Closing down the shop: Optimal health and wealth dynamics near the end of life

Julien Hugonnier1,4,5 | Florian Pelgrin2,6 | Pascal St-Amour3,4,6

Abstract
Near the end of life, health declines, mortality risk increases, and curative care is replaced by uninsured long-term care, accelerating the fall in wealth. Whereas standard explanations emphasize inevitable aging processes, we propose a complementary closing down the shop justification where agents’ decisions affect their health and the timing of death. Despite preferring to live, individuals optimally deplete their health and wealth towards levels associated with high death risk and gradual indifference between life and death. Reinstating exogenous aging processes reinforces the relevance of closing down. Using Health and Retirement Study–Consumption and Activities Mail Survey data for elders, a structural estimation of the closed-form decisions identifies, tests, and confirms the relevance of closing down.

KEYWORDS
dis-savings, end of life, endogenous mortality risk, life cycle

MSC CLASSIFICATION
D15; I12

INTRODUCTION
Health declines steadily throughout the life cycle and deteriorates faster as we approach the last period of life.1 Because how healthy we currently are is a significant predictor of future major health onsets,2 exposure to death risk also rises at an increasing rate.3 However, falling health is not uniform across individuals, but varies significantly with socioeconomic status (SES). Indeed, poor agents suffer faster deterioration in health4 and in longevity,5 with SES gradients being strongest...
around midlife and falling thereafter. Moreover, health spending augments and changes in composition, with long-term care out-of-pocket expenses increasing sharply towards the end of life, leading to a rapid drain in financial resources.

The standard demand-for-health framework (Grossman, 1972; Ehrlich & Chuma, 1990) does allow for optimal declines in health when the net return on health investment is sufficiently low. Accelerating deterioration obtains when suitable exogenous aging dynamics are appended, such as age-increasing depreciation or sickness risks. Consequently, curative expenses are curtailed to accompany, but not revert, the age-induced decline in health and longevity. Given an exogenous remaining life horizon, the wealth drawdown objectives consist of ensuring sufficient resources to reach the end of life and, potentially, leave bequests (De Nardi et al., 2016; van Ooijen et al., 2015; St-Amour, 2018).

However, such models fail to capture part of the life cycle and cross-sectional evidence. They counterfactually predict that decline in health is wealth and health independent and assume it is inconsequential for mortality risk. Conditional on age, technology, risk distributions, and preferences, all agents face the same rates of deterioration and mortality risk, independent of financial resources and current health status. In addition, these predictions are at odds with the observation that the health decline is strongest among the poor and that the SES health gradients weaken in the last phase of life.

This paper addresses these life cycle and cross-sectional shortcomings in a model emphasizing endogenous longevity obtained by appending health-dependent mortality to a demand-for-health setup. We ensure preference for life through recursive preferences and dynamically consistent decisions. End-of-life dynamics can then be rationalized as closing down the shop whereby individuals who prefer life over death nonetheless optimally relinquish their financial, health, and life capital stocks.

First, agents optimally select a dynamic path towards death involving depletion of both health and financial capital, as well as an increasing exposure to mortality risk. This path is enacted by curtailing health investment in order to initiate (and eventually hasten) the health decline. Although the latter induces a corresponding increase in death risk, dynamic consistency ensures that agents gradually become indifferent between life and death in the last phase of life. Second, accelerating dynamics emerge independently of aging when health is an input to producing better health and longer life expectancy and when the decision to invest or not depends on the (adjustable) planning horizon. Finally, rich individuals delay entering this path for longer than poorer agents. However, optimal declines in wealth entail that all agents eventually choose to let health and longevity deteriorate. This guarantees that SES health and mortality gradients are initially strong, but gradually weaken in the later part of life.

Our main theoretical contribution is to prove the optimality of closing down dynamics near the end of life. Agents that prefer life over death nonetheless simultaneously act in a manner that results in a short terminal horizon, and they select a depletion strategy that is consistent with this horizon. This simultaneous feedback between decisions and horizon makes the solution of this model particularly challenging. To our knowledge, this is the first attempt to rationalize end-of-life health and wealth dynamics, rather than model them as ex post responses to an irreversible sequence of exogenous health and/or wealth declines. Remarkably, this optimal depletion reinforces a biological aging explanation, and reintroducing aging makes closing down even more relevant.

Our second contribution is to assess whether closing down dynamics are empirically meaningful. Taking a structural econometric characterization of the health and wealth loci where these strategies are to be expected, we test conditions and identify thresholds under which closing down does or does not take place. Using Health and Retirement Study (HRS)–Consumption and Activities Mail Survey (CAMS; HRS–CAMS) data for relatively old (mean 75) agents, our results provide evidence that the bulk of agents optimally select to close down the shop.

Van Kippersluis et al. (2009), Baeten et al. (2013), and Case and Deaton (2005).
Whereas curative expenses (e.g., doctor visits, hospital stays, drugs, …) tend to stagnate, nursing homes and other long-term care (LTC) spending increase sharply (De Nardi et al., 2015, figure 3, p. 22). LTC expenditures are more income and wealth elastic than curative care with respect to care of the elderly (De Nardi et al., 2015; Tsai, 2015; Marshall et al., 2010). In addition, LTC expenses are not covered by Medicare and are rarely insured against through private markets.
See Grossman (2000) and Galama (2015) for reviews. We also provide further details on these shortcomings for the base Grossman (1972) model with analytical solutions discussed in Section 2.4.2 and Figure 2, with formal arguments made in Theorem 4.
Other exceptions with endogenous mortality include Pelgrin and St-Amour (2016), Kuhn et al. (2015), Dalgaard and Strulik (2014), Dalgaard and Strulik (2017), Blau and Gilleskie (2008), and Hall and Jones (2007). However, none of these papers focus on end-of-life joint dynamics for health and wealth. The closest paper is Galama (2015) who also emphasizes the shortcomings of the canonical Grossman (1972) model as motivation for generalizations, while stressing the importance of combining investment with the law of motion for health to characterize the optimal (equilibrium) time paths of the latter and to generate declining health over the life cycle. The main differences are stochastic mortality, morbidity and financial processes, more general preferences, and structural estimation that are abstracted from in Galama (2015).
2 | THEORETICAL BACKGROUND

2.1 | Life cycle model

Our analysis of the life cycle dynamics of health and wealth builds upon the theoretical framework developed in Hugonnier et al. (2013), briefly reproduced here for completeness. First, the dynamics for the agent’s health are

\[
dH_t = ((I_t/H_{t-})^α - δ) H_{t-} dt - φ H_{t-} dQ_{st}, \quad H_0 > 0, \tag{1}
\]

where \(α, δ, φ ∈ (0, 1) \), and \(I_t > 0 \) is investment (health expenses).\(^{11}\) We denote by \(H_{t-} = \lim_{t\to 0} H_t \) the agent’s health prior to the realization of the morbidity shock \(Q_{st} \), where the latter follows a Poisson distribution with exogenous intensity \(λ_{st} \).\(^{12}\) Second, the age at death \(T_m \) is also distributed as Poisson, although with endogenous death intensity:

\[
\lim_{h\to 0} (1/h) P_t \left[t < T_m \leq t + h \right] = λ_0 + λ m H_{t-}^m \equiv λ m(H_{t-}), \tag{2}
\]

whereby healthier agents face a lower likelihood of dying.

Third, the dynamics for financial wealth \(W_t \) are given by

\[
dW_t = (r W_{t-} + Y_t - C_t - I_t) dt + Π \sigma S (dZ_t + θ dt) + X_t (dQ_{st} - λ_{st} dt), \quad Y_t = y_0. \tag{3a}
\]

with constant (e.g., annuity) income

The exposure to Brownian financial risk is \(σ^C_t \), whereas the Kreps–Porteus aggregator \(f(C, H, U) \) and the penalty \(F_s(U, ΔU) \) for exposure to Poisson morbidity shocks in utility \(ΔU_t = 1_{\{dQ_{st}>0\}} (U_t - U_{t-}) \) are given by

\[
\begin{align*}
f(C, H, U) &= \frac{μ U}{1 - 1/ε} \left((C - a + β H)/U \right)^{1-1/ε} - 1, \tag{5b} \\
F_s(U, ΔU) &= λ_{st} \left[\frac{ΔU}{U} + 1 - (1 + ΔU/U)^{1-γ_s} \right] U, \tag{5c}
\end{align*}
\]

\(^{11}\)The positive investment restriction is necessary because \(I_t \) is to the power \(α \in (0, 1) \) in the Cobb–Douglas technology (Equation 1). Moreover, it is required to prevent degenerate cases where the agent could hasten the death timing by investing negative amounts, inconsistent with both the monetary expense interpretation and the preference for life over death assumption.

\(^{12}\)Hugonnier et al. (2013) also consider a more general setup with health-dependent sickness intensity, which we abstract from.

\(^{13}\)Our analysis focuses on financial wealth only and omits housing, a non-negligible determinant of disposable resources for elders. Unlike financial wealth, housing provides direct utilitarian service flows, involves additional life cycle decisions, to those we consider, as well as complex budget constraint considerations (e.g., leverage effects, [non] inclusion in means-tested programs, . . .) that would have to be modeled for completeness. Moreover, a simpler approach of adding net housing to financial wealth yielded similar empirical results. For these two reasons, we thus maintain our current perspective on financial assets only, and we prefer to leave housing on the research agenda.

\(^{14}\)In the empirical application of Section 3, we thus include elements such as long-term care, personal health care, and dental visits in \(C \). See Appendix S3 for details.
In this formulation, \(a > 0 \) denotes minimal (subsistence) consumption, \(\beta \) captures utilitarian service flows from health,\(^{15}\) and \(\rho \) is a discount rate. The elasticity of inter-temporal substitution \(\varepsilon \geq 0 \) is disentangled from the source-dependent risk aversion parameters \(\gamma \geq 0 \) (financial risk), \(\gamma_m \in (0, 1) \) (death risk), and \(\gamma_s \geq 0 \) (sickness risk).

The homogeneity of preferences ensures weak preference for life over death: \(V(W_t, H_t) \geq 0 \). Moreover, this model nests the Grossman (1972), Ehrlich and Chuma (1990) as a special case where morbidity and insurance are both abstracted from, mortality is exogenous, and preferences are Von Neumann-Morgenstern (VNM) (see Section 4.5.3 for implications):

\[
\lambda_{s0}, \phi, X_1, \lambda_{m1}, \gamma_m, \gamma_s = 0, \text{ and } \gamma = 1/\varepsilon.
\]

It is also straightforward to show that the functional forms we rely upon for health accumulation technology in Equation (1) and costs in Equation (3a) encompass other ones found in the literature.\(^{16}\)

2.2 Optimal allocation

The optimal rules for this model are obtained as follows.

Theorem 1 (Optimal rules). Assume that conditions (Equation 17) of Appendix S1 hold true and define net total wealth as the following:

\[
N_0(W_t-H_t) = W_t - a + \frac{(y_t - a)}{r}.
\]

Up to a first order approximation, the indirect utility and optimal policy functions are given by

\[
V(W_t-H_t) = \left(\Theta - \eta_1 H_t^{\frac{\gamma}{\varepsilon}} \right) N_0(W_t-H_t),
\]

\[
I^*(W_t-H_t) = KBH_t + I_t H_t^{\frac{\gamma}{\varepsilon}} N_0(W_t-H_t),
\]

\[
\Pi^*(W_t-H_t) = a + \alpha + C_t H_t^{\frac{\gamma}{\varepsilon}} N_0(W_t-H_t),
\]

\[
\Pi^*(W_t-H_t) = (\theta/\gamma) N_0(W_t-H_t),
\]

where \(B \geq 0 \) solves (Equation 18), \(K = \alpha^{1/\varepsilon} B^{1/\gamma} \), the parameters \((\alpha, \Theta) \geq 0\) are defined in Equation (19), and where the constants \((\eta_1, I_t) \geq 0\) and \((\alpha, C_t) \leq 0\) are defined in Equation (20) in Appendix S1.

Proof. See Hugonnier et al. (2013, Theorems 1 and 2 and Remark 3) for the general case and evaluate the optimal policies at the restricted exogenous morbidity case \(\lambda_{s1} = 0 \).

The net total wealth \(N_0(W_t-H_t) \) in Equation (7) is the sum of financial assets and capitalized future income, net of subsistence consumption expenditures \(a \), where \(B \geq 0 \) in Equation (18) represents the shadow price (i.e., Tobin’s-Q) of health. The expressions involving \(\eta_1, I_t, \lambda_{s1}, \) and \(C_1 \) capture the effects of endogenous mortality \(\lambda_{m1} H_t^{\frac{\gamma}{\varepsilon}} \) on welfare and on the optimal rules and are all zero when mortality is exogenous. Indeed, the death intensity in Equation (2) mechanically increases from base risk \(\lambda_{m0} \) when \(\lambda_{m1} > 0 \). Because life is valuable, higher death risk is unconditionally welfare reducing in Equation (8a); because \(\eta_1 > 0 \); and because mortality can be adjusted, investment consequently increases in Equation (8b); because \(I_1 > 0 \). The effects on consumption and insurance critically depend on preferences. Highly morbidity-risk averse agents \((\gamma_s > 1)\) demand more insurance against health shocks in Equation (8c) when exposed to higher death risks. Moreover, agents with high elasticity of inter-temporal substitution \((\varepsilon > 1)\) compensate against a shorter life horizon by

\(^{15}\)The model also admits an alternative interpretation where preferences \(f(C, H, U) \) in Equation (5b) are health independent and with health-increasing income Equation (3b) replaced by \(Y_t = y_t + \beta H_t \) (Hugonnier et al., 2013, Remark 3). The theoretical results are unaffected by this change in perspective.

\(^{16}\)In particular, a change of variable from \(I \) to \(\bar{I}, \bar{I}^t \) reveals the following equivalent formulations:

\begin{align*}
\bar{I}^t &\equiv \bar{I}^t H^{1/\varepsilon} & \bar{I} &\equiv \bar{I} H^{1/\varepsilon} & \bar{I}^t &\equiv \bar{I}^t H^{1/\varepsilon}
\end{align*}

The optimal dynamics we recover under either \(\bar{I} \) or \(\bar{I}^t \) are identical to the ones we obtain in the original formulation with \(I \). Both equations (1) and (3a) are modified accordingly. The linear technology in \(\bar{I} \) in \(\bar{I}^t \) is resolved to by Grossman (1972), whereas Ehrlich and Chuma (1990) add convex costs as in \(\bar{I}^{1/\varepsilon} \). A concave technology \(\bar{I}^{1/\varepsilon} \) formulation is used notably by Galama (2015).
increasing current consumption—including non-investment health-related expenses—in Equation (8d), thus substituting better quality for less quantity of life. Observe that for all cases, the effects of endogenous mortality are compounded for agents with high net total wealth $N_0(W,H)$.

Importantly, the optimal rules in Equation (8) are defined only over an admissible state space, that is, the set of wealth and health levels that provides minimal resources requirements to ensure survival, as well as strict preference for life over death:

$$C^*(W_{t-},H_{t-}) - a > 0 \iff V(W_{t-},H_{t-}) > 0 \iff N_0(W_{t-},H_{t-}) > 0.$$ \hspace{1cm} (9)

This admissible region \mathcal{A} thus requires positive net total wealth in Equation (7):

$$\mathcal{A} = \{(W,H) \in \mathbb{R} \times \mathbb{R}_+ : W \geq x(H) = -(y_0 - a)/r - BH\},$$ \hspace{1cm} (10)

where we assume that base income y_0 is insufficient to cover subsistence consumption a:

$$(y_0 - a)/r < 0,$$ \hspace{1cm} (11)

to ensure consistency with observed financial choices.17

2.3 Optimal health and wealth dynamics

The agent’s health and wealth evolve on the optimal path given by Equations (1) and (3) evaluated at the optimal rules (Equation 8). This stochastic differential system cannot be studied with standard phase portraits, and we instead analyze the instantaneous expected changes in health (Equation 1) and wealth (Equation 3).18

We focus on admissible depletion regions $D_H, D_W \subseteq \mathcal{A}$ of the (W,H) space where health and wealth are expected to fall. Moreover, we also study the region $AC \subseteq D_H$ where the health depletion is accelerating, that is, where a fall in health induces a larger cut in investment, leading to further depletion. Propositions 1, 2 in Appendix S2 solve for the necessary and sufficient conditions for relevant depletion and acceleration regions, that is, $(D_H, D_W, AC) \neq \emptyset$. Proposition 3 gives more stringent sufficient conditions for relevance:

$$\delta^{1/\alpha} > \beta, \quad \delta = \delta + \phi\lambda_0, \quad \frac{\theta^2}{\gamma} + r \iff \epsilon(\rho - r) + (\epsilon - 1)\frac{\lambda_{m0}}{1 - \gamma_m} > (1 + \epsilon)\frac{\theta^2}{2\gamma}. \hspace{1cm} (12a)$$

$$A > \frac{\theta^2}{\gamma} + r \iff \epsilon(\rho - r) + (\epsilon - 1)\frac{\lambda_{m0}}{1 - \gamma_m} > (1 + \epsilon)\frac{\theta^2}{2\gamma}. \hspace{1cm} (12b)$$

$$A > \frac{\theta^2}{\gamma} + r \iff \epsilon(\rho - r) + (\epsilon - 1)\frac{\lambda_{m0}}{1 - \gamma_m} > (1 + \epsilon)\frac{\theta^2}{2\gamma}. \hspace{1cm} (12c)$$

Condition (Equation 12a) states that expected health depreciation is highly relative to the health gradient in utility β. A high depreciation in the absence of investment (δ), or conditional upon sickness (ϕ), as well as a high likelihood of morbidity shocks (λ_0) are all to be expected in the last years of life. Other conditions require high elasticity of inter-temporal substitution (Equation 12b) and high marginal propensity to consume (Equation 12c), obtained through high impatience ρ, and/or high aversion to death risk $\gamma_m \in [0,1)$, and/or high unconditional risk of dying λ_{m0}, all of which are relevant for end of life.

Under sufficient conditions (Equation 12), Propositions 1 and 2 of Appendix 4.5 identify the depletion and accelerating regions as the following:

$$D_H = \{(W,H) \in \mathcal{A} : \frac{1}{dt}E_{t-}[dH_t|W_{t-} = W, H_{t-} = H] < 0\}$$

$$= \{(W,H) \in \mathcal{A} : W < y(H) = x(H) + DH^{1+\gamma_m}\}, \hspace{1cm} (13a)$$

$$AC = \{(W,H) \in D_H : I_H^W(W,H) > 0\}$$

$$= \{(W,H) \in D_H : W < \min\left[y(H), z(H) = x(H) + \frac{BH}{1 + \xi_m}\right]\}, \hspace{1cm} (13b)$$

17Although not necessary for the main theoretical results, restriction (Equation 11) is also tested and confirmed empirically in Section 4 and will be relied upon in the discussion of these results. Moreover, it helps ensure that portfolio shares H/W are increasing in wealth, consistent with the data (e.g., Wachter and Yogo, 2010).

18See also Laporte and Ferguson (2007) for an analysis of expected local changes of the Grossman (1972) model with Poisson shocks.
FIGURE 1 Joint health and wealth dynamics. Non-admissible set $\mathcal{N}A$: shaded red area under red $x(H)$ line, admissible A is area above $x(H)$. Health depletion set D_H: shaded green area under green $y(H)$ green curve. Acceleration set AC: hatched green area under blue $z(H)$ curve. Wealth depletion set D_W: area above $w(H)$ black curve.

First, the admissible region where the negative slope suggesting a corresponding tradeoff between health and wealth.19 characterized by zero net total wealth, consumption at subsistence level, and indifference between life and death, with under Equation (11), whereas its vertical intercept is a U-shaped function bounded below $z(H)$ curve. Acceleration set AC: hatched green area under blue $z(H)$ curve. Wealth depletion set D_W: area above $w(H)$ black curve

\[
D_W = \left\{ (W, H) \in A : \frac{1}{\delta} E_{\tau_-}[dW_t | W_{\tau_-} = W, H_{\tau_-} = H] < 0 \right\}
\]

\[
= \left\{ (W, H) \in A : W > w(H) = \frac{x(H)(l(H) + r)}{l(H)} + k(H) \right\},
\]

where

\[
D = I_1^{-1} \left[\frac{\delta^{1/a}}{\gamma} - BK \right] > 0,
\]

\[
l(H) = A - \frac{\theta^2}{\gamma} - r + (I_1 + C_1) H^{-\xi_m} > 0,
\]

\[
k(H) = y_0 - a + H(\beta - KB).
\]

The depletion and accelerating dynamics (Equation 13) can be analyzed through the local phase diagram in Figure 1. First, the admissible region A is bounded below by the red $x(H)$ locus (Equation 10), with complementary non-admissible area $\mathcal{N}A$ in shaded red region. The horizontal intercept of $x(H)$ is the capitalized base income deficit $-(y_0 - a)/r > 0$ under Equation (11), whereas its vertical intercept is $\bar{H}_1 = -(y_0 - a)/(rB) > 0$. From Equation (9), the red $x(H)$ locus is characterized by zero net total wealth, consumption at subsistence level, and indifference between life and death, with the negative slope suggesting a corresponding tradeoff between health and wealth.19

Second, the health depletion region D_H is the shaded green area located below the green $y(H)$ locus in Equation (13a), a U-shaped function bounded below by $\bar{W}_3 = y(\bar{H}_3)$ where

\[
\bar{H}_3 = \left(\frac{B}{D(1 + \xi_m)} \right)^{\frac{1}{\xi_m}} > 0.
\]

The reasons for the non-monotonicity stem from the effects of health on $t^k(W, H) = l(W, H)/H$. At low health $H < \bar{H}_3$, better health raises the value of the health capital BH and therefore net total wealth $N_0(W, H)$, thereby increasing the investment to capital ratio t^k. Constant (and zero) growth thus requires an offsetting reduction in W. At high health $H > \bar{H}_3$, being healthier lowers the incentives for investing to control for mortality risk and therefore reduces t^k. Constant growth requires increasing W.

Third, the accelerating locus $z(H)$ in Equation (13b) is plotted as the blue line in Figure 1; the accelerating region is the dashed blue subset of D_H. Appendix S2 shows that this locus intersects the $x(H), y(H)$ loci at the same $-(y_0 - a)/r$ intercept and that it intersects the $H-$axis at $\bar{H}_2 = \bar{H}_1(1 + \xi_m)/\xi_m > \bar{H}_1$; consequently, the admissible accelerating region $x(H) < W < z(H)$ is nonempty for all health levels. Moreover, it also intersects the health depletion locus $y(H)$ at lower

19See also Finkelstein et al. (2013) and Finkelstein et al. (2009) for evidence and discussion regarding health effects on marginal utility of wealth.
bound \bar{H}_3 in Equation (10). Consequently, there exists a threshold wealth level $\bar{W}_3 = y(\bar{H}_3)$ below which all agents expect a health decline and a threshold health level \bar{H}_3 below which all agents in the depletion region are also in the accelerating subset.

Fourth, the wealth depletion locus $w(H)$ in Equation (13c) is represented as the black curve in Figure 1 whereby the wealth depletion region D_w is the area above this locus. Appendix S2 establishes that this locus has the same $H -$ intercept $-(y_0 - a)/r$ and it must lie above the admissibility locus $\zeta(H)$. Because $w(H)$ is located between the admissible and the health depletion loci, the joint depletion region $(D_w \cap D_H)$ is nonempty for every H under sufficient conditions (Equation 12), that is, there exists an admissible range of W for which agents optimally expect both their health and their wealth to fall.

The local expected dynamics of health are represented by the horizontal (health) and vertical (wealth) arrows in Figure 1 with agents $j = A, B, C,$ and D described by their (H_j, W_j) statuses. First, agent A is sufficiently rich (i.e., $W > y(H)$) and can expect a growth in health towards the steady-state locus $y(H)$, for example, following a morbidity shock. Agent B is poorer and is located in the D_H region in which the health stock is expected to fall, yet is nonetheless sufficiently rich and healthy ($W > \zeta(H)$) to optimally slow down—but not reverse—the depreciation of his health capital (i.e., $I_H^b < 0$). However, for agents C and D, wealth is below the $\zeta(H)$ locus such that the health depletion accelerates (i.e., $I_H^b > 0$, illustrated by the thick vector) as falling health is accompanied by further cuts in the investment-to-health ratio. All three agents A, B, and C expect their wealth to fall, whereas agent D is located at very low wealth levels in the AC region where rapidly receding health expenses $I(W, H)$ allow for expected increases in wealth.

2.4 Discussion

2.4.1 Closing down the shop

These joint end-of-life dynamics of health and wealth are consistent with a deliberate closing down the shop strategy when the conditions in Propositions 1, 2, and 3 are satisfied. Sufficiently rich ($W > y(H)$) and healthy agents reinvest in their health, with the latter returning to the steady-state locus $y(H)$ following a sickness shock. However, falling wealth is also optimally chosen, leading agents to eventually enter the D_H region where health depletion and increasing mortality risks are optimally selected. Such dynamics are consistent with strong positive SES gradients for health outcomes, as well as for longevity. Furthermore, they are also consistent with the inverted U shape in the life cycle of the SES gradients that peak after middle age and fall in the last period of life. Indeed, the model predicts that rich agents ($W > \bar{W}_3$) initially prevent health declines but that all ultimately enter the health depletion region after which wealth is less relevant with respect to health outcomes.

Moreover, the depreciation of the health stock accelerates once falling health and wealth draws agents into the AC region. Our model thus supports threshold effects whereby falling health is initially slowed down and then accelerated for $H < \bar{H}_3$ and is thus pro factual with the accelerating deterioration in both health and longevity that is observed after age 70. From the endogenous death intensity (Equation 2), falling health is invariably accompanied by an increase in mortality and a decline towards the admissible locus $\zeta(H)$ characterized by zero net total wealth, subsistence consumption, and indifference between life and death. Importantly, this optimal relinquishment occurs even when life is strictly preferred. Indeed, as discussed earlier, the non-separable preferences (Equation 5) ensure strictly positive continuation utility under life in Equation (9). The agents we are considering therefore have no proclivity in favor of premature death when they deliberately initiate closing down strategies. Finally, as discussed earlier, endogenous mortality increases investment ($I_1 > 0$), as well as consumption of nondurables and services—including comfort care—if the elasticity of inter-temporal substitution is high ($\epsilon > 1 \Rightarrow C_1 > 0$). The empirical results below are consistent with $0 < I_1 < C_1$, that is, higher mortality caused by falling health induces agents to shift in favor of more C_t than I_t, consistent with an end-of-life change in the composition of health expenses towards more comfort care than curative care.
2.4.2 Comparison with the standard model

Our model nests the seminal Grossman (1972) and Ehrlich and Chuma (1990) framework under restriction (Equation 6). In particular, these restrictions abstract from endogenous mortality $\lambda_{m1} = 0$, leading to $V_1, I_1, X_1, C_1 = 0$ in the optimal rules. Appendix 4.5.3 derives the corresponding dynamics reproduced in Figure 2. Under sufficient condition (Equation 12a), the health depletion region is the entire admissible set, whereas no accelerating region exists.

The standard model predicts common and constant depletion rates for health that are independent of wealth or health statuses, that do not accelerate near the end of life, and that have no incidence on death risk, which remains counter-factually independent of age and of financial and health levels. This contradicts the evidence of strong positive SES gradients and on the life cycle of these gradients that peak at midlife and fall thereafter.

2.4.3 Aging

The model can be modified to account for realistic aging processes involving age-increasing depreciation, sickness, and death risk exposure:

$$\delta_t, \phi_t, \lambda_{s0t}, \lambda_{m0t} \geq 0. \tag{15}$$

In that perspective, Hugonnier et al. (2013) show that the optimal rules in Theorem 1 remain valid, although with age-dependent parameters that can be solved in closed form. The predicted loci remain valid and inherit age dependency: $x_t(H), y_t(H), z_t(H), w_t(H)$. In addition to making it more likely that sufficient conditions (Equation 12) are met, it can be shown that the aging process (Equation 15) generates counterclockwise rotations in both $x_t(H), y_t(H)$ loci that entails that all agents are now closer to D_H (see Figure 3). We conclude that aging is complementary to and reinforces the closing-down process.

3 EMPIRICAL EVALUATION

The optimal health and wealth depletion strategy is arguably more appropriate for agents nearing death, than for younger ones. Indeed, a high health depreciation (δ), sickness likelihood (λ_{s0}), and/or consequence (ϕ) all seem legitimate for old agents in the last period of life, yet less so for younger ones. Moreover, a high marginal propensity to consume in Equation (12c), potentially stemming from non-curative long-term care expenses, is suitable for elders nearing the end of life. Using a database of relatively old individuals (HRS-CAMS), we next verify empirically whether or not these conditions are valid and whether the admissible, depletion, and acceleration subsets have economic relevance.

In particular, the aging process (Equation 15) yields age-decreasing $\tilde{B}_t, \tilde{K}_t, \tilde{I}_{m0}, \tilde{I}_H \leq 0$ and age-increasing $\tilde{D}_t \geq 0$. The combination of the two entails counterclockwise rotations in all the loci, with common intercept $(y - a)/r$ unaffected.
FIGURE 3 Joint health and wealth dynamics: effects of aging.
Effects of aging process (Equation 15). Non-admissible set $\mathcal{N}_t A_t$; shaded red area under red $x_t(H)$ line, admissible A_t is area above $x_t(H)$. Health depletion set \mathcal{H}_t: shaded green area under green $y_t(H)$ green curve. Acceleration set \mathcal{A}_t: hatched green area under blue $z_t(H)$ curve. Wealth depletion set \mathcal{W}_t: area above $w_t(H)$ black curve

3.1 Econometric model

Assuming that agents $j = 1, 2, \ldots, N$ follow the optimal rules in Theorem 1, we consider a tri-variate nonlinear structural econometric model defined by the optimal investment (Equation 8b), the consumption (Equation 8d), and the risky asset holdings (Equation 8e):

$$I_j = KBH_j + I_1 H_j^{-\xi_m} N_0(W_j, H_j) + u^I_j,$$

$$C_j = a + (A + C_1 H_j^{-\xi_m}) N_0(W_j, H_j) + u^C_j,$$

$$\Pi_j = (\theta/(\gamma S)) N_0(W_j, H_j) + u^{\Pi}_j,$$

where $N_0(W, H)$ denotes net total wealth in Equation (7), where the parameters (K, B, I_1, A, C_1) are outlined in Appendix S1, and where u^I_j, u^C_j, u^{Π}_j are correlated error terms. Optimal insurance (Equation 8c) is omitted from our specification under near-universal Medicare coverage for elders.

A subset of the technological, distributional, and preference parameters is estimated using the joint system (Equation 16), imposing the regularity conditions (Equation 17; see Appendix S1). Due to significant nonlinearities, not all the parameters can be identified. We calibrate certain parameters (i.e., μ, r, σ_S, and ρ) with standard values from the literature. For others however (i.e., ϕ, γ_m, and γ_S), scant information is available, and we rely on a thorough robustness analysis.

The estimation approach is an iterative two-step Maximum likelihood (ML) procedure. In a first step, the convexity parameter ξ_m is fixed, and a maximum likelihood approach is conducted on the remaining structural parameters. In a second step, the latter are fixed, and the likelihood function is maximized with respect to ξ_m. The procedure is iterated until a fixed point is reached for all the estimated structural parameters. The likelihood function is written by assuming that there exist some cross-correlations between the three equations, that is, $\text{Cov}(u^I_j, u^C_j, u^{\Pi}_j) \neq 0$. For the first two equations, the cross-correlation can be justified by the fact that we use an approximation of the exact solution (see Hugonnier et al., 2013, for details).

The database is the 2002 wave of the HRS (Rand data files) corresponding to the last HRS wave with detailed information on health spending. The HRS data set is merged with the 2001 CAMS for observable data corresponding to consumption (Equation 8d; see Appendix S3 for details). A main advantage of CAMS data is that its detailed categories allow us to distinguish between curative and comfort care expenses (e.g., home health care or dental visits, etc.) that can reasonably be considered as consumption rather than investment. For consistency with our model of end-of-life health and wealth dynamics, bequest motives abstracted from, we restrict our analysis to elders (i.e., agents aged 65 and more), who are single and with positive financial wealth (1,124 remaining observations).

We report the sample statistics in Table 1, whereas Table 2 reports the median values stratified by wealth quintiles and self-reported health. Consistent with empirical evidence, financial wealth seems to be relatively insensitive to health;26

26See Hugonnier et al. (2013), Michaud and van Soest (2008), Meer et al. (2003), and Adams et al. (2003) for additional evidence.
Table 1: Health and Retirement Study–Consumption and Activities Mail Survey data statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption (C)</td>
<td>16,507</td>
<td>17,765</td>
<td>0</td>
<td>217,510</td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>79,423</td>
<td>164,837</td>
<td>1</td>
<td>1,675,001</td>
</tr>
<tr>
<td>Investment (I)</td>
<td>1,959</td>
<td>2,978</td>
<td>0</td>
<td>36,049</td>
</tr>
<tr>
<td>Risky holdings (II)</td>
<td>38,631</td>
<td>116,958</td>
<td>0</td>
<td>1,500,000</td>
</tr>
<tr>
<td>Health (H)</td>
<td>1.84</td>
<td>0.82</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Age (t)</td>
<td>75.92</td>
<td>6.99</td>
<td>65</td>
<td>97</td>
</tr>
</tbody>
</table>

Notes. Statistics for Health and Retirement Study–Consumption and Activities Mail Survey data (in 2002 $ for nominal variables) used in estimation. Scaling for self-reported health is 0.5 (Poor), 1.25 (Fair), 2.00 (Good), 2.75 (Very good), and 3.5 (Excellent).

Table 2: Health and Retirement Study–Consumption and Activities Mail Survey data statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wealth quintile</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Poor health (H = 0.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>11,708</td>
<td>10,563</td>
<td>20,881</td>
<td>30,056</td>
<td>35,841</td>
<td></td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>31</td>
<td>1,459</td>
<td>10,481</td>
<td>55,492</td>
<td>308,243</td>
<td></td>
</tr>
<tr>
<td>Investment (I)</td>
<td>26,379</td>
<td>22,792</td>
<td>25,127</td>
<td>32,048</td>
<td>26,948</td>
<td></td>
</tr>
<tr>
<td>Risky share (II/W)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.25</td>
<td>0.63</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>b. Fair health (H = 1.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>15,672</td>
<td>13,090</td>
<td>13,319</td>
<td>19,237</td>
<td>24,722</td>
<td></td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>29</td>
<td>2,008</td>
<td>12,469</td>
<td>51,375</td>
<td>237,487</td>
<td></td>
</tr>
<tr>
<td>Investment (I)</td>
<td>26,162</td>
<td>14,850</td>
<td>10,459</td>
<td>18,728</td>
<td>24,242</td>
<td></td>
</tr>
<tr>
<td>Risky share (II/W)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.26</td>
<td>0.45</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>c. Good health (H = 2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>14,873</td>
<td>14,603</td>
<td>14,124</td>
<td>18,426</td>
<td>23,190</td>
<td></td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>34</td>
<td>1,915</td>
<td>14,300</td>
<td>54,334</td>
<td>300,252</td>
<td></td>
</tr>
<tr>
<td>Investment (I)</td>
<td>10,637</td>
<td>16,420</td>
<td>11,592</td>
<td>9,749</td>
<td>14,965</td>
<td></td>
</tr>
<tr>
<td>Risky share (II/W)</td>
<td>0.00</td>
<td>0.01</td>
<td>0.27</td>
<td>0.40</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>d. Very good health (H = 2.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>13,255</td>
<td>12,705</td>
<td>15,181</td>
<td>17,948</td>
<td>20,585</td>
<td></td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>34</td>
<td>2,142</td>
<td>14,198</td>
<td>51,266</td>
<td>306,920</td>
<td></td>
</tr>
<tr>
<td>Investment (I)</td>
<td>4,768</td>
<td>21,220</td>
<td>6,876</td>
<td>8,060</td>
<td>10,285</td>
<td></td>
</tr>
<tr>
<td>Risky share (II/W)</td>
<td>0.03</td>
<td>0.04</td>
<td>0.19</td>
<td>0.41</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>e. Excellent health (H = 3.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>12,418</td>
<td>11,749</td>
<td>15,340</td>
<td>19,847</td>
<td>21,254</td>
<td></td>
</tr>
<tr>
<td>Wealth (W)</td>
<td>68</td>
<td>2,114</td>
<td>12,679</td>
<td>60,140</td>
<td>358,548</td>
<td></td>
</tr>
<tr>
<td>Investment (I)</td>
<td>2,456</td>
<td>5,159</td>
<td>7,199</td>
<td>8,079</td>
<td>5,593</td>
<td></td>
</tr>
<tr>
<td>Risky share (II/W)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.32</td>
<td>0.50</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Mean values (in 2002 $ for nominal variables) per health status and wealth quintiles for Health and Retirement Study–Consumption and Activities Mail Survey data used in estimation.

Health investment increases slowly in wealth, but falls sharply in health, whereas risky asset holdings are higher for healthier and wealthier agents. Consumption is highest for rich, less healthy agents.

27 Similar findings with respect to wealth (e.g., Hugonnier et al., 2013; Meer et al., 2003; DiMatteo, 2003; Gilleskie & Mroz, 2004; Acemoglu et al., 2013). In addition, consumption is highest for rich, unhealthy agents, and health (e.g., Hugonnier et al., 2013; Smith, 1999; Gilleskie and Mroz, 2004; Yogo, 2009) have been discussed elsewhere.

28 Similar positive effects of wealth on risky holdings have been identified in the literature (e.g., Hugonnier et al., 2013; Wachter and Yogo, 2010; Guiso et al., 1996; Carroll, 2002) whereas positive effects of health have also been highlighted (e.g., Hugonnier et al., 2013; Guiso et al., 1996; Rosen and Wu, 2004; Coile and Milligan, 2009; Berkowitz and Qiu, 2006; Goldman and Maestas, 2013; Fan and Zhao, 2009; Yogo, 2009).
Parameter	Value	Parameter	Value	Parameter	Value
a. Law of motion health (Equation 1)
\(a\) | 0.7285* | \(\delta\) | 0.0460* | \(\phi\) | 0.011b

(0.2066) | (0.0148)

b. Sickness and death intensities (Equation 2)
\(\lambda_{s0}\) | 0.0813* | \(\lambda_{m0}\) | 0.0665* | \(\xi_m\) | 2.2498*

(0.0233) | (0.0299) | (0.0074)

\(\lambda_{m1}\) | 0.0219* | \(\sigma_S\) | 0.048

(0.0074)

c. Income and wealth (Equation 3)
\(y_0\) | 0.0085% | \(r\) | 0.048b | \(\mu\) | 0.108b | \(\sigma_S\) | 0.20b

d. Preferences (Equation 5)
\(\alpha\) | 0.0126% | \(\beta\) | 0.0991* | \(\varepsilon\) | 1.7364*

(0.0064) | (0.0023) | (0.4192) | (1.1925)

\(\rho\) | 0.025b | \(\zeta_m\) | 0.75b | \(\gamma_s\) | 7.4b

(0.0074)

e. State space subsets (Equations 10, 24a, 25b, and 30b)
\((y_0 - a)/r\) | -0.0836% | \(B\) | 0.0966* | \(H_1\) | 0.8661*

\(D\) | 0.1674* | \(I_1\) | 0.1572* | \(K\) | 5.88e − 04*

\(H_3\) | 0.4692* | \(\bar{W}_3\) | 0.0523* | \(H_2\) | 1.1193*

\(C_1\) | 2.5298* | \(A\) | 0.1065*

g. Sufficient conditions (12) (must be negative)
\(\beta - \bar{\beta} = 7.8\) | -0.0059* | \(\theta^2/\gamma + r - A\) | -0.0235

Notes. Econometric model (Equation 16). * Estimated structural and induced parameters (standard errors in parentheses), significant at 5% level. b calibrated parameters. c In million dollars.

Table 3 Estimated and calibrated parameter values

4 | RESULTS

4.1 | Structural parameters

Table 3 reports the calibrated and estimated deep parameters (Panels a–d), the induced parameters to define the various subsets (Panel e), as well as the sufficient conditions that are relevant to Propositions 1, and 2 (Panel f). The standard errors indicate that all the estimates are precisely estimated and are significant at the 5% level.

First, the law of motion parameters in panel a are consistent with significant diminishing returns to the health production function (\(\alpha = 0.73\)). Depreciation is important (\(\delta = 4.6\%\)), and sickness is consequential, with an additional depreciation of \(\phi = 1.1\%\) suffered upon realization of the health shock. The intensity parameters in Panel b indicate a high and significant likelihood of health shocks (\(\lambda_{s0} = 0.08\)). The death intensity (Equation 2) parameters reject the null of exogenous exposure to death risk (\(\lambda_{m1}, \xi_m \neq 0\)), validating the assumption that the agent’s health decisions are consequential for their expected life horizon.

Third, the returns parameters (\(\mu, r, \) and \(\sigma_S\)) are calibrated at standard values in Panel c. The base income \(y_0\) in Equation (3b) is calibrated to a value of $8,500 in 2002 dollars ($11,927 in 2018). Fourth, the preference parameters in Panel d suggest a significant subsistence consumption \(a\) of $12,600 ($17,530 in 2018), which is larger than base income \(y_0\). Both subsistence and base income values are realistic. Our estimate of the inter-temporal elasticity \(\varepsilon = 1.74\) is larger than one, as required for sufficient condition (Equation 12b) and as identified by others using micro data. Aversion to financial risk is realistic (\(\gamma = 2.57\)), whereas aversion to mortality and morbidity risks are calibrated in the admissible range (0 < \(\gamma_m < 1\)) and are similar to the values set by Hugonnier et al. (2013). Finally, the subjective discount rate is set at usual values (\(\rho = 2.5\%\)). Overall, we conclude that the estimated and calibrated structural parameters are economically plausible.

29 For example, the 2002 poverty threshold for elders above 65 was $8,628 (source: U.S. Census Bureau).
30 For example, Gruber (2013) finds estimates centered around 2.0, relying on Consumer expenditures survey (CEX) data.
4.2 | Induced parameters and relevance of closing down

Table 3 Panel e reports the induced parameters that are relevant for the admissible, depletion, and accelerating subsets. Table 3 Panel f shows that the sufficient conditions (Equations 12a and 12c) are verified at these induced parameters. These composite parameters allow us to evaluate the values of the four loci $x(H)$, $y(H)$, $z(H)$, and $w(H)$ at the various self-reported health levels in Table 4 and to plot the corresponding subsets in Figure 4 using the same scaling as the one for the estimation. Finally, we can rely on the joint distribution in Table 2 in order to plot the quintile values of wealth as blue dots for poor for poor and fair health levels.

First, the large negative value for $(y_{0} - a)/r$ corresponds to a capitalized base income deficit of $83,630 in 2002 dollars and confirms that condition in Equation (11) is verified. Second, we identify a relatively large marginal Q of health $B = 0.0966$ in Panel e, suggesting that health depletion can remain optimal despite health being very valuable. Third, the value for D in Table 3 Panel e is large and significant. From the definition of $y(H)$ in Equation (13a), a large value of D also entails a steep health depletion locus in Figure 4. It follows that its minimum is attained at a low $\bar{H}_3 = 0.4692$, with corresponding realistic value of $\bar{W}_3 = 52,262$. Because this value is larger than most observed wealth levels (see Tables 1 and 2), it follows that the bulk of the population is located in the health depletion subset. Fourth, our estimates are consistent with a narrow accelerating region \mathcal{AC}. Indeed, the values for $B, (y_{0} - a)/r, \xi_m$ are such that intercepts \bar{H}_1 and \bar{H}_2 are relatively low (i.e., between fair and poor self-reported health) and close to one another (less than one discrete increment of 0.75). This feature of the model is reassuring because we would expect accelerating phases where agents are cutting down expenses in the face of falling health to coincide with the very last periods of life where health is very low. Fifth, our finding of $0 < I_1 < C_1$ is consistent with stronger positive effects of increasing endogenous mortality on consumption—including comfort care—than on investment, that is, curative care (see discussion in Section 2.4.1).

Finally, the estimated wealth depletion locus $w(H)$ is lying between the $x(H)$ and $y(H)$ loci (see Proposition 2). It is also very low, confirming that most of the agents are also in the wealth depletion region. It follows that unless very wealthy and very unhealthy, the bulk of the population would be located in the $(D_H \cap D_W)$ regions. Indeed, as Table 4 makes

Note: Values (in M$) of admissible $A: W \geq x(H)$; health depletion $D_H: W < y(H)$; accelerating $\mathcal{AC}: W < \min(y(H), z(H))$; and wealth depletion $D_W: W > w(H)$ at observed health levels.

Table 4 Estimated values of loci

<table>
<thead>
<tr>
<th>Level</th>
<th>H</th>
<th>Population (%)</th>
<th>A</th>
<th>D_H</th>
<th>AC</th>
<th>D_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>0.50</td>
<td>12.74</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Fair</td>
<td>1.25</td>
<td>28.16</td>
<td>-0.04</td>
<td>0.31</td>
<td>-0.00</td>
<td>-0.03</td>
</tr>
<tr>
<td>Good</td>
<td>2.00</td>
<td>33.77</td>
<td>-0.11</td>
<td>1.48</td>
<td>-0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>Very good</td>
<td>2.75</td>
<td>18.90</td>
<td>-0.18</td>
<td>4.30</td>
<td>-0.10</td>
<td>-0.11</td>
</tr>
<tr>
<td>Excellent</td>
<td>3.50</td>
<td>6.43</td>
<td>-0.25</td>
<td>9.56</td>
<td>-0.15</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

Notes. Values (in M$) of admissible $A: W \geq x(H)$; health depletion $D_H: W < y(H)$; accelerating $\mathcal{AC}: W < \min(y(H), z(H))$; and wealth depletion $D_W: W > w(H)$ at observed health levels.

31Adapting the theoretical valuation of health in Hugonnier et al. (2013; Proposition 3) reveals that an agent at the admissible locus (i.e., with $N_0(W, H) = 0$) would value a 0.10 increment in health as $w_0(0.10, W, H) = 0.10$. If $B = 10^6 = 9,656$.

FIGURE 4 Estimated depletion, accelerating, and non-admissible regions. Non-admissible set $\mathcal{N}A$: shaded red area under red $x(H)$ line. Health depletion set D_H: shaded green area under green $y(H)$ green curve. Acceleration set \mathcal{AC}: hatched green area under blue $z(H)$ curve. Wealth depletion set D_W: area above $w(H)$ black curve. Position of loci and areas evaluated at estimated parameters in Table 3. Quintile levels for wealth quintiles Q_2, \ldots, Q_4 are taken from Table 2 and are reported as blue points for poor and fair health levels.
clear, the population with at least a *fair* level of health and non-negative financial wealth is located in the joint health and wealth depletion. Put differently, our estimates unambiguously confirm the empirical relevance of optimal closing-down strategies.

4.3 Simulation analysis

The analysis presented thus far has abstracted from exogenous depletion processes associated with aging and has focused upon optimal local expected changes for health and wealth. In order to assess whether such small anticipated depletion translate into realistic life cycle paths for health and wealth, we conduct a Monte-Carlo simulation exercise described in further details in Appendix S4. To summarize, the simulated life cycles draw initial health and wealth statuses from uniform distributions at age 75 and for a sample of 1,000 individuals. For each period, a common financial market shock is then drawn, whereas agent-specific sickness and death shocks are drawn using the corresponding exogenous morbidity and the endogenous mortality Poisson distributions. The health and wealth statuses are updated using Equations (1) and (3a), evaluated at the theoretical optimal rules in Theorem 1; the process is replicated for 500 times.

Figure 5 plots a random sample of the 500,000 simulated optimal trajectories for health level H_t (Panel a), the investment-to-consumption ratio I_t/C_t (Panel b), financial wealth W_t (Panel c), as well as the net total wealth $N_0(W_t, H_t)$ (Panel d). A common color across each panel corresponds to a common individual path. Curtailed paths indicate death and/or non-admissibility (i.e., preference for death over life). Unsurprisingly, these results confirm all our previous findings. Consistent with the data, our simulated life cycles feature end-of-life depletion of both health (Banks et al., 2015; Case & Deaton, 2005; Smith, 2007; Heiss, 2011) and wealth (De Nardi et al., 2015; French et al., 2006; De Nardi et al., 2010; 2009). Indeed, the optimal strategy is to bring down net total wealth $N_0(W_t, H_t)$ in Panel d to zero (i.e., reach the lower limits of admissible set \mathbb{A}) at terminal age at which stage agents are indifferent between life and death. This objective is attained by running down wealth very rapidly in Panel c (consistent with our finding of low $\omega(H)$ locus) and a somewhat slower decline for (utility services-providing) health in Panel a. The health decline is achieved by curtailing investment in favor of consumption (including comfort care) spending in Panel b, consistent with our empirical finding of $C_i > I_i$. These pro-factual life cycle profiles confirm that the closing down model can reproduce the data even without the self-reinforcing incidence of biological aging.

Contrasting individual paths reveals that, as expected, health (Panel a) and wealth (Panel c) depletion are both faster for the poor and unhealthy agents. The joint health and wealth depletion means that the latter approach the non-admissible subset more rapidly. Moreover, worse health entails that exposure to death risk is higher for the poor, resulting in lower survivorship, consistent with stylized facts (Bosworth et al. 2016). Put differently, our simulations indicate that agents entering the last period of life optimally select an expected lifespan given current health and wealth and choose allocations...
that are consistent with optimal closing down. High initial wealth has a moderating effect on the speed of the depletion, but not on its ultimate outcome.

We conclude by emphasizing endogenous mortality as a key element in reproducing the end-of-life dynamic and cross-sectional evidence. Reinstating realistic aging processes makes our optimal dynamic strategies even more relevant. Put differently, aging is not a substitute, but is a reinforcing complement, to closing-down.

ACKNOWLEDGEMENTS

Financial support from the Swiss Finance Institute is gratefully acknowledged. We thank the Associate Editor (Owen O’Donnell) and two anonymous referees for constructive remarks. We are also thankful to Audrey Laporte, Alex Michaelides, Kim Peijnenburg, Shang Wu, and seminar participants at the 2016 European Workshop on Econometrics and Health Economics (Nyborg, DK), the 2017 NETSPAR International Pension Workshop (Leiden, NL), and the 2017 Workshop on Household Finance and Retirement Savings (Torino, I) for very useful comments and discussions.

ORCID

Julien Hugonnier https://orcid.org/0000-0003-1356-5070
Florian Pelgrin https://orcid.org/0000-0002-1486-5924
Pascal St-Amour https://orcid.org/0000-0002-1468-0313

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.
How to cite this article: Hugonnier J, Pelgrin F, St-Amour P. Closing down the shop: Optimal health and wealth dynamics near the end of life. Health Economics. 2020;29:138–153. https://doi.org/10.1002/hec.3960