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High Debt Level

I Succession of crisis (Subprime, Covid, Ukraine) have
resulted in extreme levels of Govt debt.

source: US Treasury



Persistent Negative Government Surplus
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I Questions sustainability of Gvt debt and fiscal policy.

I Yet, yields on US debt remain low.

→ The Government Debt Valuation Puzzle
(Jiang, Lustig, van Nieuwerburgh, and Xiaolan (2022))



The Government Debt Puzzle

I Assuming (i) no-arbitrage and (ii) no-ponzi-schemes,
JLNX obtain debt valuation equation:

Total Gvt Debt = present value of future surpluses

I Using affine model for surplus and realistic SDF calibrated
to debt and equity they find that US debt should be
worth -129% of GDP instead of actual +39%:

→ Debt is overvalued by 168% valuation GAP!

I Puzzling since Gvt bonds have non-negative payoffs!



Our Explanation

I We show that no-arbitrage implies Gvt debt should satisfy
the debt valuation equation at all times and, when
markets are incomplete, for all admissible SDFs for which
it satisfies a transversality condition (TVC).

I This puts a high burden on the model specification: for
most arbitrary surplus process, accumulated debt will not
satisfy the TVC, especially if bond returns do not span
all surplus shocks.

→ The valuation gap measures TVC 6= 0.

I We show how to specify an admissible surplus process so
that debt can satisfy the TVC.

I Fitting such a process to historical data, we can match
surplus and debt dynamics without giving rise to a Debt
valuation puzzle.
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The Debt Valuation puzzle

I JLNX use no-arbitrage model with exp-affine SDF Mt :

zt+1 = Φzt + Σ
1
2 εt+1

Mt+1

Mt
= e−rt−

1
2

Λ>t Λt−Λtεt+1

Λt = λ0 + λ1 zt
rt = r0 + r1zt

I Estimate a VAR model for the surplus

S(zt) = T(zt)−G(zt)

I Infer debt dynamics from the accounting identity (AI):

Dt+1 = DtRD(t + 1)− St+1



The Debt Valuation puzzle

I We prove that Dt satisfies (AI) iff:

Dt = Et

[∑T
n=t+1

Mn

Mt
Sn

]
+ Et

[
MT

Mt
DT

]
I Taking the limit as T →∞ and assuming the TVC:

limT→∞ Et

[
MT

Mt
DT

]
= 0

I We obtain the debt valuation equation

Dt = Et

[∑∞
n=t+1

Mn

Mt
Sn

]



Example I: generating a GAP

St+1 = e−κSt + σεt+1
Mt+1

Mt
= e−r0− 1

2
λ2

0−λ0εt+1

Dt+1 = Dte
r0 − St+1

I We can compute explicitly:

V S
t = Et [

∞∑
n=t+1

Mn

Mt
Sn]

=
St

(er0+κ − 1)
− σλ0

(1− e−κ)

er0+κ − er0

(er0 − 1)(er0+κ − 1)

→ V S
t does not satisfy (AI), that is

V S
t+1 6= V S

t e
r0 − St+1

→ A valuation gap Gt = Dt − V S
t 6= 0 must appear!



Example II: closing the GAP

I Define Lt = Dt

Ct
with dynamics:

log
Ct+1

Ct
= µC −

1

2
σ2
C + σC εt+1

Lt+1 = (1− e−κ)µL + e−κLt + σ`εt+1
Mt+1

Mt
= e−r0− 1

2
λ2

0−λ0εt+1

I Infer from AI (St+1 = Dte
r0 − Dt+1):

St+1

Ct+1
= Lt e

r0−µC+ 1
2
σ2
C−σC εt+1 − Lt+1

I Since (AI) and (M) hold in this economy, we have

V S
t,T :=

∑T
n=t+1 Et [

Mn

Mt
Sn] = Dt − Et [

MT

Mt
DT ]

⇒ GAP Gt = Dt − V S
t,∞ = 0 iff limT→∞ Et [

MT
Mt

DT ] = 0 (TVC)



Example II: closing the GAP

I We compute explicitly Gt,T := Dt − V S
t,T = Et [

MT

Mt
DT ] =

Cte
(µC−r0−σCλ0)(T−t)

{
µL + e−κ(T−t)Lt − σL(λ0 − σC ) 1−e−κ(T−t)

1−e−κ

}
I It follows:

Gt = limT→∞ Et [
MT

Mt
DT ] = 0 ⇐⇒ (µC−r0−σCλ0) < 0

I TVC can hold even if r0 < µC (Bohn (1995)).

I This model nests the classic case where Mt = C−γt , where

I r0 = ρ + γ(µC − 1
2σ

2
C )− 1

2γ
2σ2

C
I λ0 = γσC .



Admissible Surplus Processes: a Theorem

1. (AI) is equivalent to (N) and implies that

Eτ

[
Mν
τ,tDt +

t∑
s=τ+1

Mν
τ,sTs

]
= Dτ + Eτ

[
t∑

s=τ+1

Mν
τ,sGs

]
(1)

for all ν ∈ N and 0 ≤ τ ≤ t.

3. (AI) and (TVC∗) jointly imply that

Eτ

[ ∞∑
s=τ+1

Mµ
τ,sTs

]
= Dτ + Eτ

[ ∞∑
s=τ+1

Mµ
τ,sGs

]
(2)

for all τ ≥ 0 and µ ∈ N such that (TVC∗) holds. In particular, relative to any
such process the present value of the spending claim is finite if and only if the
present value of the tax claim is finite in which case

Dτ = Eτ

[ ∞∑
s=τ+1

Mµ
τ,s (Ts − Gs)

]
(3)

for all τ ≥ 0.



A realistic model of surplus and debt dynamics

I Propose a (more) realistic model for debt and admissible
surplus dynamics consistent with data.

I Fit a realistic affine pricing kernel to both Treasury bond
returns and the value-weighted CRSP market return.

I Questions
I Does an arbitrage-free model fit bond returns well?
I Are there sources of risk that are priced in the stock

market that are not spanned by bond returns; and
Is the government surplus driven by some of these
‘unspanned’ sources of risk?

I Does an admissible surplus process, such that (M), (AI),
and (TVC) hold, fit the historical surplus series?



A pricing kernel for stocks and bonds

Mt+1

Mt
= exp

{
−rt − 1

2λ
>
p,tλp,t − λ>p,tεp,t+1 − 1

2λ
2
y ,t − λy ,tεy ,t+1

}
rt = A1 + B1pt λp,t = σ−1

p (λp0 + λp1pt) λy,t = λy0 + λy1ht

ln
Ct+1

Ct
= µC + µCp(pt − p̄) + σCpεp,t+1 + σC εC ,t+1

ln
Yt+1

Yt
= µY + µYp(pt − p̄) + σYpεp,t+1 + σY εY ,t+1

pt+1 = p̄ + Φp(pt − p̄) + σpεp,t+1

ht+1 = h̄ + Φhp(pt − p̄) + Φh(ht − h̄) + σhpεp,t+1 + σhY εY ,t+1 + σhεh,t+1

I Use 5 (p) factors for yields and (h) for equity premium .

I Affine pricing solution for ZC yields ZCm
t = Am + Bmpt

I and for Price-dividend ratio PY
t

Yt
≈ e z̄+zp(pt−p̄)+zh(ht−h̄).

I Identify three distinct priced shock components:
1. εp: risk-free discount rate shocks,
2. εY : equity cash-flow shocks,
3. εh: equity discount rate shocks.



Estimation methodology

1. VAR estimation of pt to identify (p̄,Φp,Σp) and
yield-curve shocks εp,t+1 with up to 5 PC
(Duffee (2011), De los Rios (2015), Adrian, Crump, Moench (2013)).

2. Regress gY (t + 1) onto pt , εp,t+1 to estimate
µY , µYp, σYp, σY and dividend shocks εY ,t+1.

3. Identify ht and the parameters z̄ , zp from a regression of

log PY
t

Yt
onto pt (with zh = 1 wlog).

4. Identify the parameters (h̄,Φhp,Φh, σhY , σh) and the
equity discount rate shocks εh,t+1 from a regression of
ht+1 onto pt , ht , εp,t+1, εY ,t+1.

5. Estimate risk-premia parameters λp0, λp1, λY 0, λY 1 from
the cross-section of ZC yields and the log-stock-price to
dividend ratio using the pricing formulas via asymptotic
least squares estimator.
(Gourieroux, Montfort, Trognon (1985), Del Rios (2015)).

Parameter Estimates



The return on government debt

I We estimate

R̂D(t + 1) = ert +
M∑

m=1

ω̂m(ert+rxm−1
t+1 − ert ) (4)

I Where we decompose the weight in each maturity bond
into its exposure to the principal component weights:

ωm = α1w1,m + α2w2,m + α3w3,m

I So we estimate α1, α2, α3 by OLS.



The admissible surplus process

I We estimate the log debt to consumption ratio `t := ln Dt

Ct

follows an AR2 process:

`t+1 =φ1`t + φ2`t−1 + (1− φ1 − φ2)¯̀

+ σ`,pεp,t+1 + σ`,yεy ,t+1 + σ`,hεh,t+1 + σ`ε`,t+1

I Then we infer the surplus from the AI condition:

St+1

Ct+1
= e`t−ln

Ct+1
Ct R̂D(t + 1)− e`t+1 (5)



Data

I Yield curve data from Nasdaq website
https://data.nasdaq.com/data/FED/SVENY-us-treasury-zerocoupon-yield-curve.

1-year to 7-year yields from June 1961. Longer yields, up to 20 years, from

October 1981.

I Market value of US debt from Dallas FED website
https://www.dallasfed.org/research/econdata/govdebt.

Monthly data from January 1942 to October 2022.

I Monthly returns on Gvt debt from 1790 from Hall, Payne,
and Sargent.

I Stock value-weighted market portfolio (dividends, prices)
from CRSP.

I Surplus from NIPA Table 3.2 from the Bureau of
Economic Analysis (BEA).

I Other economic data (GDP, price level, aggregate
consumption) from FRED database.



Implied versus NIPA surplus
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Figure: Comparison between the surplus, in percentage of
aggregate consumption, implied from the AI, and the NIPA surplus.



Log Debt to GDP dynamics

I Estimate AR2 for `t = ln Dt

Ct
:

(`t+1 − ¯̀) = φ1(`t − ¯̀) + φ2(`t−1 − ¯̀) + ε`,t+1

Frequency ¯̀ SE(¯̀) φ1 SE(φ1) φ2 SE(φ2) R2

Quarterly -0.158 0.403 1.272 0.056 -0.277 0.056 99.3%
Annual -0.174 0.410 1.61 0.07 -0.66 0.08 97.1%

I Decompose residuals:

ε̂`,t+1 = σ`,p ε̂p,t+1 + σ`,y ε̂y ,t+1 + σ`,hε̂h,t+1 + σ`ε`,t+1

Frequency σ`,p SE(σ`,p) σ`,y SE(σ`,y ) σ`,h SE(σ`,h) R2

Quarterly -0.014 0.002 -0.006 0.002 0.004 0.002 26%
Annual -0.024 0.007 -0.001 0.006 0.008 0.006 29%



Is Debt to GDP stationary?

I The point estimates of the AR2 are consistent with
stationarity (but close to the unit circle).

I Therefore we run the OLS regression:

∆`t+1 = α + γ`t + δ1∆`t + υt+1

and perform a one sided t-test for γ < 0 using:
I the Augmented Dickey-Fuller test using the raw data

with α 6= 0 (ADF)
I the more efficient Elliott-Rothenberg-Stock (1996) test

based on the demeaned data with α = 0 (ADF-GLS).

Test γ p-value T-stat Crit. Value (5%) Reject γ ≥ 0

ADF -0.0309 0.288 -2.020 -2.898 No
ADF-GLS -0.0307 0.042 -2.019 -1.944 Yes



Admissible surplus

Ŝt+1

Ct+1
= exp(lt − gC (t + 1))R̂D(t + 1)− exp(`t+1)

with

R̂D(t + 1) = ert +
∑M

m=1 ω̂m(ert+rxp,mt+1 − ert )

1960 1970 1980 1990 2000 2010 2020
-5

-4

-3

-2

-1

0

1

2

3

4

% 
of 

Ag
gre

ga
te 

Co
ns

um
pti

on

true surplus
reconstructed surplus



Does the valuation equation hold?

I In our model economy, we can show

Vt,T :=
T∑

n=t+1

Et [
Mn

Mt
Sn]

= Dt − Et [
MT

Mt
DT ]

I Thus, we can define the GAP:

Gt,T := Dt − Vt,T = Et [
MT

Mt
DT ]

I We obtain an explicit solution:

Gt,T = Ct e
QT

0,t+QT
`,t`t+QT

``,t`t−1+QT
p,tpt+QT

h,tht



Plot of Gt,T as function of T

0 5 10 15 20 25 30
Years to Maturity

0

20

40

60

80

100

120

140

160

180
De

bt G
ap 

(%
 of 

Co
nsu

mp
tion

)

I limT→∞ Gt,T = 0 for our estimated parameters.

→ The TVC holds.

→ Debt satisifes the valuation equation Dt = Vt,∞.

→ There is no debt valuation puzzle for our estimated
surplus and debt dynamics.



Decomposition implied by the model

I Log-linearization of AI implies (Cochrane (2022)):

`t ≈
∑T

n=t+1

{
Sn
Cn

+ gC (n)− lnRd(n)
}

+ `T

I The current level of debt to GDP can be decomposed
into four components related to the future path of:
I Surplus to consumption,
I Consumption growth,
I (Log) Debt returns, and
I Future debt.

I Simulating 100,000 paths of the model starting from
current state, we compute the expected path of each
future component.



Decomposition: Expected Trajectory
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T `0
D0
C0

ΣT
t=1 ŝ(t) ΣT

t=1gC (t) ΣT
t=1rD(t) `T

DT
CT

10 years 0.484 162% 0.161 0.631 0.417 0.124 115%
(0.0007) (0.0003) (0.0002) (0.0006)

20 years 0.484 162% 0.096 1.256 0.884 -0.011 99%
(0.001) (0.0005) (0.0006) (0.0007)



Decomposition: Quartiles
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T Quartile `0
D0
C0

ΣT
t=1 ŝ(t) ΣT

t=1gC (t) ΣT
t=1rD(t) `T

DT
CT

10 years 1 0.484 162% 0.392 0.697 0.462 -0.101 90%
10 years 4 0.484 162% -0.105 0.566 0.372 0.348 109%
20 years 1 0.484 162% 0.389 1.366 1.017 -0.271 76%
20 years 4 0.484 162% -0.242 1.148 0.753 0.245 128%



Conclusion
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No-arb and AI ⇒ Debt valuation

I (AI) and (M) imply:

T∑
n=t+1

Et [
Mn

Mt
Sn] =

T∑
n=t+1

Et [
Mn

Mt
(Dn−1RD(n)− Dn)]

=
T∑

n=t+1

{
Et

[Mn−1

Mt
Dn−1 En−1[

Mn

Mn−1
RD(n)]︸ ︷︷ ︸

=1

]
− Et [

Mn

Mt
Dn]
}

=
T∑

n=t+1

{
Et [

Mn−1

Mt
Dn−1]− Et [

Mn

Mt
Dn]
}

= Dt − Et

[
MT

Mt
DT

]
I This holds for any valid SDF!

Back



Derivation for example 2: how to close the gap

V S
t,N =

N∑
n=1

Et [
Mt+n

Mt
St+n] (6)

=
N∑

n=1

Et [
Mt+n

Mt
(Dt+n−1e

r0 − Dt+n)] (7)

=
N∑

n=1

Et [Et+n−1[
Mt+n

Mt
]Dt+n−1e

r0]−
N∑

n=1

Et [
Mt+n

Mt
Dt+n](8)

=
N∑

n=1

Et [
Mt+n−1

Mt
Dt+n−1]−

N∑
n=1

Et [
Mt+n

Mt
Dt+n] (9)

= Dt − Et [
Mt+N

Mt
Dt+N ] (10)

Back



Log-linearization of the (AI)

I Use the AI to write:

ln(St+1 + e`t+1) = `t − gC (t+1) + rD(t+1)

where St = St/Ct , `t = lnDt/Ct , rD(t) = lnRD(t).

I Taylor expand LHS around St = Š and `t = ˇ̀ to get:

ρ0 + ρ``t+1 + ρsSt+1 = `t − gC (t+1) + rD(t+1)

ρ0 = ln(Š + e
ˇ̀
)− ρ` ˇ̀− ρs Š

ρ` =
e

ˇ̀

Š + e ˇ̀

ρs =
1

Š + e ˇ̀

I Iterate forward :

`t = ρ0

1−ρ`
+
∑T

n=t+1 ρ
n−t−1
` {ρsSn+gC (n)−rd(n)}+ρT−t` `T

I Pick Š = ˇ̀ = 0 to get the Cochrane decomposition. Back



Parameter Estimates
Process Parameter Estimated Value Standard Error

p p̄ (0.240, -0.036, 0.006, 0.001, 0.0001) (0.003, 0.0004, 0.0001, 0.000, 0.000)

Φ


0.854 −0.015 0.001 0.002 0.001
−0.120 0.677 0.005 −0.016 0.007

0.872 −0.803 0.113 −0.070 −0.033
6.960 1.920 0.239 0.409 −0.047
−0.158 −0.506 −2.456 0.014 −0.005




0.003 0.000 0.005 −0.023 −0.0112
0.000 0.203 −0.162 0.143 −0.534
0.005 −0.162 4.331 −0.542 0.807
−0.023 0.143 −0.542 16.9 −2.00
−0.012 −0.534 0.807 −2.00 112



σp 10−5


145.591 0.790 −3.929 −2.059 −0.537

0.790 11.216 0.540 −0.003 0.006
−3.929 0.540 0.729 0.001 0.005
−2.059 −0.003 0.001 0.174 0.005
−0.537 0.006 0.005 0.005 0.031

 10−5


32.555 6.391 1.744 0.860 0.348

6.391 2.508 0.460 0.221 0.094
1.744 0.460 0.163 0.056 0.024
0.860 0.221 0.056 0.039 0.012
0.348 0.094 0.024 0.012 0.007


gY µY 0.087 0.015

µYp (0.146, -0.584,0.302,18.61,-41.00) ( 0.143,0.662,4.571,10.10,26.18)
σYp (-0.009,0.013,-0.010,0.063,0.031) (0.015,0.015,,0.015,0.016,0.016)
σY 0.107 0.002

gC µC 0.065 0.003
µCp (0.089,0.524,-1.220,4.027,-0.285) (0.025,0.117,0.804,1.784,4.605)
σCp (0.007,0.005,-0.000,0.000,-0.001) (0.003,0.003,0.003,0.003,0.003)
σC 0.019 6 ∗ 10−5

z z̄ -2.533 0.010
zp (-0.087,-0.069,-3.185,-9.523,4.714) (0.095, 0.439,3.031,6.853,17.896)

h h̄ 0 0
Φhp ( 0.009,-0.019,0.753,1.152,12.20) (0.075, 0.347,2.394,5.311,13.71)
Φh -0.300 0.1162
σhp (-0.001,-0.012, 0.002,0.003,-0.004) (0.008,0.008,0.008,0.008,0.008)
σhY -0.053 0.008
σh 0.055 5.6 ∗ 10−4

M λ0p (0.0140,-0.001, 0, 0,0) (0.0001,0.0004,0,0,0)

λ1p


−0.055 1.140 0 0 0
−0.018 −0.137 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0.0002 0.022 0 0 0
0.000 0.0008 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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