\ell,y} \epsilon_{y,t+1} + \sigma_{\ell,h} \epsilon_{h,t+1} + \sigma_{\ell} \epsilon_{\ell,t+1}$$

Then we infer the surplus from the AI condition:

$$\frac{S_{t+1}}{C_{t+1}} = e^{\ell_t - \ln \frac{C_{t+1}}{C_t}} \hat{R}_D(t+1) - e^{\ell_{t+1}}$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Data

- Yield curve data from Nasdaq website https://data.nasdaq.com/data/FED/SVENY-us-treasury-zerocoupon-yield-curve.
 1-year to 7-year yields from June 1961. Longer yields, up to 20 years, from October 1981.
- Market value of US debt from Dallas FED website https://www.dallasfed.org/research/econdata/govdebt.

Monthly data from January 1942 to October 2022.

- Monthly returns on Gvt debt from 1790 from Hall, Payne, and Sargent.
- Stock value-weighted market portfolio (dividends, prices) from CRSP.
- Surplus from NIPA Table 3.2 from the Bureau of Economic Analysis (BEA).
- Other economic data (GDP, price level, aggregate consumption) from FRED database.

Implied versus NIPA surplus

Figure: Comparison between the surplus, in percentage of aggregate consumption, implied from the AI, and the NIPA surplus.

Log Debt to GDP dynamics

• Estimate AR2 for
$$\ell_t = \ln \frac{D_t}{C_t}$$
:

$$(\ell_{t+1} - \overline{\ell}) = \phi_1(\ell_t - \overline{\ell}) + \phi_2(\ell_{t-1} - \overline{\ell}) + \epsilon_{\ell,t+1}$$

Frequency	Ē	$SE(\overline{\ell})$	ϕ_1	$SE(\phi_1)$	ϕ_2	$SE(\phi_2)$	R^2
Quarterly	-0.158	0.403	1.272	0.056	-0.277	0.056	99.3%
Annual	-0.174	0.410	1.61	0.07	-0.66	0.08	97.1%

Decompose residuals:

 $\hat{\epsilon}_{\ell,t+1} = \sigma_{\ell,p} \hat{\epsilon}_{p,t+1} + \sigma_{\ell,y} \hat{\epsilon}_{y,t+1} + \sigma_{\ell,h} \hat{\epsilon}_{h,t+1} + \sigma_{\ell} \epsilon_{\ell,t+1}$

Frequency	$\sigma_{\ell,p}$	$SE(\sigma_{\ell,p})$	$\sigma_{\ell,y}$	$SE(\sigma_{\ell,y})$	$\sigma_{\ell,h}$	$SE(\sigma_{\ell,h})$	R^2
Quarterly	-0.014	0.002	-0.006	0.002	0.004	0.002	26%
Annual	-0.024	0.007	-0.001	0.006	0.008	0.006	29%

Is Debt to GDP stationary?

- The point estimates of the AR2 are consistent with stationarity (but close to the unit circle).
- Therefore we run the OLS regression:

$$\Delta \ell_{t+1} = \alpha + \gamma \ell_t + \delta_1 \Delta \ell_t + \upsilon_{t+1}$$

and perform a one sided t-test for $\gamma < 0$ using:

- ► the Augmented Dickey-Fuller test using the raw data with α ≠ 0 (ADF)
- the more efficient Elliott-Rothenberg-Stock (1996) test based on the demeaned data with α = 0 (ADF-GLS).

Test	γ	p-value	T-stat	Crit. Value (5%)	Reject $\gamma \ge 0$
ADF	-0.0309	0.288	-2.020	-2.898	No
ADF-GLS	-0.0307	0.042	-2.019	-1.944	Yes

Admissible surplus

with

$$rac{S_{t+1}}{C_{t+1}} = exp(I_t - g_C(t+1))\hat{R}_D(t+1) - exp(\ell_{t+1})$$

$$\hat{R}_{D}(t+1) = e^{r_{t}} + \sum_{m=1}^{M} \hat{\omega}_{m}(e^{r_{t}+r \mathbf{x}_{t+1}^{\mathrm{p},m}} - e^{r_{t}})$$

Does the valuation equation hold?

In our model economy, we can show

$$V_{t,T} := \sum_{n=t+1}^{T} E_t [\frac{M_n}{M_t} S_n]$$
$$= D_t - E_t [\frac{M_T}{M_t} D_T]$$

Thus, we can define the GAP:

$$G_{t,T} := D_t - V_{t,T} = E_t [\frac{M_T}{M_t} D_T]$$

We obtain an explicit solution:

$$G_{t,T} = C_t \, e^{Q_{0,t}^T + Q_{\ell,t}^T \ell_t + Q_{\ell,t}^T \ell_{t-1} + Q_{p,t}^T p_t + Q_{h,t}^T h_t}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Plot of $G_{t,T}$ as function of T

- ▶ $\lim_{T\to\infty} G_{t,T} = 0$ for our estimated parameters.
- \rightarrow The TVC holds.
- \rightarrow Debt satisifes the valuation equation $D_t = V_{t,\infty}$.
- $\rightarrow\,$ There is no debt valuation puzzle for our estimated surplus and debt dynamics.

Decomposition implied by the model

Log-linearization of AI implies (Cochrane (2022)):

$$\ell_t \approx \sum_{n=t+1}^{T} \left\{ \frac{\mathbf{S}_n}{C_n} + g_C(n) - \ln R_d(n) \right\} + \ell_T$$

- The current level of debt to GDP can be decomposed into four components related to the future path of:
 - Surplus to consumption,
 - Consumption growth,
 - (Log) Debt returns, and
 - Future debt.
- Simulating 100,000 paths of the model starting from current state, we compute the expected path of each future component.

Decomposition: Expected Trajectory

Т	ℓ_0	$\frac{D_0}{C_0}$	$\Sigma_{t=1}^T \hat{s}(t)$	$\Sigma_{t=1}^T g_C(t)$	$\Sigma_{t=1}^T r_D(t)$	ℓ_T	$\frac{D_T}{C_T}$
10 years	0.484	162%	0.161	0.631	0.417	0.124	115%
			(0.0007)	(0.0003)	(0.0002)	(0.0006)	
20 years	0.484	162%	0.096	1.256	0.884	-0.011	99%
			(0.001)	(0.0005)	(0.0006)	(0.0007)	

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Decomposition: Quartiles

Т	Quartile	ℓ_0	$\frac{D_0}{C_0}$	$\Sigma_{t=1}^T \hat{s}(t)$	$\Sigma_{t=1}^T g_C(t)$	$\Sigma_{t=1}^T r_D(t)$	ℓ_T	$\frac{D_T}{C_T}$
10 years	1	0.484	162%	0.392	0.697	0.462	-0.101	90%
10 years	4	0.484	162%	-0.105	0.566	0.372	0.348	109%
20 years	1	0.484	162%	0.389	1.366	1.017	-0.271	76%
20 years	4	0.484	162%	-0.242	1.148	0.753	0.245	128%

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Supplementary Material

No-arb and AI \Rightarrow Debt valuation

(AI) and (M) imply:

$$\sum_{n=t+1}^{T} E_t \left[\frac{M_n}{M_t} S_n \right] = \sum_{n=t+1}^{T} E_t \left[\frac{M_n}{M_t} (D_{n-1} R_D(n) - D_n) \right]$$
$$= \sum_{n=t+1}^{T} \left\{ E_t \left[\frac{M_{n-1}}{M_t} D_{n-1} \underbrace{E_{n-1} \left[\frac{M_n}{M_{n-1}} R_D(n) \right]}_{=1} \right] - E_t \left[\frac{M_n}{M_t} D_n \right] \right\}$$
$$= \sum_{n=t+1}^{T} \left\{ E_t \left[\frac{M_{n-1}}{M_t} D_{n-1} \right] - E_t \left[\frac{M_n}{M_t} D_n \right] \right\}$$
$$= D_t - E_t \left[\frac{M_T}{M_t} D_T \right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This holds for any valid SDF!

Derivation for example 2: how to close the gap

$$V_{t,N}^{S} = \sum_{n=1}^{N} E_{t} \left[\frac{M_{t+n}}{M_{t}} S_{t+n} \right]$$
(6)
$$= \sum_{n=1}^{N} E_{t} \left[\frac{M_{t+n}}{M_{t}} (D_{t+n-1} e^{r_{0}} - D_{t+n}) \right]$$
(7)
$$= \sum_{n=1}^{N} E_{t} \left[E_{t+n-1} \left[\frac{M_{t+n}}{M_{t}} \right] D_{t+n-1} e^{r_{0}} \right] - \sum_{n=1}^{N} E_{t} \left[\frac{M_{t+n}}{M_{t}} D_{t} \left\{ \$ \right\} \right]$$
$$= \sum_{n=1}^{N} E_{t} \left[\frac{M_{t+n-1}}{M_{t}} D_{t+n-1} \right] - \sum_{n=1}^{N} E_{t} \left[\frac{M_{t+n}}{M_{t}} D_{t+n} \right]$$
(9)
$$= D_{t} - E_{t} \left[\frac{M_{t+N}}{M_{t}} D_{t+N} \right]$$
(10)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Log-linearization of the (AI)

Use the AI to write:

 $\ln(\mathcal{S}_{t+1} + e^{\ell_{t+1}}) = \ell_t - g_C(_{t+1}) + r_D(_{t+1})$ where $\mathcal{S}_t = S_t / C_t$, $\ell_t = \ln D_t / C_t$, $r_D(t) = \ln R_D(t)$.

▶ Taylor expand LHS around $S_t = \check{S}$ and $\ell_t = \check{\ell}$ to get:

$$\rho_{0} + \rho_{\ell}\ell_{t+1} + \rho_{s}\mathcal{S}_{t+1} = \ell_{t} - g_{C}(_{t+1}) + r_{D}(_{t+1})$$

$$\rho_{0} = \ln(\check{S} + e^{\check{\ell}}) - \rho_{\ell}\check{\ell} - \rho_{s}\check{S}$$

$$\rho_{\ell} = \frac{e^{\check{\ell}}}{\check{S} + e^{\check{\ell}}}$$

$$\rho_{s} = \frac{1}{\check{S} + e^{\check{\ell}}}$$

Iterate forward :

$$\ell_t = \frac{\rho_0}{1-\rho_\ell} + \sum_{n=t+1}^{T} \rho_\ell^{n-t-1} \{ \rho_s S_n + g_C(n) - r_d(n) \} + \rho_\ell^{T-t} \ell_T$$

$$\blacktriangleright \text{ Pick } \check{S} = \check{\ell} = 0 \text{ to get the Cochrane decomposition.} \qquad \blacksquare$$

Parameter Estimates

Process	Parameter	Estimated Value	Standard Error			
р	p	(0.240, -0.036, 0.006, 0.001, 0.0001)	(0.003, 0.0004, 0.0001, 0.000, 0.000)			
	Φ	$ \left(\begin{array}{cccccc} 0.854 & -0.015 & 0.001 & 0.002 & 0.001 \\ -0.120 & 0.677 & 0.005 & -0.016 & 0.007 \\ 0.872 & -0.803 & 0.113 & -0.070 & -0.033 \\ 6.960 & 1.920 & 0.239 & 0.409 & -0.047 \\ -0.158 & -0.506 & -2.456 & 0.014 & -0.005 \end{array} \right) $	$ \left(\begin{array}{cccccccc} 0.003 & 0.000 & 0.005 & -0.023 & -0.0112 \\ 0.000 & 0.203 & -0.162 & 0.143 & -0.534 \\ 0.005 & -0.162 & 4.331 & -0.542 & 0.807 \\ -0.023 & 0.143 & -0.542 & 16.9 & -2.00 \\ -0.012 & -0.534 & 0.807 & -2.00 & 112 \\ \end{array} \right) $			
	σ_p	$10^{-5} \left(\begin{array}{ccccc} 145.591 & 0.790 & -3.929 & -2.059 & -0.537 \\ 0.790 & 11.216 & 0.540 & -0.003 & 0.006 \\ -3.929 & 0.540 & 0.729 & 0.001 & 0.005 \\ -2.059 & -0.003 & 0.001 & 0.174 & 0.005 \\ -0.537 & 0.006 & 0.005 & 0.005 & 0.031 \end{array} \right)$	$10^{-5} \left(\begin{array}{ccccc} 32.555 & 6.391 & 1.744 & 0.860 & 0.348 \\ 6.391 & 2.508 & 0.460 & 0.221 & 0.094 \\ 1.744 & 0.460 & 0.163 & 0.056 & 0.024 \\ 0.680 & 0.221 & 0.056 & 0.039 & 0.012 \\ 0.348 & 0.094 & 0.024 & 0.012 & 0.007 \end{array} \right)$			
gy	μ_Y	0.087	0.015			
	μ_{Yp}	(0.146, -0.584, 0.302, 18.61, -41.00)	(0.143,0.662,4.571,10.10,26.18)			
	σ_{Yp}	(-0.009,0.013,-0.010,0.063,0.031)	(0.015,0.015,,0.015,0.016,0.016)			
	σγ	0.107	0.002			
gc	μ _C	0.065	0.003			
	μ_{Cp}	(0.089,0.524,-1.220,4.027,-0.285)	(0.025,0.117,0.804,1.784,4.605)			
	σ_{Cp}	(0.007,0.005,-0.000,0.000,-0.001)	(0.003,0.003,0.003,0.003,0.003)			
	σc	0.019	6 * 10 5			
z	z	-2.533	0.010			
	Zp	(-0.087,-0.069,-3.185,-9.523,4.714)	(0.095, 0.439,3.031,6.853,17.896)			
h	h	0	0			
	Φ_{hp}	(0.009,-0.019,0.753,1.152,12.20)	(0.075, 0.347,2.394,5.311,13.71)			
	Ψ_h		U.1162 (0.008.0.008.0.008.0.008)			
	0 hp	(-0.001,-0.012, 0.002,0.003,-0.004)	(0.000,0.000,0.008,0.008,0.008)			
	σ _h γ	0.055	5.6 * 10 ⁻⁴			
M	- n	(0.0140_0.001_0_0.0)	(0.0001.0.0004.0.0.0)			
IVI	^0p	(0.0140,-0.001, 0, 0,0)	(0.0001,0.0004,0,0,0)			
	λ_{1p}	$\left(\begin{array}{cccc} -0.055 & 1.140 & 0 & 0 & 0 \\ -0.018 & -0.137 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\left(\begin{array}{ccccccccccc} 0.0002 & 0.022 & 0 & 0 & 0 \\ 0.000 & 0.0008 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$			