Market Structure and Transaction Costs of Index Credit Default Swaps

Pierre Collin-Dufresne Benjamin Junge Anders B. Trolle

SOFIE 2018

Index CDSs

- Index CDS: corporate credit risk insurance contract
- Very large market (source DTCC):

Yet, transaction costs largely unknown!

A two-tiered market structure

- Interesting test case of the impact of recent regulation on the structure of swap markets
- ► Since inception, a two-tiered over-the-counter (OTC) market
 - ▶ Dealer-to-client (D2C) and interdealer (D2D) segments
- Trade execution requirement of Dodd-Frank Act
 - ► Mandates trading on swap execution facilities (SEFs)...
 - ...via order book or request for quote (RFQ)
- Post Dodd-Frank, still two-tiered: little All-to-All trading!
 - → D2C SEFs (via name-disclosed RFQ) and interdealer SEFs (via anonymous trading protocols)
- ► Why?
 - → Optimal market structure (Giancarlo 2015)
 - → Dealers prevent all-to-all trading (Managed Fund Assoc. 2015)

Main Questions

- Characterize two-tiered post-Dodd-Frank index CDS market:
 - How large are transaction costs of D2C trades?
 - How do they compare to D2D t-costs?
 - ► How do they compare across different trading protocols (mid-market matching, workups, CLOB, RFQ)?
 - Could clients get better execution by trading on dealer platforms?
 - ▶ Do we observe dispersion in trading costs across clients in non-anonymous RFQ protocol?
- Broader economic questions:
 - ▶ What is the optimal structure of Swap markets?
 - → All-to-All trading as envisioned by Dodd-Frank and CFTC?
 - What is the role of Dealers?
 - → Excessive rents due to collusion (e.g., EU investigation and US class action with \$1.87bn settlement in 2015)?

Agenda

Contracts, market structure, and data

Cost and price impact of D2C versus D2D trades

Cost and price impact across trading protocols

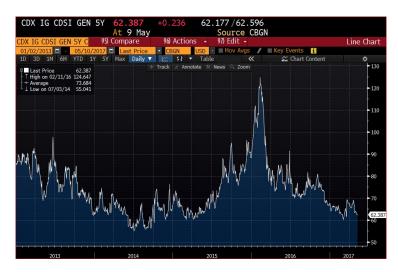
Market Quality

Agenda

Contracts, market structure, and data

Cost and price impact of D2C versus D2D trades

Cost and price impact across trading protocols


Market Quality

Credit Default Swap Indices

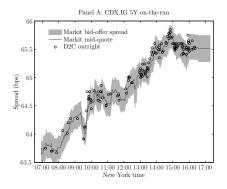
- Main indices in North America:
 - CDX.IG: Default protection on 125 investment-grade names (focus of presentation)
 - ▶ CDX.HY: Default protection on 100 high-yield names
- Maturities from 1Y to 10Y
 - 5Y most liquid
- Every 6 months, new index (new series) is launched
 - Set of index constituents revised according to rating and liquidity criteria
 - On-the-run index most liquid
- ► Focus on 5Y on-the-run

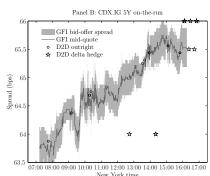
Index CDSs, cont'd

▶ Time series of par spread on 5Y on-the-run CDX.IG

Current market structure

D2C and D2D SEFs:




Transaction data

- ► Sample period: Oct. 2, 2013 (SEFs went live) to Oct. 16, 2015
- ► Transaction data from Swap Data Repositories (SDRs):
 - Contain timestamp, price, size
 - Do not specify SEF
 - Do not distinguish outright vs. package trades (curve trade, roll trades, delta hedges,...)
- Develop algorithms that identify
 - SEFs from format used for trade reporting (in turn identify D2C and D2D trades)
 - Package trades from simultaneous trade execution in several contracts

Quote data

- ► D2C segment:
 - Mid-point of composite dealer quotes from Markit
 - ▶ From "dealer runs" sent to clients
 - ▶ 443 CDX.IG 5Y OTR quotes per day
- ▶ D2D segment:
 - Mid-point of bid/offer quotes on GFI order book
 - ▶ 1,136 CDX.IG 5Y OTR quotes per day

Agenda

Contracts, market structure, and data

Cost and price impact of D2C versus D2D trades

Cost and price impact across trading protocols

Market Quality

Decompose effective half-spread

$$\underbrace{q_t(p_t - m_t)}_{= \mathsf{EffcSprd}} = \underbrace{q_t(p_t - m_{t+\Delta})}_{= \mathsf{RlzdSprd}} + \underbrace{q_t(m_{t+\Delta} - m_t)}_{= \mathsf{PrcImp}}$$

with transaction price p_t , mid-quote m_t , 15-minute Δ , and $q_t=\pm 1$ inferred by Lee and Ready (1991) algorithm

▶ In D2C segment:

$$m_t = m_t^{MARKIT}$$

▶ In D2D segment:

$$m_t = m_t^{GFI}$$

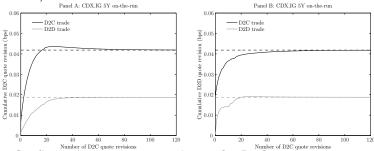
	$Dealer ext{-} To ext{-} Client$			Deal	er-To-D	ealer	D2C- $D2D$				
Trade Size	Effc Sprd	Rlzd Sprd	Prc Imp	Effc Sprd	Rlzd Sprd	Prc Imp	Effc Sprd	$\begin{array}{c} \mathrm{Rlzd} \\ \mathrm{Sprd} \end{array}$	Prc Imp		
-	Panel A: CDX.IG										
≤ 25	0.121	0.035	0.087	0.088	0.031	0.057	0.033**	0.004	0.030**		
25-50	0.131	0.025	0.107	0.106	0.026	0.079	0.025**	-0.002	0.027**		
50 - 100	0.143	0.024	0.119	0.114	0.076	0.037	0.029**	-0.052**	0.081**		
> 100	0.169	0.054	0.115	0.152	0.143	0.008	0.017	-0.089**	0.106**		
Total	0.137	0.034	0.103	0.098	0.036	0.063	0.039**	-0.002	0.041**		

- ▶ Effective spreads an order of magnitude smaller than corporate bonds (Harris 2015) or single-name CDS (Biswas et al. 2014)
- ▶ Higher transaction costs for D2C trades than D2D
- ► Reflect higher price impact of D2C trades

	Dealer-To-Client			Deal	er-To-D	ealer	D2C-D2D				
Trade Size	Effc Sprd	Rlzd Sprd	\Pr_{Imp}	Effc Sprd	Rlzd Sprd	Prc Imp	Effc Sprd	Rlzd Sprd	Prc Imp		
Panel A: CDX.IG											
≤ 25	0.121	0.035	0.087	0.088	0.031	0.057	0.033**	0.004	0.030**		
25-50	0.131	0.025	0.107	0.106	0.026	0.079	0.025**	-0.002	0.027**		
50 - 100	0.143	0.024	0.119	0.114	0.076	0.037	0.029**	-0.052**	0.081**		
> 100	0.169	0.054	0.115	0.152	0.143	0.008	0.017	-0.089**	0.106**		
Total	0.137	0.034	0.103	0.098	0.036	0.063	0.039**	-0.002	0.041**		

- ▶ Effective spreads an order of magnitude smaller than corporate bonds (Harris 2015) or single-name CDS (Biswas et al. 2014)
- ▶ Higher transaction costs for D2C trades than D2D
- Reflect higher price impact of D2C trades

Permanent or transitory price impact? VAR system


- What is the interrelation between D2C and D2D segments?
- Is price impact permanent (information-driven) or transitory (inventory driven)?
 - Let $x_t^{\rm D2C}$ ($x_t^{\rm D2D}$) denote number of signed D2C (D2D) trades that occur between D2C quote revisions
 - lacksquare VECM for $\Delta X_t = (\Delta m_t^{\mathrm{D2C}}, \Delta m_t^{\mathrm{D2D}}, x_t^{\mathrm{D2C}}, x_t^{\mathrm{D2D}})'$

$$\Delta X_t = \alpha (Z_{t-1} - \mu_Z) + \sum_{j=1}^p \Gamma_j \Delta X_{t-j} + u_t,$$

with cointegrating relation $Z_t = m_t^{\rm D2C} - m_t^{\rm D2D}$ and adjustment coefficients α

Impulse Response Price impacts

Estimated cumulative quote revision in response to single D2C/D2D trade:

- Confirms that price impact larger for D2C trades
- ▶ Price impact is permanent
- More price discovery in DTC segment.
- → Suggest clients have information advantage over dealers:
 - Genuine private information about index constituents
 - Advantage in processing public information

Agenda

Contracts, market structure, and data

Cost and price impact of D2C versus D2D trades

Cost and price impact across trading protocols

Market Quality

Size-discovery trading protocols

- ► Size-discovery: Fixed price, uncertain size (Duffie&Zhu 2016)
- ► Mid-market matching:
 - Price ("mid-market level") set by broker between bid and offer on limit order book
- ► Work-up:
 - ▶ Initiated by trade in limit order book
 - Trade additional quantity at price of initial trade
- Execution risk

Use of trading protocols on GFI

- Focus on GFI (the main interdealer SEF)
- Additional data on mid-market level for matching
- Identify trades in limit order book, mid-market matches, and workups

Trading Protocol	% of Trds	% of Vlm
Panel A:	CDX.IG	
Limit order book	19.1	19.2
Workup protocol	18.4	19.9
Mid-market matching	54.8	52.2
Unidentified protocol	7.7	8.8

Trading Protocol	Effc Sprd	Rlzd Sprd	Prc Imp
	A: CDX.I	G	
Limit order book	0.132	-0.020	0.152
Workup protocol	0.131	-0.019	0.150
Mid-market matching	0.055**	0.019**	0.036**
Unidentified protocol	0.151	0.132^{**}	0.019**

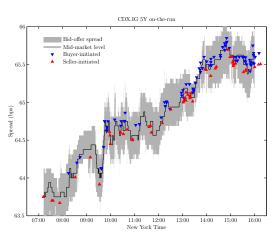
- CLOB trade: Expensive, high price impact, execution certainty
- ▶ Mid-market match: Cheap, low price impact, execution risk
- Partial segmentation of order flow
 - consistent with model of strategic venue selection (Zhu 2014)

Trading Protocol	Effc Sprd	Rlzd Sprd	Prc Imp
Panel	A: CDX.	[G	
Limit order book	0.132	-0.020	0.152
Workup protocol	0.131	-0.019	0.150
Mid-market matching	0.055**	0.019**	0.036**
Unidentified protocol	0.151	0.132**	0.019**

- CLOB trade: Expensive, high price impact, execution certainty
- ▶ Mid-market match: Cheap, low price impact, execution risk
- Partial segmentation of order flow
 - consistent with model of strategic venue selection (Zhu 2014)

Agenda

Contracts, market structure, and data


Cost and price impact of D2C versus D2D trades

Cost and price impact across trading protocols

Market Quality

Client execution

- ▶ 96% of D2C trades are within bid-offer spread on GFI limit order book
- ightarrow Clients who value immediacy, could not improve execution by trading in DTD limit order book.

D2C spread dispersion reflects client heterogeneity

D2C Transaction Costs and Price Impacts by Effective Half-Spread Quartiles

	Effe Sprd				Rlzd Sprd				Prc Imp			
Trade Size	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Panel A: CDX.IG												
≤ 25	0.022	0.066	0.121	0.278**	0.005	0.027	0.038	0.074**	0.017	0.040	0.083	0.204**
25-50	0.025	0.075	0.134	0.294**	0.013	0.020	0.024	0.046**	0.012	0.055	0.110	0.248**
50-100	0.029	0.084	0.146	0.313**	0.013	0.019	0.024	0.043**	0.017	0.065	0.122	0.270**
> 100	0.033	0.096	0.167	0.388**	0.013	0.030	0.042	0.143**	0.020	0.066	0.124	0.245**

- Strong positive correlation between effective spread and price impact of DTC trades
- $\rightarrow\,$ Suggests non-anonymity of RFQ benefits uninformed clients.
 - ➤ Consistent with 'separating equilibrium' models of two-tiered markets (e.g., Seppi (1990))

Conclusion

- ► Characterize two-tiered post-Dodd-Frank index CDS market.
- ► Transaction costs of D2C trades larger than D2D, but due to differences in price impact rather than dealer profits
- Lower D2D transaction costs largely due to specific trading protocols (mid-market matching, workups) with lower degree of immediacy.
- ▶ D2C prices improve significantly upon contemporaneous executable D2D quotes.
- Dispersion of trading costs across clients in D2C markets largely driven by price-impact, suggests price-discrimination.
- \rightarrow May explain endurance of two-tiered Swap-market structure despite Dodd-Frank 'impetus' towards All-to-All trading.