Discussion of “Credit and Liquidity in Interbank Rates: A Quadratic Approach”
by
Simon Dubecq, Alain Monfort, Jean-Paul Renne and Guillaume Roussellet

Pierre Collin-Dufresne
EPFL, SFI, & NBER

May 2013
Summary

The Theory

Empirical Design

Conclusion
Main Findings

- Proposes a two-factor quadratic Gaussian model for the Euribor-OIS spread.
 - The OIS curve is assumed to be the risk-free curve.
 - The Euribor curve is modeled using a reduced-form model of default.
 - Under the assumption that the default intensity is independent of the short rate, the Euribor-OIS spreads are shown to only depend on the default intensity λ_t.

- Empirically one factor captures 96% of the variation in the spreads.

- Assume that $\lambda_t = \text{Quadratic}(x_t)$ where x follows one-dimensional Gaussian AR1 process to get one-factor no arbitrage model of spreads: $S(x_t) = \text{Quadratic}(x_t)$.

- Estimate the liquidity and credit component of $x = x_c + x_l$ where x_c and x_l are both Gaussian AR1 processes.

- Use empirical proxies:
 - P_c for x_c: the first PC of European banks’ CDS.
 - P_l for x_l: the first PC of KfW-Bund spread and Tbill-Repo spread and ECB Bank lending standard survey.

- Assume observation equations $P_c = \text{Quadratic}(x_c)$ and $P_l = \text{Quadratic}(x_l)$

- Estimate the system using Augmented Kalman Filter and find:
 - Good fit
 - spread mostly driven by liquidity risk (as opposed to credit risk).
Quadratic-Gaussian Models are Affine Models.

- Consider $\lambda_t = \lambda_0 + \lambda_1 x_t + \lambda_2 x_t^2$ where

 $$dx_t = \kappa x_t dt + \sigma dz_t$$

- If define $y_t = x_t^2$ then

 $$dy_t = (2\kappa y_t + \sigma^2) dt + \sigma x_t dz_t$$

- Clearly, (x_t, y_t) is an affine process that nests the quadratic-Gaussian framework (the latter imposes $y_0 = x_0^2$).

- Definition of affine process: it has an exponential affine characteristic function (Duffie Filipovic, Schachermeyer).

\Rightarrow A quadratic Gaussian model is a restricted affine model!

- This is minor ‘semantics’ issue (but makes running horse races between quadratic and affine processes a non-starter).
Model Specification

- EURIBOR bond is priced assuming that with probability $\lambda_t dt$ it pays nothing in crisis state (i.e., when d_t jumps from 0 to 1).
- Proposed interpretation
 - default event (borrower defaults).
 - liquidity event (lender needs his money back early and incurs costs?).
- In addition model assumes:
 - Crisis state does not affect state price density (and short rate).
 - λ_t is independent of interest rate.
- Both of these assumptions seem difficult to justify on economic grounds:
 - default of large financial institutions seems systemic,
 - liquidity crisis associated with flight to liquidity/quality and contagion risk.
- Might be useful to test them empirically (if not model them explicitly):
 - Allow for $\lambda_t^Q \neq \lambda_t^P$ (Jump to default risk).
 - Allow for jumps in short rate and correlation with intensity ($d\lambda_t dd_t \neq 0$ and $d\lambda_t dr_t \neq 0$).
Empirical Design

- Can we distinguish (bank) credit risk from liquidity risk? (see Duffie’s description of failures of large dealer banks, such as Bear Stearns, and Lehman).

- Interesting fact that EURIBOR spreads are mostly driven by one-factor empirically is suggestive that both liquidity and credit factors are highly correlated.

- Empirically the paper distinguishes both component by imposing that they are unconditionally correlated (through the drift) and conditionally uncorrelated (through contemporaneous shocks). However since x_c, x_l are latent variables they could be equivalently rotated so as to be unconditionally uncorrelated and driven by conditionally correlated shocks.

- Econometric identification is achieved by using observables that are assumed to depend solely on one or the other variable, e.g., $P_c = Q(x_c)$ and $P_l = Q(x_l)$. However, it seems unlikely that credit spreads do not depend on liquidity and vice-versa.

- It might be good to relax these assumptions, and for example allow for $P_c = Q_c(x_c, x_l)$ and $P_l = Q_l(x_c, x_l)$.
Using Eyeconometrics it seems clear that liquidity proxy explains most of the variation in the Euribor-OIS spread.

How good is the proxy for credit risk at capturing **Refreshed credit quality** component of the Euribor panel?

Perhaps a simpler test would we warranted:

- estimate one factor latent variable model of credit spread ($S(x_t)$) with x_t AR1.
- ‘Regress’ x_t on credit and liquidity proxies.
Conclusion

- Great econometrics.
- Might be good to test (and/or) relax several of the modeling assumptions.