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A Equilibria with a fixed default threshold

Fix a default threshold Xd(1) = 1/Zd and denote by τd the corresponding default time. The

scale invariance of the geometric Brownian motion and the linearity of the payoffs to the

firm’s stakeholders imply that the equilibrium value functions are homogeneous of degree

one with respect to the firm’s current coupon and cash flows. That is, there are functions

d(Z|Zd), e(Z|Zd), v(Z|Zd) such that

D(X,C|P) = Xd(Z|Zd),
E(X,C|P) = Xe(Z|Zd),

and

V (X,C|P) = E(X,C|P) +D(X,C|P) = Xv(Z|Zd)

where Z = C/X. A direct calculation using well-known properties of geometric Brownian

motion shows that the reduced form debt value is given by

d(Z|Zd) = (Z/r)− (Zd/r)(1− rφ/Zd)(Zd/Z)β.

With a fixed default policy, maximizing the equity value is equivalent to maximizing firm

value. It turns out that, for technical reasons, firm value maximization problem is easier

to deal with. For this reason, whenever the fixed default policy case is considered in the

Appendix, we will always study the latter problem. By definition, the equilibrium firm value

is the solution to the stochastic control problem defined by

V (X,C|P) = sup
a∈A

E

[∫ τd

0

e−rs((1− τ)Xs + τCs−)ds+ H̃(as, Xs, Cs−|P)dNs) + e−rτdφXτd

]
(9)

where we have set

H̃(a,X,C|P) = Xh̃(a, Z|Zd) = −η(V (X, aC|P)− V (X,C|P))− (1− η)qD(X, aC|P).
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The following result follows by direct calculation and allows to recast the equilibrium problem

in terms of a single state variable.

Lemma A.1 The process Zt = Ct/Xt evolves according to

dZt = −µZt−dt− σZt−dB̂t + Zt−(at − 1)dNt (10)

where the process B̂t is a standard one dimensional Brownian motion under the equivalent

probability measure defined by

P̂ (A) = E

[
e−µt

Xt

X0

1{A}

]
, ∀A ⊆ Ft

Consequently, (9) is equivalent to

v(Z|Zd) = sup
a∈A

Ê

[∫ τd

0

e−(r−µ)s((1− τ + τZs−)ds+ h(as, Zs−|Zd)dNs) + e−(r−µ)τdφ

]
and any solution to this equation satisfies the inequalities

0 ≤ v(Z|Zd) ≤
1− τ(1− Zd)

r − µ .

Now, standard dynamic programming arguments imply

Lemma A.2 Let τN denote the first jump of the Poisson process and define

P(v)(Z) = max
a≥1

(1− η)(v(aZ)− qd(aZ|Zd)) + ηv(Z).

Then the function v(Z|Zd) is the unique Borel-measurable, bounded function satisfying

v(Z|Zd) = Ê

[∫ τd∧τN

0

e−(r−µ)t (1− τ + τZt) dt+ 1{τd≤τN}e
−(r−µ)τdφ (11)

+ 1{τd>τN}e
−(r−µ)τNP(v(·|Zd))(ZτN−)

]
We then have the following result.
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Lemma A.3 The transformation that maps a function v into the right-hand side of equation

(11) is a contraction in the space L∞[0, Zd] of essentially bounded measurable functions and

has a unique fixed point that belongs to the space C[0, Zd] of continuous functions on [0, Zd].

Consequently, v(Z|Zd) is this unique fixed point.

Proof. Let A(v) denote the operator in the statement. Using the fact that τN is independent

of the Brownian motion and exponentially distributed with parameter λ we obtain

A(v)(Z) = Ê

[∫ τd

0

e−(r−µ+λ)t
(
1− τ + τZ0

t + λP(v)(Z0
s )
)
dt+ e−(r−µ+λ)τdφ

]
.

where the nonnegative process Z0
t evolves according to equation (10) with a ≡ 1. For any

pair of continuous functions (v1, v2) and any z ∈ [0, Zd), let

ai = arg max
a≥1

(
vi(az)− qd(az)1{a>1}

)
and assume for simplicity that ai > 1. Then, we have

P(v1)(z)−P(v2)(z) = (1− η)(v1(a1z)− qd(a1z))

− (1− η)(v2(a2z)− qd(a2z)) + η(v1(z)− v2(z))

≤ (1− η)(v1(a1z)− qd(a1z))

− (1− η)(v2(a1z)− qd(a1z)) + η‖v1 − v2‖C[0,zd]

= (1− η)(v1(a1z)− v2(a1z)) + η‖v1 − v2‖C[0,zd]

≤ ‖v1 − v2‖C[0,zd].

and interchanging the roles of v1 and v2 we get that

|P(v1)(z)−P(v2)(z)| ≤ ‖v1 − v2‖C[0,Zd].

This immediately implies that

‖A(v1)− A(v2)‖C[0,Zd] ≤
λ‖v1 − v2‖C[0,Zd]

r − µ+ λ
.

and the desired result now follows from the fact that r − µ > 0 by assumption. �
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Lemma A.4 The map A(v) is monotone increasing in v, and monotone decreasing in r, η, ω

and q for any nonnegative function v.

Proof. To prove monotonicity in v it suffices to show that P is increasing in v. This is

obvious because η ∈ (0, 1). Monotonicity in r and q is also clear. To prove monotonicity

in η, it suffices to show that the operator P is monotone decreasing in η. Fix z ≥ 0 and

consider

G(η) = max
a≥1

{
ηv(z) + (1− η)(v(az)− qd(az)1{a>1})

}
If the maximum is attained for some a > 1 then we clearly must have v(az)− qd(az) > v(z).

This in turn implies that we have

G(η) = max{v(z), k(η)}

with

k(η) = max
a>1

{
ηv(z) + (1− η)(v(az)− qd(az))1{v(az)−qd(az)>v(z)}

}
and the desired result follows by noting that k(η) is monotone decreasing. �

Lemma A.5 The firm value function v(Z) is monotone increasing in λ, µ and monotone

decreasing in q, η, r and ω. As a result, the equity value function e(Z) is monotone increasing

in λ and monotone decreasing in q and η.

Proof. Pick an arbitrary bounded function v0 ∈ C[0, Zd] and denote by An the n-th iteration

of A so that v = limnA
n(v0). Let α be a parameter with respect to which the operator A is

increasing in the sense that

A(v0;α1) < A(v0;α2), ∀α1 < α2 , ∀v0 ∈ C[0, Zd]

Since A is increasing in v, a simple induction argument implies that we have

An(v0;α1) < An(v0;α2), ∀α1 < α2, n ≥ 1.
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Sending n → ∞ shows that v is increasing in α and monotonicity in all parameters except

λ now follows from Lemma A.4. Finally, monotonicity in λ follows from that in η because

the firm value function depends on λ only through λ(1− η).

The remaining claims follow from the first part of the statement and the fact that e(Z) =

v(Z)− d(Z) where the function d(Z) is independent from λ, q and η. �

Lemma A.3 constructs the value function as a continuous fixed point of a non-linear map.

We will now show that it is in fact in C2[0, Zd] and solves the corresponding HJB equation.

To this end, we will first need the following lemma. Let

L f(Z) ≡ −µZf ′(Z) +
1

2
σ2Z2f ′′(Z)

be the continuous part of the P̂−generator of the state variable and denote by ψ < 0 < 1 < ψ1

the solutions to the quadratic equation Q(x; r + λ(1− η)) = 0

Lemma A.6 Let f(Z) be a bounded and Borel measurable function. The unique bounded

solution to

(r − µ+ λ)Y (Z) = L Y (Z) + f(Z), Z ∈ [0, Zd),

such that Y (Zd) = φ is explicitly given by

Y (Z) = y1 Z
1−ψ − Z1−ψ1

σ2/2

∫ Z

0

f(x)

ψ1 − ψ
xψ1−2dx− Z1−ψ

σ2/2

∫ Zd

Z

f(x)

ψ1 − ψ
xψ−2 dx

with

y1 = Zψ−1
d

(
Z1−ψ1

d

σ2/2

∫ Zd

0

f(x)

ψ1 − ψ
xψ1−2dx− φ

)

In particular, the derivative Y ′(Zd) depends continuously on Zd and f(Z) in the L∞[0, Zd]−topology.

This existence and uniqueness result immediately allows us to establish the required regu-

larity of the firm value function.
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Lemma A.7 Let

O(v)(Z) = max
a≥1

(
v(aZ)− qd(aZ)1{a>1} − v(Z)

)
(12)

For a fixed default threshold the equilibrium firm value function v(Z|Zd) is the unique C2[0, Zd]

solution to the HJB equation

(r − µ)v(Z) = L v(Z) + 1− τ + τZ + λ (1− η)O(v)(Z) (13)

with boundary condition v(Zd|Zd) = φ.

Proof. Let Y ∈ C2[0, Zd] be the unique bounded solution to

(r − µ+ λ)Y (Z) = L Y (Z) + 1− τ + τZ + λP(v(·|Zd))(Z), (14)

such that Y (Zd) = φ whose existence is provided by Lemma A.6. Then, standard arguments

based on Itô’s lemma imply that

Y (Z) = E0

[∫ τd

0

e−(r−µ+λ)t
(
1− τ + τZ0

t + λP(v)(Z0
t−)
)
dt+ e−(r−µ+λ)τdφ

]
and it now follows from Lemma A.2 that Y (Z) = v(Z|Zd). Given this identity, a direct

calculation implies that (14) is equivalent to (13). �

Lemma A.8 Suppose that A : C[0, Zd] → C[0, Zd] is a contraction which is monotone in

the sense that v1 ≤ v2 implies A v1 ≤ A v2, and denote by v ∈ C[0, Zd] its unique fixed point.

If w ∈ C[0, Zd] is such that w ≤ A w then w ≤ v. Similarly, if w ≥ A w then w ≥ v.

Proof. Monotonicity of A together with w ≥ Aw implies w ≥ Anw for any n ≥ 1. Therefore,

w ≥ limn→∞A
nw = v and the claim follows. �

The following lemma directly implies the results of Propositions 2 and 4 and will be of

repeated use in what follows. Let

Znr
d ≡

β − 1

β

r

r − µ
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denote the optimal default threshold that would prevail in a model where the firm is not

allowed to restructure its debt.

Lemma A.9 Let v̂(Z|Zd) be the value of a firm that never restructures its debt and defaults

at the stopping time τd. Then v(Z|Zd) ≥ v̂(Z|Zd) > φ for all Z ∈ [0, Zd) and we have

1. If q ≥ τ then v(Z|Zd) ≡ v̂(Z|Zd), the unique equilibrium threshold is given by Znr
d and

the equity value function satisfies eZ(Zd|Zd) > 0 for all Zd > Znr
d ;

2. If q < τ then v(Z|Znr
d ) 6≡ v̂(Z|Znr

d ) and the equity value function satisfies eZ(Zd|Zd) < 0

for all Zd < Znr
d . In particular, we have Zd ≥ Znr

d > 1 in any equilibrium.

Proof. Since v(Z|Zd) is the value function of a firm following an optimal policy, it dominates

the sub-optimal policy of never restructuring. The value of such a firm is

v̂(Z|Zd) = φ0 +
τZ

r
− (φ0ω + τZd/r) (Z/Zd)

1−β (15)

and satisfies

v̂(Z|Zd)− φ = ωφ0

[
1− (Z/Zd)

1−β]+
τ

r
Z
[
1− (Z/Zd)

−β] > 0 . (16)

for all Z < Zd since β < 0. Let ṽ(Z|Zd) ≡ v̂(Z|Zd)− qd(Z|Zd) so that

ṽ′(Z|Zd) =
τ − q
r

[
1− (1− β)(Zd/Z)β

]
− φ0(ω + q(1− ω))(1− β)Z−1

d (Zd/Z)β. (17)

and assume first that q ≥ τ. To prove that v(Z|Zd) ≡ v̂(Z|Zd) we need to show that

O(v̂(·|Zd)) ≡ 0. (18)

We have ṽ′(0|Zd) = (τ − q)/r ≤ 0 and since

ṽ′′(Z|Zd) = β(β − 1)Zβ−1
d Z−β−1

(
q − τ
r

Zd − φ0(ω + q(1− ω))

)
does not change sign we have that the function ṽ(Z|Zd) is either convex, or concave and

decreasing. If ṽ(Z|Zd) is decreasing then (18) clearly holds. On the other hand, if ṽ(Z|Zd)
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is convex then (16) implies that we have

max
y∈(Z,Zd]

ṽ(y|Zd) = max{ṽ(Z|Zd) , ṽ(Zd|Zd)} = max{ṽ(Z|Zd) , (1− q)φ} < v̂(Z|Zd)

and (18) follows. To complete the proof of the first part, set q = 1 in (17) to obtain

eZ(Zd|Zd) =
τ − 1

r
β − (1− β)Z−1

d φ0.

This shows that eZ(Zd|Zd) is positive for Zd > Znr
d and negative for Zd < Znr

d and implies

that the desired result. Consequently, e(Z|Znr
d ) is C1 and satisfies the HJB equation

0 = max{ − e(Z|Znr
d ),

− (r − µ)e(Z|Znr
d ) + L e(Z|Znr

d )

+ (1− τ)(1− Z) + λ (1− η)O(e(Z|Znr
d ) + d(Z|Znr

d ))}

Standard verification results for optimal stopping problems (see, e.g., Dayanik and Karatzas

(2003)) combined with Lemma A.7 implies that Znr
d is the optimal default boundary.

Let now q < τ and suppose on the contrary that v(Z|Zd) ≡ v̂(Z|Zd). To reach a

contradiction, it suffices to show that O(v̂) 6≡ 0. By (15) we have that

ṽ(Z|Zd) = φ0 +
τ − q
r
− ãZ1−β , (19)

where

ã = −a− (q/r)(1− rφ/Zd)Zβ
d =

τ − q
r

Zβ
d + φ0(ω + q(1− ω))Zβ−1

d > 0.

It follows that the function ṽ(Z|Zd) is concave and therefore attains a global maximum at

the unique point Zo such that

ṽZ(Zo|Zd) = 0⇐⇒ (τ − q)Zo
r

= ã (1− β)Z1−β
o .
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Substituting this identity into (19) gives

max
y≥0

ṽ(y|Zd) = ṽ(Zo|Zd) = φ0 +
(τ − q)Zo

r
− (τ − q)Zo

r(1− β)
> φ0 = v̂(0|Zd)

and it follows that O(v̂)(0) > 0 which is a contradiction. To prove the remaining claims in

the statement we will use the fact that by definition e(Z|Zd) ≥ ê(Z|Zd). By the first part of

the statement we have êZ(Z|Zd) < 0 for all Zd < Znr
d and it follows that

e(Z|Zd) > ê(Z|Zd) > ε(Zd − Z)

for some ε > 0 in a left neighborhood of Zd < Znr
d since e(Zd|Zd) = 0. This immediately

implies that eZ(Zd|Zd) < 0 for all Zd < Znr
d which is what had to be proved. �

To establish the existence of Markov perfect equilibria in barrier strategies, we will need

an auxiliary construction.

Let ẽ(Z|Z̄d) be the equity value for a firm whose debt-holders price the debt using d̃(Z),

whereas the firm actually defaults when Z = Z̄d. We will prove several properties of this

function. The first is provided in the following lemma.

Lemma A.10 ẽ(Z|Z̄d) is C2 in Z on [0, Z̄d] and eZ(Z̄d|Z̄d) is continuous in Zd, Z̄d.

Proof. The claim follows from Lemma A.6 by the same arguments as Lemma A.7. �

Lemma A.11 We have ẽZ(Z̄d|Z̄d) < 0 for Z̄d ≤ Znr
d .

Proof. Since the optimal equity value function dominates the equity value value of a firm

that never restructures, we have that ẽ(Z|Z̄d) > is positive for all Z ≤ Z̄d ≤ Znr
d and therefore

ẽZ(Zd|Zd) < 0 for all Zd < Znr
d . �

Lemma A.12 If Z̄1
d > Z̄2

d and ẽ(Z̄2
d |Z̄1

d) ≥ 0. Then, ẽ(Z|Z̄1
d) ≥ ẽ(Z|Z̄2

d) for all Z ≤ Z̄2
d .

Proof. Let d̃(Z) be the function that the debt-holders use to value debt. Denote by τd,i the

first time that the process Zt hits Z̄i
d and observe that τd,1 > τd,2. Then, it follows directly
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by standard dynamic programming arguments that

e(Z|Z1
d) = Ê

[∫ τd,2∧τN

0

e−ρt(1− τ)(1− Zt)dt+ 1{τd,2≤τN}e
−ρτd,2 ẽ(Z̄2

d |Z̄1
d)

+ 1{τd,2>τN} max
a∈[1,Z̄1

d/ZτN−]
e−ρτN

[
(1− η)

(
ṽ(aZτN−|Z1

d)− q1{a>1}d̃(aZτN−)− d̃(ZτN−)
)

+ ηe(ZτN−|Z1
d)
)]

≥ Ê

[∫ τd,2∧τN

0

e−ρt(1− τ)(1− Zt)dt (20)

+ 1{τd,2>τN} max
a∈[1,Z̄2

d/ZτN−]
e−ρτN

(
(1− η)

(
ṽ(aZτN−|Z1

d)− q1{a>1}d̃(aZτN−)− d̃(ZτN−)
)

+ ηe(ZτN−|Z1
d)
)]

for all Z ∈ [0, Z̄2
d ] where ρ = r− µ and ṽ(z|Zd) = ẽ(z, |Zd)− d̃(z) denotes the corresponding

firm value function. Note that we only take the maximum over a ∈ [1, Z̄1
d/ZτN−] because, by

assumption, the firm always defaults when Z ≥ Z̄1
d . Denote the map on the right-hand side

of (20) by A . The same arguments as in the proof of Lemma A.3 imply that the operator

A is a monotone contraction and the required assertion now follows from Lemma A.8 since

we have ẽ(Z|Z̄1
d) ≥ A ẽ(Z|Z̄1

d), and ẽ(Z|Z̄2
d) = A ẽ(Z|Z̄2

d) by the above. �

Lemma A.13 Fix an arbitrary Z̄d > 0 and suppose that ẽZ(Z̄d|Z̄d) < 0. Then, ẽ(Z|Z̄d) is

monotone increasing in Z̄d for Z̄d in a left neighborhood of Z̄d. Similarly, if ẽZ(Z̄d|Z̄d) > 0

then ẽ(Z|Z̄d) is monotone decreasing in Z̄d for Z̄d in a left neighborhood of Z̄d.

Proof. The first claim follows directly from Lemma A.12 because, by assumption ẽ(Z2
d |Z1

d) >

ẽ(Z1
d |Z1

d) = 0 for any Z1
d > Z2

d that are sufficiently close to Z̄d. The proof of the second claim

is analogous. �

The following result is a direct consequence of Lemma A.13.

Lemma A.14 If ẽZ(Z̄d|Z̄d) < 0 for all Z̄d > 0 let Z∗d =∞. Otherwise, set

Z∗d ≡ min {Zd > Znr
d : ẽZ(Zd|Zd) = 0}
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Then, ẽ(Z|Z∗d) > 0 for all Z ≤ Z∗d .

Proof. By Lemma A.10, ẽZ(Z̄d|Z̄d) is continuous and therefore, by Lemma A.11, ẽZ(Z̄d|Z̄d) <
0 for all Z̄d < Z∗d . By Lemma A.13, ẽ(Z|Z̄d) is monotone increasing in Z̄d ∈ [0, Z∗d) and

therefore ẽ(Z|Z∗d) > 0 for all Z < Z∗d and eZ(Z∗d |Z∗d) = 0. �

Lemma A.15 We have

(1− τ)(1− Z) + max
a≥1

((1− q1a>1)d̃(aZ)− d̃(Z)) < 0

for all Z > Z∗d .

Proof. We have

0.5σ2ẽZZ(Z∗d |Z∗d) = (r − µ+ λ(1− η))ẽ(Z∗d |Z∗d) + µZ∗d ẽZ(Z∗d |Z∗d)− (1− τ)(1− Z∗d)

−max
a≥1

(ẽ(aZ∗d |Z∗d) + (1− q1a>1)d̃(aZ∗d)− d̃(Z∗d))

= −((1− τ)(1− Z∗d) + max
a≥1

((1− q1a>1)d̃(aZ∗d)− d̃(Z∗d)))

(21)

because ẽ(aZ∗d |Z∗d) = 0 for all a ≥ 1. Since ẽ(Z|Z∗d) > 0 for all Z ∈ [0, Z∗d) and ẽ(Z∗d |Z∗d) =

ẽZ(Z∗d |Z∗d) = 0, we get that ẽZZ(Z∗d |Z∗d) ≥ 0. Consequently,

(1− τ)(1− Z∗d) + max
a≥1

((1− q1a>1)d̃(aZ∗d)− d̃(Z∗d)) ≤ 0

and the claim follows from the fact that, by assumption, (1 − τ)(1 − Z) + maxa≥1 ((1 −
q1a>1)d̃(aZ)− d̃(Z)) is monotone decreasing in Z. �

Proof of Proposition 1. To prove the result, it suffices to show that ẽ = ẽ(Z|Z∗d) is the

value function of the firm. Standard verification results for optimal stopping (see, e.g.,

Dayanik and Karatzas (2003)) combined with the arguments from the proof of Lemma A.7

imply that it suffices to verify that ẽ(Z|Z∗d) satisfies the HJB equation

0 = max{ − ẽ(Z),

− (r − µ+ λ(1− η))ẽ(Z) + L ẽ(Z)

+ (1− τ)(1− Z) + λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z))}
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The same arguments as in the proof of Lemma A.7 imply that

0 = −(r − µ+ λ(1− η))ẽ(Z) + L ẽ(Z)

+ (1− τ)(1− Z) + λ(1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z))

for all Z ∈ [0, Z∗d ] and by Lemma A.14 we have that ẽ(Z) ≥ 0 for all Z ≥ 0. On the other

hand, for Z > Z∗d we have ẽ(Z) = 0 and it thus follows from Lemma A.15 that

− (r − µ+ λ(1− η))ẽ(Z) + L ẽ(Z)

+ (1− τ)(1− Z) + λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z))

= (1− τ)(1− Z) + λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z)) < 0

which completes the proof. �

Lemma A.16 We have ẽZ(Z̄d|Z̄d) < 0 for all Z̄d > Z∗d . Hence, Z∗d is the unique solution

Z̄d to ẽZ(Z̄d|Z̄d) = 0.

Proof. Suppose the contrary. Then, there exists a Z̄d > Z∗d such that ẽZ(Z̄d|Z̄d) = 0. By

Lemma A.15 and (21), we have

0.5σ2ẽZZ(Z̄d|Z̄d) = −((1− τ)(1− Z̄d) + max
a≥1

((1− q1a>1)d̃(aZ̄d)− d(Z̄d))) > 0 .

Therefore, ẽ(Z|Z̄d) > 0 = ẽ(Z|Z∗d) for Z sufficiently close to Z̄d. But this is impossible

because, by Proposition 1, defaulting at Z∗d is optimal. �

Finally, the next result shows that the debt function for a barrier default policy does

satisfy the required monotonicity condition.

Lemma A.17 The function

(1− τ)(1− Z) + max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd))

is strictly monotone decreasing in Z.
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Proof. Clearly, it suffices to show that maxa≥1 ((1 − q1a>1)d(aZ|Zd) − d(Z|Zd)) is non-

increasing in Z. A direct calculation shows that d(Z|Zd) is either increasing in Z or is

convex and attains a maximum at some Zm < Zd. In the first case,

max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd)) = max{0, (1− q)d(Zd|Zd)− d(Z|Zd)}

is obviously non-increasing. In the second case,

max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd)) = max{0, (1− q)d(Zm|Zd)− d(Z|Zd)}

is also non-increasing. �

The next result proves Proposition 3. Namely, it shows that, given a fixed barrier default

policy, the optimal restructuring policy is of barrier type.

Lemma A.18 Either restructuring is not optimal or there exist 0 < Zu ≤ Zo < Zd such

that

Zo = argmax
Z∈[Zu,Zd]

{v(Z|Zd)− q d(Z|Zd)}

and

O(v(·|Zd))(Z) = 1{Z<Zu} {v(Zo|Zd)− qd(Zo|Zd)− v(Z|Zd)} .

Proof. Assume that restructuring is optimal and let q > 0. The case q = 0 can be treated

similarly. To simplify the notation we fix the default threshold Zd and write v(Z) = v(Z|Zd)
and d(Z) = d(Z|Zd). Since it is optimal for the firm to restructure its capital structure at

some point we know that the operator O(v) is not zero and it follows that

Zu ≡ max{Z ≥ 0 : O(v)(Z) > 0}

is well-defined and smaller or equal to Zd. Furthermore, by continuity we have

O(v)(Zu) = 0⇐⇒ v(Zu) = max
y≥Zu
{v(y)− qd(y)} > 0.
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Now consider the higher threshold defined by

Zo = min{y ≥ Zu : v(Zu) = v(y)− qd(y)}. (22)

By Lemma A.9 we have v(Zd) = φ < v(Zu) = v(Zo) − qd(Zo) < v(Zo) and therefore

Zu < Zo < Zd since issuance costs are strictly positive. This in turn implies that the point

Zo is a local maximum of the function v̄(Z) = v(Z) − qd(Z) and since v(Zu) ≤ v(Z) for

Z ∈ [Zu, Zo] by definition of the threshold Zu we necessarily have that v′(Zu) ≥ 0.

Before carrying on with the rest of the proof we start by proving that v̄(Z) does not

have admit any local maximum such that v̄(Z) > v(Zu) on the interval [0, Zo]. Suppose the

contrary and let Z̄n < Zo denote the location of the largest such local maximum. Since the

point Zo is a local maximum of v̄(Z) this implies, as illustrated by the left panel of Figure

A, that the function v̄(Z) achieves a local minimum at some point Z̄m ∈ [Z̄n, Zo] such that

v̄(Z̄m) < v̄(Zo) = v(Zu) < v̄(Z̄n). (23)

This in turn implies that we have O(v)(Z̄n) = 0 and combining this with the fact that the

functions d and v solve

(r − µ)d(Z) = L d(Z) + Z

(r − µ)v(Z) = L v(Z) + 1− τ(1− Z) + λ(1− η)O(v)(Z)

we finally obtain

(r − µ)v̄(Zo) > (r − µ)v̄(Z̄m)

= L v(Z̄m) + 1− τ + (τ − q)Z̄m + λ(1− η)O(v)(Z̄m)

≥ L v(Z̄m) + 1− τ + (τ − q)Z̄m
≥ 1− τ + (τ − q)Z̄m > 1− τ + (τ − q)Z̄n
≥ L v(Z̄n) + 1− τ + (τ − q)Z̄n
= L v(Z̄n) + 1− τ + (τ − q)Z̄n + λ(1− η)O(v)(Z̄n) = (r − µ)v̄(Zn)

where the second inequality follows from the nonnegativity of O, and the third and fifth

15



Figure 4: Shape of the functions v̄(Z) and v(Z) in the proof of Lemma A.18
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1

inequalities follow from the fact that v′(Z) = 0 and v′′(Z) ≤ 0 (resp. ≥ 0) at a local

maximum (resp. local minimum). This contradicts equation (23) and therefore establishes

our claim regarding the local maxima of the function v̄(Z).

To complete the proof we now need to establish that v(Z) ≤ v(Zu) on [0, Zu]. Suppose

that this is not the case, let

Zv = max{Z ≤ Zu : v(Z) = v(Zu) = v(Zo)− qd(Zo)}

and assume for simplicity that Zv < Zu so that the function v(Z) reaches a local minimum

at some point Zm ∈ [Zv, Zu].
1 As a first step towards a contradiction we claim that the

function v(Z) is monotone decreasing on [0, Zv]. If not then as illustrated by the right panel

of Figure 4 there is a point Zn ∈ [0, Zv] at which the function v(Z) achieves a local maximum

such that

v(Zn) > v(Zv) = v(Zu) = v(Zo)− qd(Zo) = max
y≥Zn

v̄(y) (24)

where the last equality follows from the first part of the proof. This immediately implies

that we have O(v)(Zn) = 0 and combining this property with the same arguments as in the

1When the point Zu is a local minimum of the function v(Z) we have Zv = Zu. This case is completely
analogous, up to small modifications.
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first part of the proof then gives

(r − µ)v(Zm) = L v(Zm) + 1− τ(1− Zm) + λ(1− η)O(v)(Zm)

≥ L v(Zm) + 1− τ(1− Zm)

≥ 1− τ(1− Zm)

> 1− τ(1− Zn)

≥ L v(Zn) + 1− τ(1− Zn)

= L v(Zn) + 1− τ(1− Zn) + λ(1− η)O(v)(Zn) = (r − µ)v(Zn)

which contradicts equation (24) and therefore establishes our claim regarding the monotonic-

ity of v(Z) on the interval [0, Zv]. Combining this property with the fact that v(0) = φ0 we

immediately get that φ0 > v(Z) on (0, Zo) but this is impossible since v(Z) ≥ v̂(Z) ≥ φ0 in

a right neighborhood of zero by Lemma A.9. �

Proof of Proposition 5. Let d(Z) = d(Z|Zd), e(Z) = e(Z|Zd), v(Z) = v(Z|Zd) . In terms

of the Z variable, we need to show that

e(Z) > e((1− a)Z)− a

1− ad((1− a)Z)

for all a ∈ (0, 1). Let us show that the right-hand side is monotone decreasing in a. Differ-

entiating with respect to a, we obtain that we need to show the inequality

1

1− a(d(x)− xd′(x)) + v′(x)x > 0

with x = (1 − a)Z. A direct calculation implies that d(x)/x is monotone decreasing and

hence d(x)− xd′(x) > 0. Thus, it suffices to show that

χ(x) ≡ d(x)− xd′(x) + v′(x)x > 0 ⇔ d(x)

x
+ e′(x) > 0 .

First we note that, by the above d(x)/x > d′(x) and v′(x) ≥ 0 for all x < Zu. Hence, for

x < Zu, we have

d(x)

x
+ e′(x) > d′(x) + e′(x) = v′(x) ≥ 0.

17



For x > Zu, a direct calculation implies that the function y(x) = e′(x) satisfies

1

2
σ2x2y′′(x) + (σ2 − µ)y′(x)− (ρ+ µ)y(x)− (1− τ) = 0

whereas the function w(x) = d(x)/x satisfies

1

2
σ2x2w′′(x) + (σ2 − µ)w′(x)− (ρ+ µ)w(x) + 1 = 0

Hence, χ(x) = y(x) + w(x) solves

1

2
σ2x2χ′′(x) + (σ2 − µ)χ′(x)− (ρ+ µ)χ(x) + τ = 0.

Furthermore, e′(Zd) = 0 and hence χ(Zd) > 0. Suppose that χ(x) is not positive. Then,

since χ(Zu) > 0 by the above, it must have a negative local minimum for some x∗ ∈ (Zu, Zd).

In that point, χ′′(x∗) > 0 = χ′(x∗) and therefore

0 ≥ (ρ+ µ)χ(x∗) =
1

2
σ2x2χ′′(x∗) + (σ2 − µ)χ′(x∗) + τ > τ,

which is a contradiction. �

Proof of Proposition 6. Proposition 6 follows directly from Lemmas A.18 and A.16. �

B The case q = 0 and the general existence result

Proof of Proposition 7. Let λ∗ = λ(1 − η). It follows from equation (13) and Lemma

A.18 that there are constants a1, a3, a4 such that

v(Z|Zd) = vs(Z,Zo, a1, a3, a4; q) ≡ 1− τ + λ∗(v(Zo|Zd)− qd(Zo|Zd))
r − µ+ λ∗

+
τZ

r + λ∗
+a1Z

1−ψ

for all Z ∈ [0, Zu], and

v(Z|Zd) = vns(Z, a3, a4) ≡ φ0 +
τZ

r
+ a3Z

1−β + a4Z
1−α

18



for all Z ∈ [Zu, Zd). Since q = 0 it follows immediately from (22) that we have Zo = Zu.

Evaluating the first of the above identities at the point Z = Zo gives

v(Zo|Zd) =
1− τ + λ∗v(Zo)

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

and solving this equation for v(Zo) we obtain

v(Zo|Zd) =
r − µ+ λ∗

r − µ

(
1− τ

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

)
.

Therefore, the value matching condition at the point Zo can be written as

φ0 +
τZo
r

+ a3Z
1−β
o + a4Z

1−α
o =

r − µ+ λ∗

r − µ

(
1− τ

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

)
.

which is equivalent to

r − µ+ λ∗

r − µ

(
τµλ∗Zo

r(r + λ∗)(r − µ+ λ∗)
+ a1Z

1−ψ
o

)
= a3Z

1−β
o + a4Z

1−α
o .

The facts that Zo = Zu and that v(Z|Zd) is continuously differentiable with v(Zd) − φ =

v′(Zo) = 0 jointly imply the remaining free constants are determined by

τZo
r + λ∗

+ a1(1− ψ)Z1−ψ
o = 0,

τZo
r

+ a3(1− β)Z1−β
o + a4(1− α)Z1−α

o = 0,

ωφ0 +
τZd
r

+ a3Z
1−β
d + a4Z

1−α
d = 0.

Combining these equations shows that we have

τ/r =
a3Z

−β
o

κ1(λ)
=
a4Z

−α
o

κ2(λ)
(25)

f(J) = 1 + κ1(λ)J−β + κ2(λ)J−α = −(rωφ0/τ)Z−1
d (26)

where the function f is defined as in the text and we have set J = Zd/Zo. Note that since

κ1(λ) < 0 < κ2(λ) we have that a3 ≤ 0 and a4 ≥ 0. In order to calculate the equilibrium, it
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remains to impose the smooth pasting condition which now takes the form

τ + τ(1− β)κ1(λ)J−β + τ(1− α)κ2(λ)J−α = β + r(1− β)(1− ω)φ0/Zd.

Substituting the value for Zd we get the required equation (3.3) for J . Thus, if an equilibrium

exists, it is given by the expressions from Proposition 3. It remains to show that the

corresponding equation has a solution if and only if τ < τ ∗ and that this solution is unique.

Since κ1(λ) < 0 < κ2(λ) we have that f is decreasing. Therefore, the default threshold

in (26) is positive if and only if J > J0 where J0 is the unique solution to (3.3). Let g(y) be

as in the text. A direct calculation shows that g(∞) = −∞ and that

g(J0)− β/r > 0⇐⇒ τ < τ ∗

Thus, existence follows from the intermediate value theorem. To prove uniqueness, it suffices

to show that g is decreasing for J ≥ J0. This is obvious if 1−β+ω(β−α) > 0. Otherwise, g

increases up to the point J∗ where its derivative vanishes and decreases afterwards. Therefore,

it suffices to show that we have g(J∗) > 0 but this follows from the fact that

g(J∗) = 1 +

(
1 +

α(1− β − αω)(α− β)

β(β − 1)

)
κ2(λ)J−α∗ > 0 (27)

since αω + β < α + β = 1− 2µ/σ2 < 1. �

In order to prove the general existence result of Theorem 1 for the model with search we will

also need the following standard lemma.

Lemma B.1 Suppose that the function f(Z, x) is continuous, monotone decreasing in x

and satisfies f(Z1, x) > 0 > f(Z2, x). Then, the minimal solution Z0(x) ∈ [Z1, Z2] to the

equation f(Z, x) = 0 is monotone decreasing in x.

Proof. Let A(x) ≡ {Z ∈ [Z1, Z2] : f(Z, x) ≤ 0}. Then, the set A(x) is a compact set and

it is monotone increasing in x in the inclusion order. Therefore, Z0(x) = min{A(x)} is

monotone decreasing. �
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Now, to prove uniqueness we will need the following generic non-degeneracy result. Let

C = (ω, λ, η, µ, r − µ, τ, θ) ∈ R6
+

denote the vector of model parameters and say that the vector C is admissible if its compo-

nents are such that τ < τ ∗ and r > µ.

Lemma B.2 Consider the system

F1(Zu, Zo, Zd, a1, a3, a4; q) ≡ vs(Zu, Zo, a1, a3, a4; q)− vns(Zu, a3, a4) = 0,

F2(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′s(Zu, Zo, a1, a3, a4; q)− v′ns(Zu, a3, a4) = 0,

F3(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′ns(Zo, a3, a4)− q d′(Zo|Zd) = 0,

F4(Zu, Zo, Zd, a1, a3, a4; q) ≡ vs(Zu, Zo, a1, a3, a4; q)− vns(Zo, a3, a4) + qd(Zo|Zd) = 0,

F5(Zu, Zo, Zd, a1, a3, a4; q) ≡ vns(Zd, a3, a4)− d(Zd|Zd) = 0,

F6(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′ns(Zd, a3, a4)− d′(Zd|Zd) = 0.

Denote by J(C ) the unique solution to (3.3), define zo(C ) and zd(C ) by (25), (26) and let

ã1(C ) = −τzo(C )/((r + λ∗)(1− ψ)),

ã3(C ) = (τ/r)κ1(λ)zo(C )β,

ã4(C ) = (τ/r)κ2(λ)zo(C )α.

Suppose that there exists an admissible C such that

J F (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ); 0) 6= 0 .

where J denotes the Jacobian operator. Then, for Lebesque almost every admissible C there

exists an open neighborhood

B ⊇ (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ))

and an ε > 0 such that, for all q ∈ [0, ε), there exists a unique Markov perfect equilibrium in

barrier strategies whose parameters satisfy (Zu, Zo, Zd, a1, a3, a4; q) ∈ B.
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Proof. The function J F (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ); 0) is clearly real ana-

lytic in C . Therefore, if it is not identically zero, it is non-zero for almost every C . The last

claim follows then from the implicit function theorem. �

Proof of Theorem 1. Uniqueness of equilibrium in a small neighborhood of the q = 0

equilibrium for the case when q is small follows from Lemma B.2. Continuous dependence

of the equity value and its derivative on all model parameters follow from Lemma A.6.

Suppose that τ < τ ∗. In this case it follows from Proposition 7 and its proof that the

exists a unique equilibrium default barrier Z∗d,0 such that

eZ(Z∗d,0|Z∗d,0)
∣∣∣
q=0

= 0 < eZ(Zd|Zd)
∣∣∣
q=0

, ∀Zd > Z∗d,0.

Consequently, e(Z|Zd) is negative for Z < Zd in a left neighborhood of Zd when q = 0 and

since equity value decreases with the issuance cost parameter we conclude that e(Z|Zd) is

negative for Z < Zd in a left neighborhood of Zd and all q > 0. Since e(Zd|Zd) = 0 this in

turn implies

eZ(Zd|Zd) > 0, ∀Z > Z∗d,0.

On the other hand, Lemma A.9 shows that

eZ(Zd|Zd) < 0, ∀Zd < Znr
d ,

and it now follows from the intermediate value theorem that there exists at least one

Z∗d ∈ [Znr
d , Z

∗
d,0] for which eZ(Zd|Zd) = 0. The proof of Proposition 6 implies that Z∗d is

an equilibrium default strategy.

Since the required monotonicity follows from Lemmas A.5 and B.1 it now only remains

to show that when τ < τ ∗ there exists an ε > 0 such that for all q < ε there exists a

unique equilibrium in barrier strategies. Suppose the contrary. Then, there exists a sequence

qn ↓ 0 such that for each n there exist at least two equilibria Z1
d(n) < Z2

d(n). By Lemma

B.2, we cannot have that both Z1
d(n) and Z2

d(n) converge to Z∗d,0 and the above argument

show that Z1
d(n), Z2

d(n) ≤ Z∗d,0. Therefore, there exists a subsequence of equilibrium default

thresholds that converges to some Zc
d < Z∗d,0 and by continuity (see Lemma A.6) we have
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eZ(Zc
d|Zc

d)|q=0 = 0 which is impossible because there exists a unique equilibrium when q = 0.

�

Existence for the case τ > τ ∗. In this case we have eZ(Zd|Zd)|q=0 < 0 for all Zd > 0 by

the proof of Proposition 7. On the other hand, Lemma A.9 guarantees that

eZ(Zd|Zd)
∣∣∣
q=τ

> 0, ∀Zd > Znr
d ,

and by continuity the same is true for q sufficiently close to τ . Therefore, the cutoff level of

the issuance costs parameter defined by

q∗ ≡ inf

{
q > 0 : sup

Zd>0
eZ(Zd|Zd) > 0

}
satisfies q∗ < τ and the fact that an equilibrium exists if and only if q > q∗ now follows by

the same argument as in the proof of Theorem 1. �

Proof of Proposition 8. The monotonicity of the default threshold in η, λ and q follows

directly from the corresponding monotonicity of the equity value function for a fixed default

threshold, see Lemma A.5.

To establish the other claims it suffices to consider the case q = 0 since the case of small

q follows from the implicit function theorem and Lemma B.2. Recall that

g(y) = βω − βω

τ
+ (1− β)

[
1 + κ1 (λ) y−β

]
+ [(β − α)ω + 1− β)]κ2 (λ) y−α.

As shown above (equation (27)) we have that the function g(y) is monotone decreasing in y

for y > J0 and monotone decreasing in τ . Therefore, by the implicit function theorem, so is

the unique solution J(τ) to the equation g(J ; τ) = 0. Define

γ ≡ ((β − α)ω + (1− β)) .

Differentiating g(J ; τ) = 0 and solving we get

J ′τ =
βωτ−2

β(1− β)κ1J−β−1 + αγκ2J−α−1
.
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The function f(J) is decreasing in J and its coefficients are independent of τ and f is

decreasing. Therefore, differentiating the identity

Zd =
rω τ−1−1

r−µ

−f(J(τ))
,

we get that Zd is monotone increasing in τ if and only if

(β(β − 1)κ1J
−β−1 − αγκ2J

−α−1)(1 + κ1J
−β + κ2J

−α) (28)

< (βκ1J
−β−1 + ακ2J

−α−1)(1− τ−1)βω.

The inequality Zd > Znr
d established in Lemma A.9 can be rewritten as

rω τ−1−1
r−µ

−f(J(τ))
>

β − 1

β

r

r − µ,

or, equivalently,

(τ−1 − 1)ω > −f(J(τ))
β − 1

β
.

Substituting this into (28) shows that it suffices to establish

(β(1− β)κ1J
−β−1 + αγκ2J

−α−1) < (βκ1J
−β−1 + ακ2J

−α−1)(1− β) ,

which follows because β < 0 < α and therefore γ < 1− β. We conclude that Zd is monotone

increasing in τ and it follows that Xd(1) = Z−1
d is decreasing in τ . Since the function J(τ)

is decreasing in τ by the above this further implies that T ∗ = Zd/J(τ) and Xu(1) = 1/T ∗

are respectively increasing and decreasing in τ .

It remains to prove monotonicity in λ. Here, the situation is more complicated because

both f(y) and g(y) depend explicitly on λ through the coefficients κ1,2(λ). A direct (albeit

tedious) calculation using the fact that

ψ =
−(µ− σ2/2)−

√
(µ− σ2/2)2 + 2σ2(r + λ∗)

σ2

is monotone decreasing in λ shows that κ1(λ) is monotone increasing in λ. Differentiating
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the identity g(J ;λ) = 0, we get

J ′λ =
(1− β)J−β + γ 1−β

α−1
J−α

β(1− β)κ1J−β−1 + αγκ2J−α−1
κ′1(λ) > 0

and it follows that

1

T ∗Xd(1)
=
Xu(1)

Xd(1)
= J

is increasing in λ. On the other hand we have

1

κ′1(λ)

d

dλ
f(λ, J(λ)) = J−β +

1− β
α− 1

J−α

− (κ1βJ
−β−1 + κ2αJ

−α−1)
(1− β)J−β + γ 1−β

α−1
J−α

β(1− β)κ1J−β−1 + αγκ2J−α−1
.

Therefore, the inequality d
dλ
f(λ, J(λ)) > 0 is equivalent to

0 < αγκ2 +
1− β
α− 1

β(1− β)κ1 − κ1βγ
1− β
α− 1

− κ2α(1− β)

which in turn can be rewritten as

α + (α− β)(1− β)κ1(λ) < 0.

Since κ1(λ) is increasing in λ, it suffices to verify this inequality for λ = ∞. A direct

calculation based on the quadratic equation satisfied by α and β implies that

α + (α− β)(1− β)κ1(∞) = 0,

and the claim follows. Thus, Zd is monotone increasing in λ. In order to prove that the

target T ∗ = 1/Xu(1) is decreasing in λ we need to differentiate Jf(J ;λ) and show that the

derivative is positive. A direct calculation shows that this condition is equivalent to

(β − α)ω(ακ2 −
1− β
α− 1

βκ1)J−α−β−1 (29)

+ ((1− β)J−β + γ
1− β
α− 1

J−α)(1 + κ1J
−β + κ2J

−α) < 0 (30)
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While (29) is nonnegative by the above, (30) is always strictly negative because f(J) < 0.

Since the expression is linear in κ1 (because κ2 is linear in κ1), it suffices to establish the

inequality for the extreme cases λ = 0 and λ =∞. The first one follows by direct calculation.

The second one follows because (29) converges to zero as λ→∞.
Since the value function and all policies depend on λ and η only through the product

λ(1− η), monotonicity in λ is equivalent to opposite monotonicity in η. �

C Restructuring with existing creditors

In this appendix we study the model in which the firm can raise funds by contacting either

outside or inside creditors. Instead of assuming as in the main text that the cost of collective

action is proportional to the firm’s coupon level prior to restructuring we allow here for

more general costs given by X ν(C/X) for some function ν(Z) that satisfies the following

condition:

Assumption 1 The function

L ν(Z)− (r − µ+ λ∗)ν(Z)− τZ

is monotone decreasing in Z.

As we show below, this assumption guarantees that barrier restructuring strategies are

optimal. This assumption trivially holds if ν(Z) = εZ as in the text but many other

cases can also be considered. In particular, we note that no monotonicity conditions on

the function ν(Z) itself need to be imposed for the validity of this assumption.

Fix an arbitrary default threshold Xbd(1) = 1/Zd and denote by P = P(Xbd(1)) the asso-

ciated equilibrium strategy. With this notation we have that the corresponding equilibrium

firm value is given by

Vb(X,C|P) = sup
b∈B(P)

E

[∫ τd

0

e−rt((1− τ)Xt + τCt−)dt+ e−(r−µ)τdφXτd

+
∞∑
k=1

1{τk≤τd}e
−rτkHb(τk, bτk , Xτk , Cτk−|P)

]
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where

H̄b(τ, b′, X, C|P) = −qD(X, b′C|P)− 1{τ∈N }ηS(b′, X, C|P)

− 1{τ /∈N }[(1− θ)Xν(X/C) + θS(b′, X, C|P)]

represents the cash flow from restructuring and N is the set of jump times of the Poisson

process that governs meetings between the firm and outside investors. Let also

I (v)(Z) = max
a≥1
{v(aZ)− qd(aZ|Zd)− v(Z)}

E (v)(Z) = max
a≥1
{v(aZ)− qd(aZ|Zd)− v(Z)− ν(Z)}

Our first result in this section follows from standard dynamic programming arguments.

Lemma C.1 If vb(Z|Zd) is a bounded and Borel measurable function such that

vb(Z|Zd) = sup
τ∈S

Ê

[∫ τ∧τN∧τd

0

e−(r−µ)s(1− τ + τZs−)ds+ 1{τd≤τ∧τN}e
−(r−µ)τdφ

+ 1{τ<τN∧τd} e
−(r−µ)τ ((1− θ)E (vb(·|Zd))(Zτ−) + vb(Zτ−))

+ 1{τN<τ∧τd} e
−(r−µ)τN ((1− η)I (vb(·|Zd))(ZτN−) + vb(ZτN−))

]
.

then Vb(X,C|Zd) = Xvb(C/X|Zd).

As a result of Lemma C.1, our problem reduces to that of finding a bounded solution to the

dynamic programming equation. Note that it is a priori not obvious that such a solution

exists. In particular, the contraction mapping techniques that we used in the model with

search cannot be directly applied here due to the possibility of contacting creditors at all

times, and so new methods need to be developed. We start with a standard lemma for

solving optimal stopping problems.

Lemma C.2 Let ϕ(Z) ∈ C[0, Zd] be a bounded function and ξ(Z) a bounded, Borel measur-

able function. Suppose that a bounded function y(Z) on [0, Zd] with y(Zd) = φ is such that

there exists a threshold Z̄bu < Zd with the following properties

1. The function y(Z) is C1 and piecewise C2 on [0, Zd).
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2. On [Z̄bu, Zd] the function y(Z) satisfies

(r − µ+ λ∗)y(Z) = L y(Z) + ξ(Z).

3. On [0, Zd) the function y(Z) satisfies y(Z) ≥ ϕ(Z).

4. On [0, Z̄bu] the function y(Z) satisfies y(Z) = ϕ(Z) and

(r − µ+ λ∗)y(Z) ≥ L y(Z) + ξ(Z).

Then the function y(Z) is given by

y(Z) = sup
τ∈S

Ê

[∫ τ∧τd

0

e−(r−µ+λ∗)sξ(Z0
s )ds+ e−(r−µ+λ∗)τ∧τd

(
1{τd≤τ}φ+ 1{τ<τd}ϕ(Z0

τ )
)]

where the process Z0
t evolves according to (10) with a ≡ 1.

To find a solution to our problem, we will approximate the optimal stopping problem by

a problem in which the firm can only contact existing creditors at the jump times of an

independent Poisson process with intensity Λ > 0 and then let this intensity increase to

infinity. The following proposition describes this auxiliary problem.

Proposition C.3 Fix a default threshold Zd > Znr
d and let ρ(Λ) ≡ r− µ+ λ+ Λ. Then the

dynamic programming equation:

vΛ(Z) = Ê

[∫ τd

0

e−ρ(Λ)t
(
(1− τ + τZ0

t ) (31)

+ Λ((1− θ)E (vΛ)(Z0
t ) + vΛ(Z0

t ))

+ λ((1− η)I (vΛ)(Z0
t ) + vΛ(Z0

t )
)
dt+ e−ρ(Λ)τdφ

]
.

admits a unique solution that belongs to C2[0, Zd] and the corresponding optimal restructuring

policy is a barrier policy that is characterized by thresholds Z̄bu(Λ) < Zbu(Λ) < Zbo(Λ) < Zd.

The proof of the above proposition will be based on a sequence of lemmas. The same

argument as in the model with search implies that the following is true.
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Lemma C.4 The unique solution to (31) is C2[0, Zd] and satisfies

(r − µ)vΛ(Z) = L vΛ(Z) + 1− τ + τZ + λ(1− η)O(vΛ)(Z) + Λ(1− θ)Ob(vΛ)(Z)

where the operators on the right are defined by

Ob(v)(Z) ≡ max
a≥1

(
v(aZ)− q1{a>1}d(aZ|Zd)− ν(Z)− v(Z)

)+

and equation (12).

Lemma C.5 There are thresholds Zbu(Λ) < Zbo(Λ) < Zd such that

O(vΛ)(Z) = 1{Z≤Zbu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)

)
Proof. Assume for simplicity that restructuring with new creditors is optimal and that

q > 0. It follows that

Zbu ≡ max{Z : O(vΛ) > 0} < Zd .

is well-defined and is smaller than or equal to Zd. Furthermore, by continuity, we have

O(vΛ)(Zbu) = 0 ⇔ vΛ(Zbu) = max
y≥Zbu

(vΛ(y)− qd(y)) .

Now consider the higher threshold defined by

Zbo ≡ min{y ≥ Zbu : vΛ(Zbu) = vΛ(y)− qd(y)} .

By the same argument as in the proof of Lemma A.9, we have vΛ(φ) < vΛ(Zbu) = vΛ(Zbo)−
qd(Zbo|Zd) < vΛ(Zbo) and therefore Zbu < Zbo < Zd since issuance costs are strictly positive.

This in turn implies that the point Zbo is a local maximum of the function vΛ(y)− qd(y).

To complete the proof, we need to show that for Z ≤ Zbu, we have vΛ(Z) ≤ vΛ(Zbu).

Indeed, in that case,

max
y≥Z

(vΛ(y)− qd(y)) ≤ max
y≥Z

vΛ(y) ≤ vΛ(Zbu) = vΛ(Zbo)− qd(Zbo)
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and, consequently,

O(vΛ)(Z) = 1{Z≤Zbu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)

)
.

Suppose that this is not the case. Let

Zv = max{Z ≤ Zbu : vΛ(Z) = vΛ(Zbu) = v(Zbo)− qd(Zbo)}

and assume for simplicity that Zv < Zbu so that the function vΛ(Z) reaches a local minimum

at some point Zm ∈ [Zv, Zbu].
2 As a first step towards a contradiction we claim that the

function vΛ(Z) is monotone decreasing on [0, Zv]. If not then as illustrated by the right

panel of Figure A there is a point Zn ∈ [0, Zv] at which the function vΛ(Z) achieves a local

maximum such that

vΛ(Zn) > vΛ(Zv) = vΛ(Zbu) = vΛ(Zbo)− qd(Zbo) = max
y≥Zv

(vΛ(y)− qd(y)) . (32)

Furthermore, by the definition of Zn, v
Λ(Zn) is monotone decreasing on [Zn, Zv] and hence,

for all y ∈ [Zn, Zv], we have

vΛ(Zn) ≥ vΛ(y) ≥ vΛ(y)− qd(y) . (33)

Combining (32) and (33), we get

vΛ(Zn) ≥ max
y≥Zn

(vΛ(y)− qd(y)) .

This immediately implies that we have O(vΛ)(Zn) = 0 . Furthermore, by definition,

0 ≤ OΛ(vΛ) ≤ O(vΛ)

2When the point Zbu is a local minimum of the function vΛ(Z) we have Zv = Zbu. This case is completely
analogous, up to small modifications.
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and hence OΛ(vΛ)(Zn) = 0. Therefore,

(r − µ)vΛ(Zm) = L vΛ(Zm) + 1

− τ(1− Zm) + λ(1− η)O(v)(Zm) + Λ(1− θ)O(vΛ)(Zm)

≥ L vΛ(Zm) + 1− τ(1− Zm)

≥ 1− τ(1− Zm) > 1− τ(1− Zn)

≥ L vΛ(Zn) + 1− τ(1− Zn)

= L vΛ(Zn) + 1− τ(1− Zn) = (r − µ)vΛ(Zn)

which contradicts equation (32) and establishes our claim regarding the monotonicity of the

function vΛ(Z) in the interval [0, Zv]. Therefore, (32) and the same argument as in (33)

implies that this property with the fact that O(v)(Z) = 0 for all Z ≤ Zv. Consequently,

(r − µ)vΛ(Z) = L vΛ(Z) + 1− τ(1− Z)

on [0, Zv] and therefore

vΛ(Z) =
1− τ
r − µ +

τZ

r
+ a1Z

1−β + a2Z
1−α

for some a1, a2 ∈ R. Since vΛ is bounded, we have a2 = 0 and therefore vΛ(0) = φ0. Since

vΛ(Z) is decreasing on [0, Zv], we immediately get that φ0 > vΛ(Z) on that interval. But

this is impossible since

vΛ(Z) ≥ v̂Λ(Z) ≥ φ0

in a right neighborhood of zero by Lemma A.9. �

Lemma C.6 There is a threshold Z̄bu(Λ) < Zbu(Λ) such that

Ob(vΛ)(Z) = 1{Z≤Z̄bu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)− ν(Z)

)
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Proof. Since Ob(vΛ)(Z) < O(vΛ)(Z), we have that the threshold

Z̄bu ≡ sup{Z > 0 : Ob(vΛ)(Z) > 0}

is well defined and satisfies Z̄bu < Zbu . By continuity, we have

vΛ(Z̄bu) + ν(Z̄bu) = vΛ(Zbo)− qd(Zbo|Zd) .

Suppose that the claim of the statement is not true. Then, there exists a Zv < Z̄bu such

that vΛ(Zv) + ν(Zv) = vΛ(Zbo) − qd(Zbo|Zd). Let us show that W (Z) ≡ vΛ(Z) + ν(Z) is

monotone decreasing on [0, Zv]. Indeed, suppose the contrary. Let Zn be the largest local

maximum of W (Z) on [0, Zv]. Let also

λ∗ ≡ λ(1− η),Λ∗ ≡ Λ(1− θ) .

Then, defining

ζ(Z) ≡ L ν(Z)− (r − µ+ λ∗)ν(Z),

we have

(r − µ+ λ∗)W (Z) = −ζ(Z) + LW (Z) + 1− τ + τZ + λ∗(O(vΛ) + vΛ) + Λ∗Ob(vΛ).

Since W (Zv) = W (Z̄bu) > W (Z) for all Z ∈ (Zv, Z̄bu), W (Z) also has the largest local

minimum at some Zm ∈ (Zv, Z̄bu). Therefore, using the fact that, by assumption, τZ− ζ(Z)
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is monotone increasing, we get

(r − µ+ λ∗)W (Zm) = LW (Zm)− ζ(Zm) + 1− τ(1− Zm)

+ λ∗(vΛ(Zbo)− qd(Zbo|Zd)) + Λ∗OΛ(vΛ)(Zm)

≥ −ζ(Zm) + 1− τ(1− Zm) + λ∗(vΛ(Zbo)− qd(Zbo|Zd)) + Λ∗OΛ(vΛ)(Zm)

≥ −ζ(Zm) + 1− τ(1− Zm) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))
> −ζ(Zn) + 1− τ(1− Zn) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))
≥ LW (Zn)− ζ(Zn) + 1− τ(1− Zn) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))
= (r − µ+ λ∗)W (Zn)

which is a contradiction. Thus, it has to be that W (Z) is monotone decreasing on [0, Zv]

and still has a local minimum at Zm, so that

W (0) ≥ W (Zm) ≥ −ζ(Zm) + (1− τ + τZm) + λ∗ (vΛ(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

.

Since Ob(vΛ) = 0 for Z ≤ Zv, we have

1

2
σ2Z2 vΛ

ZZ(Z)−µZnvΛ
Z(Z)+(1−τ+τZ)+λ∗ (vΛ(Zbo)−qd(Zbo|Zd)) = (r−µ+λ∗)vΛ(Z)

in that interval. A direct calculation implies that

vΛ(0) =
1− τ + λ∗(vΛ(Zbo)− qd(Zbo|Zd))

r − µ+ λ∗

Therefore,

W (0) = ν(0) +
1− τ + λ∗(vΛ(Zbo)− qd(Zbo|Zd))

r − µ+ λ∗

≤ −ζ(Zm) + (1− τ + τZm) + λ∗ (vΛ(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

≤ W (Zm)

because

(r − µ+ λ∗) ν(0) = τ · 0− ζ(0) ≤ τZm − ζ(Zm)
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since, by assumption, τZ−ζ(Z) is increasing. This is a contradiction, and the claim follows.

�

Lemma C.7 As Λ → ∞ the thresholds Z̄bu, Zbu, Zbo converge to some finite limits and

vΛ(Z) converges uniformly to a function vb(Z|Zd) which satisfies (C.1). In particular, the

optimal stopping time is the first time that the state variable is enter the interval [0, Z̄bu].

Proof. To prove this result we will show that vΛ(Z) converges to a function vb(Z) that

satisfies the conditions of Lemma C.2. Let us first discuss convergence. Since the interval of

interest [0, Zd] is compact, we can always pick a subsequence Λn such that

(Z̄bu(Λn), Zbu(Λn), Zbo(Λn)) −→ (Z̄bu, Zbu, Zbo)

for some constants

Z̄bu ≤ Zbu ≤ Zbo ≤ Zd.

The same arguments as in the proof of Lemma A.5 imply that vΛ(Z) is increasing as a

function of Λ. In particular, maxy≥0(vΛ(y)− qd(y|Zd)) is increasing in Λ and it follows that

Zbo(Λn) cannot converge to the exogenously fixed default threshold Zd.

The fact that the function vΛ(Z) converges on the interval [Z̄bu, Zd] to a limit vb(Z|Zd)
that solves the same equation as the function v(Z|Zd) follows directly from Lemma A.6 and

the fact that the function vΛ(Z) is increasing in Λ and bounded from above. A direct

calculation based on Lemma A.6 implies that only the function but also its derivative

converges. On the interval [0, Z̄bu] we define the limiting function by

vb(Z) = lim
n→∞

(vΛn(Zbo(Λn))− qd(Zbo(Λn)|Zd))− ν(Z) .

By definition of the threshold Z̄bu we have that vb(Z) is continuous at the point Z̄bu and to

complete the proof we will now sequentially verify that the limiting functions satisfies the

conditions of Lemma C.2 with

ξ(Z) = 1− τ(1− Z) + λ∗(vb(Z) + O(vb)(Z))
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and

ϕ(Z) = max
a≥1

(vb(aZ)− qd(aZ|Zd)1{a>1} − ν(Z)) = vb(Z) + Ob(vb)(Z)

To prove that the limiting function is C1 consider the function

W (Z) = WΛ(Z) ≡ vΛ(Z) + ν(Z)

and observe that since the derivative of vΛ(Z) converges to that of vb(Z) for Z ≥ Z̄bu by

the above it suffices to prove that

lim
Λ→∞

WΛ
Z (Z̄bu(Λ)) = 0. (34)

By definition of the restructuring threshold Z̄bu(Λ) we have

Ob(vΛ)(Z) = O(vΛ)(Z)− ν(Z) = v(Zbo)− qd(Zbo|Zd)− vΛ(Z)− ν(Z)

= W (Z̄bu(Λ))−W (Z)

for all Z ≤ Z̄bu(Λ) and it now follows from Lemma C.4 that over this region the function

solves the ordinary differential equation

(r − µ+ Λ∗)W (Z) = LW (Z)− ϑ(Z) + 1− τ + Λ∗W (Z̄bu(Λ))

where

ϑ(Z) = L ν(Z)− (r − µ+ λ∗)ν(Z)− τZ

is a decreasing function by Assumption 1 and Λ∗ = λ∗ + Λ(1− θ). Define γ < 0 < 1 < γ1 to

be the solutions to Q(x, r+ Λ∗) = 0. With this notation it follows from a slight modification

of Lemma A.6 that the solution is explicitly given by

W (Z) = W (0) + y1Z
1−γ + y2Z

1−γ1 +
2

σ2Z

∫ Z̄bu(Λ)

Z

[( x
Z

)γ−2

−
( x
Z

)γ1−2
]
ϑ(x)dx

γ1 − γ
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for some constants y1 and y2 where

W (0) =
1− τ − ϑ(0) + Λ∗W (Z̄bu(Λ))

r − µ+ Λ∗
.

Let us first determine the constant y2 using the fact the function is bounded at the origin.

Since the function ϑ(Z) is decreasing we have∣∣∣∣∣ 2

σ2Z

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2 ϑ(x)dx

γ1 − γ

∣∣∣∣∣ ≤ K0

Z

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2

dx ≤ K1

for some constants K0 and K1 > 0. Thus, we only need to take care of the terms with

negative exponent and it follows that

y2 =
2

σ2

∫ Z̄bu(Λ)

0

xγ1−2ϑ(x)dx

γ1 − γ

where the integral does not explode at x = 0 because by definition γ1 > 1. Using this

constant we can rewrite the solution as

W (Z) = W (0) +y1Z
1−γ +

2

σ2Z

[∫ Z

0

( x
Z

)γ1−2 ϑ(x)dx

γ1 − γ
+

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2 ϑ(x)dx

γ1 − γ

]
. (35)

and the remaining constant is now determined by requiring that the solution be continuous

at the upper boundary point:

W (Z̄bu(Λ)) = W (0) + y1Z̄bu(Λ)1−γ +
2

σ2Z̄bu(Λ)

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2
ϑ(x)dx

γ1 − γ
.

Solving this equation, substituting the solution into (35) and differentiating the resulting

expression at the upper boundary point gives

WZ(Z̄bu(Λ)) = (1−γ)
W (Z̄bu(Λ))−W (0)

Z̄bu(Λ)
− 2

(σZ̄bu(Λ))2

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2

ϑ(x)dx.

A direct calculation shows that the constants (1 − γ)/(r − µ + Λ∗) converge to zero as Λ∗

goes to infinity, Therefore, since W (Z) = WΛ(Z) is bounded as a function of Λ and the
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restructuring threshold converges to a finite number we obtain

lim
Λ→∞

(1− γ)
W (Z̄bu(Λ))−W (0)

Z̄bu(Λ)
= lim

Λ→∞

(1− γ)(τ − 1 + ϑ(0) + (r − µ)W (Z̄bu(Λ)))

(r − µ+ Λ∗)Z̄bu(Λ)
= 0.

On the other hand, since γ1 diverges to infinity as Λ increases we have that (x/Z)γ1−2

converges to zero for all x < Z and it now follows from the dominated convergence theorem

that

lim
Λ→∞

2

(σZ̄bu(Λ))2

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2

ϑ(x)dx = 0.

This shows that (34) holds and completes the verification of condition 1. The validity of

conditions 2 and 3 follows directly from the above arguments. To establish the validity of

condition 4 we need to show that the quantity

C(Z) = Lϕ(Z)− (r − µ+ λ∗)ϕ(Z) + ξ(Z) = 1− τ − ϑ(Z)− (r − µ)W (Z̄bu)

is non positive for all Z ≤ Z̄bu and since ϑ(Z) is decreasing it suffices to check that this

property holds at the upper boundary point. The above result implies that W ′(Z̄bu) = 0

and since the function W (Z) cannot be decreasing to the left of Z̄bu we have

LW (Z̄bu) =
1

2
(Z̄bu)

2W ′′(Z̄bu) ≥ 0

Combining this with the definition of the function W (Z) and the fact that

(r − µ)vb(Z̄bu) = L vb(Z̄bu) + 1− τ(1− Z̄bu) + λ∗O(vb)(Z̄bu)

then gives

C(Z̄bu) = 1− τ(1− Z̄bu)− ϑ(Z̄bu)− (r − µ)W (Z̄bu)

≤ 1− τ(1− Z̄bu)− ϑ(Z̄bu)− (r − µ)W (Z̄bu) + LW (Z̄bu) = 0

and completes the proof. �
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Recall that the functions vns and vs are defined by

vns(Z) = vns(Z, a3, a4) ≡ a3Z
1−β + a4Z

1−α + φ0 +
τZ

r

vs(Z) = vs(Z,Zbo, a1, a2, a3, a4; q)

≡ a1Z
1−ψ + a2Z

1−ψ1 +
τZ

r
+

1− τ + λ∗(vns(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

.

Solving

vs(Zbu)− vns(Zbu) = v′s(Zbu)− v′ns(Zbu) = 0

for a1, a2 gives

a1 = A1(Zbu, a3, a4; q) , a2 = A2(Zbu, a3, a4; q) .

The following lemma establishes the local uniqueness of the Markov perfect equilibrium in

barrier strategies and constitutes the direct counterpart of Lemma B.2 for the model in which

the firm can issue debt to inside creditors.

Lemma C.8 Let ν(Z) = εZ. Consider the following system

F1b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vns(Zd)− d(Zd|Zd) = 0

F2b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ v′ns(Zd)− d′(Zd|Zd) = 0

F3b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ v′ns(Zbo)− qd′(Zbo|Zd) = 0

F4b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vns(Zbo)− qd(Zbo|Zd)− vns(Zbu) = 0

F7b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vs(Z̄bu) + ν(Z̄bu)− (vns(Zbo)− qd(Zbo|Zd)) = 0

F8b(Z̄bu, Zbu, Zbo, Zbd, a1, a2, a3, a4; q) ≡ v′s(Z̄bu) + ν ′(Z̄bu) = 0.

Denote by J(C ) the unique solution to (3.3), define zo(C ) and zd(C ) by (25), (26) and let

ã3(C ) = (τ/r)κ1(∞)zo(C )β,

ã4(C ) = (τ/r)κ2(∞)zo(C )α.
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Suppose that there exists an admissible C such that

J Fb(zo(C ), zo(C ), zo(C ), zd(C ), ã3(C ), ã4(C ); 0) 6= 0 .

where J denotes the Jacobian operator. Then, for Lebesque almost every admissible C there

exists an open neighborhood

Bb ⊇ (zo(C ), zo(C ), zo(C ), zd(C ), ã1(C ), ã2(C ), ã3(C ), ã4(C ))

and a δ > 0 such that, for all q, ε ∈ [0, δ), there exists a unique Markov perfect equilibrium

in barrier strategies whose parameters satisfy (Z̄bu, Zbu, Zbo, Zbd, a3, a4) ∈ Bb.

Lemma C.9 For a fixed default threshold the equity value function is decreasing in q and ε.

As a result, (8) has a solution for any q, ε > 0 whenever it has a solution for q = ε = 0.

Proof. Monotonicity of the equity value function for each finite Λ is proved by the same

argument as in the proof of Lemma A.5. Then, Lemma C.7 implies the required monotonicity

for the true equity value. By the above, for τ < τ ∗(∞), equity value satisfies

∂

∂X
Eb(X,C|P(Xd(1)))

∣∣∣∣
q=ε=0,X=Xd(C)

< 0,

for any constant Xd(1) < X∗d,0(1). Thus, for any Xd(1) < X∗d,0(1), equity value is negative

in a right neighborhood of Xd(C) when q = 0. Since equity value is monotone decreasing in

the issuance cost q, ε, it follows that

Eb(X,C|P(Xd(1))) ≤ 0

for any q > 0 in a right neighborhood of Xd(C). This in turn implies that for any Xd(1) <

X∗d,0(1) and q, ε > 0, we have

∂

∂X
Eb(X,C|P(Xd(1)))

∣∣∣∣
X=Xd(C)

< 0.

This fact, together with condition (6) and the intermediate value theorem, implies that

the smooth pasting condition has a solution in
(
X∗d,0(C), XS

d (C)
)

for any q, ε > 0 when
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τ < τ ∗(∞). Furthermore, standard implicit function type arguments imply that this solution

is unique when q is sufficiently small. �

Proof of Theorem 2. The proof of Theorem 2 is analogous to that of Theorem 1 and

follows directly from Proposition 9, Lemma C.8 and Lemma C.9. �

Proof of Proposition 10. The proof is completely analogous to that of Proposition 8.

Indeed, in the limit when q, ε → 0, firm value converges to that in the search model with

an infinite intensity, and all three thresholds Zbu, Z̄bu, Zbo collapse to one. Monotonicity of

default threshold with respect to η, λ follows directly from the proof of Lemma C.9, because,

for fixed default threshold, the value of the firm is decreasing in η and increasing in λ. �

D Restructuring probabilities

In order to compute the restructuring probabilities associated with the Markov perfect

equilibria in the three models let

τ(y) ≡ inf{t ≥ 0 : Xt = y}

denote the first time that the cash flow process reaches y ≥ 0 and define a nonnegative

bounded function by setting

F (x, T ; y, z) ≡ P [τ(z) ≤ T ∧ τ(y)|X0 = x]

The probability of restructuring before time T is therefore given by F (x, T ;Xd0(1), Xu0(1))

for the frictionless model, and by F (x, T ;Xdb(1), Xub(1)) for the model in which the firm

bargains with current creditors. The following lemma provides an expression for the function

F which can be easily approximated numerically.

Lemma D.1 For 0 < y < z and x ∈ (y, z) we have that

F (x, T ; z, y) =
∞∑
n=0

[
Φ

(
bn − νT√

T

)
− e2νbnΦ

(−bn − νT√
T

)]
−

∞∑
n=0

[
Φ

(
an − νT√

T

)
− e2νanΦ

(−an − νT√
T

)]
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where the sequence (an, bn)n≥1 is defined by

an = an(x, y, z) ≡ log(z/x)
1
σ + log(z/y)

2n
σ ,

bn = bn(x, y, z) ≡ an + log(x/y)
2
σ = log(zx/y2)

1
σ + log(z/y)

2n
σ ,

the function Φ : R → (0, 1) is the cumulative distribution function of a standard Gaussian

random variable, and we have set ν ≡ m/σ − σ/2.

Proof. See Borodin and Salminen (2002). �

In the search model, restructuring occurs the first time that the firm meets creditors while

the cash flow shock is above the search boundary X∗u(1) . Therefore, it follows from standard

results on Poisson point processes (see e.g. Brémaud (1981)) that the associated probability

of restructuring can be computed as

1−G(x, T ;X∗d(1), X∗u(1))

where

G(x, T ; y, z) ≡ E
[
e−λ

∫ T∧τ(y)
0 1{Xs≥z}ds

∣∣∣X0 = x
]
.

In order to derive a numerical approximation for this function we start by computing its

Laplace transform with respect to the time parameter. To facilitate the presentation let

Θ = Θ(q) < 0, and Ψ = Ψ(q) ≥ 0 denote the roots of Q(x; q) = 0 where the function Q is

defined as in the main text.

Lemma D.2 For 0 < y < z and x ≥ y we have that the Laplace transform

Ĝ(x, φ; y, z) ≡
∫ ∞

0

e−φtG(x, t; y, z)dt.

is explicitly given by

Ĝ(x, φ; y, z) = 1{y≤x≤z}Ĝb(x, φ; y, z) + 1{x≥z}Ĝa(x, φ; y, z)
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where the functions Ĝa and Ĝb are defined by

Ĝa(x, φ; y, z) ≡ 1

φ+ λ

[
1 + (x/z)Θ(φ+λ) λ

φ

A(φ; y, z)

B(φ; y, z)

]
,

Ĝb(x, φ; y, z) ≡ 1

φ

[
1 +

λ

φ+ λ

Θ(φ+ λ)

B(φ; y, z)

(
xΨ(φ)yΘ(φ) − xΘ(φ)yΨ(φ)

)]
,

with

A(φ; y, z) ≡ zΨ(φ)yΘ(φ)Ψ(φ)− zΘ(φ)yΨ(φ)Θ(φ),

B(φ; y, z) ≡ zΘ(φ)yΨ(φ) (Θ(φ+ λ)−Θ(φ)) + zΨ(φ)yΘ(φ) (Ψ(φ)−Θ(φ+ λ)) .

Proof. Using the boundedness of the function G(x, t; y, z) together with an application of

Fubini’s theorem we deduce that

Ĝ(x, φ; y, z) = E

[∫ ∞
0

e−
∫ t∧τ(y)
0 (φ+λ(Xs;z))dsdt

∣∣∣∣X0 = x

]
.

where we have set

λ(x; z) = λ1{x≥z}.

Therefore, it follows from Theorem 4.9 in Karatzas and Shreve (1991) that Ĝ(x) ≡ Ĝ(x, φ; y, z)

is the unique bounded and piecewise C2 solution to

mxĜ′(x) +
1

2
σ2x2Ĝ′′(x) + 1 = (φ+ λ(x; z))Ĝ(x), x > y,

subject to the boundary condition

lim
x↓y

Ĝ(x) = 1/φ.

The general solution to this second order ODE is given by

Ĝ(x) = 1{y≤x≤z}Ĝb(x) + 1{x≥z}Ĝa(x)
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where

Ĝb(x) ≡ 1/φ+ C1x
Θ(φ) + C2x

Ψ(φ),

Ĝa(x) ≡ 1/(φ+ λ) + C3x
Θ(φ+λ) + C4x

Ψ(φ+λ)

for some constants (Ci)
4
i=1 to be determined. Since the solution has to remain bounded as

the state increases, it must be that C4 = 0. In addition, the boundary condition at x = y

and the smoothness of the solution require that

lim
x↓y

Ĝb(x) = 1/φ,

lim
x↓z

Ĝb(x) = lim
x↑z

Ĝa(z),

lim
x↓z

Ĝ′b(z) = lim
x↑z

Ĝ′a(z).

Solving this system of three equations for the remaining constants, plugging the solution into

the definition of the functions (Ĝb, Ĝa) and simplifying the result gives the desired result. �

To obtain the probability of restructuring before a fixed date we need to invert the Laplace

transform. Unfortunately, due to the complex dependence of the transformed function on

the transform parameter, this cannot be carried out in closed form. To circumvent this

difficulty, we follows Abate and Whitt (1995) and approximate the original function as

G(x, T ) ≈
m∑
k=0

(
m

k

)
eA/2

21+mT

[
Ĝ

(
x,

A

2T

)
+ 2

n+k∑
`=1

(−1)`<Ĝ
(
x,

A

2T
+ `

iπ

T

)]

where (m,n,A) are constants that control the accuracy of the approximation and we have

suppressed the dependence on the thresholds to simplify the notation. In our numerical

calculations we use the values

m = 11, n = 15, A = 8 log 10,

suggested by Abate and Whitt (1995) to obtain an accuracy of the order of 10−8 and verify

that the results we obtain are insensitive to that choice.
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