Discussion of "Credit and Liquidity in Interbank Rates: A Quadratic Approach" by
Simon Dubecq, Alain Monfort, Jean-Paul Renne and Guillaume Roussellet

Pierre Collin-Dufresne EPFL, SFI, & NBER

May 2013

• Summary
• The Theory
• Empirical Design
• Conclusion
Pierre Collin-Dufresne EPFL, SFI, & NBER: Discussion of "Credit and Liquidity in Interbank Rates: A Quadratic Approach" by Simon Dubecq, Alain Monfort, Jean-Paul Renne and Guillaume Roussellet

The Theory

Empirical Design

Conclusion

Outline

Summary

The Theory Empirical Design
OO OO

Main Findings

Summary

Outline

- ▶ Proposes a two-factor quadratic Gaussian model for the Euribor-OIS spread.
 - ▶ The OIS curve is assumed to be the risk-free curve.
 - ▶ The Euribor curve is modeled using a reduced-form model of default.
 - Under the assumption that the default intensity is independent of the short rate, the Euribor-OIS spreads are shown to only depend on the default intensity λ_t .
- ▶ Empirically one factor captures 96% of the variation in the spreads.
- Assume that $\lambda_t = \text{Quadratic}(x_t)$ where x follows one-dimensional Gaussian AR1 process to get one-factor no arbitrage model of spreads: $S(x_t) = \text{Quadratic}(x_t)$.
- ▶ Estimate the liquidity and credit component of $x = x_c + x_l$ where x_c and x_l are both Gaussian AR1 processes.
- Use empirical proxies:
 - $ightharpoonup P_c$ for x_c : the first PC of European banks' CDS.
 - P_I for x_I: the first PC of KfW-Bund spread and Tbill-Repo spread and ECB Bank lending standard survey.
- Assume observation equations $P_c = \text{Quadratic}(x_c)$ and $P_l = \text{Quadratic}(x_l)$
- ▶ Estimate the system using Augmented Kalman Filter and find:
 - ► Good fit
 - spread mostly driven by liquidity risk (as opposed to credit risk).

Quadratic-Gaussian Models are Affine Models.

▶ Consider $\lambda_t = \lambda_0 + \lambda_1 x_t + \lambda_2 x_t^2$ where

$$dx_t = \kappa x_t dt + \sigma dz_t$$

▶ If define $y_t = x_t^2$ then

$$dy_t = (2\kappa y_t + \sigma^2)dt + \sigma x_t dz_t$$

- ▶ Clearly, (x_t, y_t) is an affine process that nests the quadratic-Gaussian framework (the latter imposes $y_0 = x_0^2$).
- ▶ Definition of affine process: it has an exponential affine characteristic function (Duffie Filipovic, Schachermeyer).
- ⇒ A quadratic Gaussian model is a restricted affine model!
- ▶ This is minor 'semantics' issue (but makes running horse races between quadratic and affine processes a non-starter).

Model Specification

- ▶ EURIBOR bond is priced assuming that with probability $\lambda_t dt$ it pays **nothing** in crisis state (i.e., when d_t jumps from 0 to 1)
- Proposed interpretation
 - default event (borrower defaults).
 - liquidity event (lender needs his money back early and incurs costs?).
- In addition model assumes:
 - Crisis state does not affect state price density (and short rate).
 - \triangleright λ_t is independent of interest rate.
- ▶ Both of these assumptions seem difficult to justify on economic grounds:
 - default of large financial institutions seems systemic,
 - liquidity crisis associated with flight to liquidity/quality and contagion risk.
- Might be useful to test them empirically (if not model them explicitly):
 - Allow for $\lambda_t^Q \neq \lambda_t^P$ (Jump to default risk).
 - ▶ Allow for jumps in short rate and correlation with intensity $(d\lambda_t dd_t \neq 0$ and $d\lambda_t dr_t \neq 0$).

Empirical Design

Outline

- Can we distinguish (bank) credit risk from liquidity risk? (see Duffie's description of failures of large dealer banks, such as Bear Stearns, and Lehman).
- Interesting fact that EURIBOR spreads are mostly driven by one-factor empirically is suggestive that both liquidity and credit factors are highly correlated.
- Empirically the paper distinguishes both component by imposing that they are unconditionally correlated (through the drift) and conditionally uncorrelated (through contemporaneous shocks). However since x_c, x_l are latent variables they could be equivalently rotated so as to be unconditionally uncorrelated and driven by conditionally correlated shocks.
- Econometric identification is achieved by using observables that are assumed to depend solely on one or the other variable, e.g., $P_c = Q(x_c)$ and $P_l = Q(x_l)$. However, it seems unlikely that credit spreads do not depend on liquidity and vice-versa
- It might be good to relax these assumptions, and for example allow for $P_c = Q_c(x_c, x_l)$ and $P_l = Q_l(x_c, x_l)$.

Last comment

Outline

 Using Eyeconometrics it seems clear that liquidity proxy explains most of the variation in the Euribor-OIS spread.

- ► How good is the proxy for credit risk at capturing **Refreshed credit quality** component of the Euribor panel?
- Perhaps a simpler test would we warranted:
 - estimate one factor latent variable model of credit spread $(S(x_t))$ with x_t AR1.
 - 'Regress' x_t on credit and liquidity proxies.

Conclusion

- Great econometrics.
- ▶ Might be good to test (and/or) relax several of the modeling assumptions.