“The Core, the Periphery, and the Disaster: Corporate-Sovereign Nexus in Covid-19 Times”
by
Ruggero Jappelli, Loriana Pelizzon, and Alberto Plazzi

Discussant:
Pierre Collin-Dufresne
SFI@EPFL and CEPR

April 7, 2022
• Background

• Empirics

• Theory

• Comments

• Conclusion
The Bank-Sovereign nexus

- Infamous **Bank-Sovereign doom-loop** during the **European sovereign crisis** in the context of **financial repression**:

(Brunnermeier, Garicano, Lane, Pagano, Reis, Santos, Thesmar, van Nieuwerburgh, Vayanos (2016), Acharya, Drechlser, Schnabl (2014) . . .)

- This paper investigates similar **doom-loop** between **non-financial corporation** and sovereigns in the context of the **covid-19 crisis**.

- But different mechanism...
COVID-19 Crisis triggered large widening in Non-Financial firm CDS...

FIGURE 1: Euro Area corporate CDS: This figure plots the value-weighted average corporate CDS spread in basis points for firms headquartered in the nine countries in our sample over the period from January 1, 2019 to September 10, 2020 (443 trading days). The dashed vertical line marks the beginning of the first Italian lockdown on February 24, 2020.
and in sovereign CDS...

Figure 2: Euro Area sovereign CDS: This figure plots sovereign CDS spreads in basis points for the nine countries in our sample over the period from January 1, 2019 to September 10, 2020 (443 trading days). The dashed vertical line marks the beginning of the first Italian lockdown on February 24, 2020.
and also in sensitivity of CDS of core firms w.r.t. their sovereigns
Empirical Methodology

- Estimate Panel regression on **daily changes in Log-CDS** for 99 Core and 24 Periphery non-financial firms:

\[
\Delta \log(\text{CDS Corp})_{ijt} = \alpha_0 + \alpha_1 \times E + \delta_i + \beta_1 \Delta \log(\text{CDS Sov})_{jt} + \beta_2 \Delta \log(\text{CDS Sov})_{jt} \times E \\
+ \gamma_1 X_{ijt} + \gamma_2 X_{ijt} \times E + \varepsilon_{ijt},
\]

(1)

- Baseline results

<table>
<thead>
<tr>
<th>Variables</th>
<th>Core</th>
<th>Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \log(\text{CDS sovereign})_{jt})</td>
<td>0.127***</td>
<td>0.208***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>(\Delta \log(\text{CDS sovereign})_{jt} \times E)</td>
<td>0.125***</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.032)</td>
</tr>
</tbody>
</table>

- Core firms’ **sensitivity** doubles pre to post covid and becomes similar to periphery.

- Very robust:
 - many controls (equity returns, leverage, volatility, size, liquidity, profitability, ...)
 - in subsamples (within countries, within sectors).
 - for larger sample of corporate bond spreads ...
Proposed explanation: Larger Fiscal Slack of Core Countries

▶ Larger fiscal slack of core countries allows them to increase government debt to help domestic firms through the crisis

→ sovereign CDS ↑ and higher comovement with domestic corp CDS.

▶ Empirical support: Replace core vs periphery dummy with a continuous measure of fiscal capacity and control for many other country and firm characteristics.

▶ Theoretical support: Propose a theoretical reduced-form model of the corporate-sovereign default that can reproduce the findings.
The reduced-form model of the private-public ‘nexus’

▶ Firm **risk-neutral** default intensity:
\[
\lambda^c_t = \nu^c + \phi^c \sigma_i \eta_t + \sigma_c \epsilon_t + 1_{\{\text{disaster}\}} \kappa_c \min\{J^\lambda_t, \underline{J}\}
\]

▶ Sovereign **risk-neutral** default intensity:
\[
\lambda^g_t = \nu^g + \phi^g \sigma_i \eta_t + 1_{\{\text{disaster}\}} \max\{J^\lambda_t - \underline{J}, 0\}
\]

▶ where:
 ▶ \(\eta_t, \epsilon_t \sim N(0, 1)\) are independent common and idiosyncratic shocks.
 ▶ \(J^\lambda_t \sim N(\theta, \delta^2)\) is aggregate **consumption disaster** shock (\(\rightarrow\) no pricing kernel?)
 ▶ the **probability of disaster** follows a discrete state **stationary Markov chain**:

 \[
 E^Q[1_{\{\text{disaster}\}}] = p_i, \ i = 1, \ldots, S \text{ and } \text{Prob}[p_j | p_i] = \pi_{ij}.
 \]

▶ The **fiscal policy slack** is captured by the **cap \underline{J}** on the jump in default intensity:

\(\downarrow \underline{J}\) reduces impact of consumption disaster on firm’s default intensity but increases impact on sovereign default intensity.

▶ Derive pricing formulas for sovereign and corp CDS and show, using some approximations, that when there is a transition from low \((p_{\text{low}})\) to high \((p_{\text{high}})\) disaster probability state then, for some choices of parameters, increasing the guarantee \(\downarrow \underline{J}\) increases the covariance between corporate and sovereign CDS.

\(\rightarrow\) Consistent with the findings if core has lower \(\underline{J}\) than periphery.
The model specification

- Default intensity is normally distributed with \(\lim_{T \to \infty} V[\int_0^T \lambda_s ds] = \infty \):
 - Negative default intensities (and credit spreads)?
 - Negative consumption ‘disasters’?
 - Credit spread curves?
 - Comparative statics w.r.t \(J \)?

⇒ useful to extend the model to (i) mean-reversion, (ii), positive intensity, and (iii) positive ‘disaster’ jumps (using standard Duffie-Kan (1996) affine toolbox).

- The economic intuition is developed using simple (\(\sim \) first-order Taylor) approximations .

→ Would be useful to calibrate/estimate the reduced-form model parameters using sovereign, core, and periphery CDS curves, using pre and post Covid-19 data, and then simulate from the model to see whether it can generate the increase in spread-covariance for Core firms.

- In the model the increase in covariance is generated by the common jumps in Corp and Sovereign intensities due to disaster jumps. In the absence of disaster jump, the covariance is only generated through the ‘standard’ shock (\(\eta_t \)).

→ What frequency of disasters do we need in the post-covid regime to generate high co-jumps in log-spread changes?
Model interpretation

- Did market participants properly anticipate the covid crisis?
 - If yes → prices reflected the expected effect of the low probability event before the crisis.
 - If no → prices will shift, perhaps permanently, to reflect ‘learning a new regime’

- Example: the out of the money put premium appeared in 1987 (Rubinstein (1994))

- A structural model with learning may be able to capture the non-linear impact of such a (possibly permanent) regime-shift on prices better than a reduced-form model (Benzoni et al. (JFE 2011))?

- Perhaps useful to look at derivatives (OTM options on different sectors) to infer revisions in market expectations about covid-like crisis.
Conclusion

▶ Interesting and robust empirical findings.

▶ Convincing explanation based on fiscal slack and private-public ‘nexus’

▶ Reduced-form model seems promising:

→ ‘beefed-up’ version could be calibrated to match sovereign/corp CDS curves, pre/post Covid to see if it can replicate the change in sensitivity for core countries.

▶ Many open questions, that perhaps call for more structural approach:
 ▶ What is optimal government bail-out mechanism for non-financial firms (tax cuts, labor subsidies, to some or all firms...)?
 ▶ What is feedback mechanism to sovereign risk (negative through higher debt and future taxes, but positive through higher future growth...)?
 ≠ Bank-Sovereign doom loop...
 ▶ What will be the consequences for future default rates?