
The Dynamics of Loan Sales and Lender Incentives∗

Sebastian Gryglewicz† Simon Mayer‡ Erwan Morellec§

October 3, 2023

Abstract

How much of a loan should a lender retain and how do loan sales affect loan perfor-

mance? We address these questions in a model in which a lender originates loans that

it can sell to investors. The lender reduces default risk through screening at origination

and monitoring after origination, but is subject to moral hazard. The optimal lender-

investor contract can be implemented by requiring the lender to initially retain a share

of the loan that it gradually sells to investors, rationalizing loan sales after origination.

The model generates novel predictions linking loan and lender characteristics to initial

retention, sales dynamics, and loan performance.

Keywords : dynamic agency, screening, monitoring, loan sales, syndicated loans.

JEL Classification: G21, G32.

∗We would like to thank Itay Goldstein (the editor), two anonymous referees, Bo Becker, Bruno Biais,
Matthieu Bouvard, Will Cong, Doug Diamond, Matthias Efing, Quirin Fleckenstein, Andreas Fuster, Thomas
Geelen, Denis Gromb, Barney Hartman-Glaser, Alexander Guembel, Kinda Hachem, Sharjil Haque, Florian
Hoffmann, Shohini Kundu, Gustavo Manso, Andrey Malenko, Nadya Malenko, Ralf Meisenzahl, Maureen
O’Hara, Martin Oehmke, Cecilia Parlatore, Amiyatosh Purnanandam, Uday Rajan, Alejandro Rivera, An-
thony Saunders, Philip Schnabl, Sascha Steffen, Per Stroemberg, Stephane Villeneuve, Vish Viswanathan,
Mao Ye, and seminar participants at Carnegie Mellon University (Tepper), Cornell University (SC Johnson
College of Business), HEC Paris, the University of Bonn, the University of Michigan (Ross School of Busi-
ness), the University of Rochester (Simon School of Business), Stockholm School of Economics, Toulouse
School of Economics, MFA 2022, and the 2022 FTG meeting in Budapest for comments. Erwan Morellec
acknowledges financial support from the Swiss Finance Institute. Part of this research has been completed
while Erwan Morellec was a visiting professor of finance at the MIT Sloan School of Management. The paper
was previously circulated under the title “Screening and monitoring corporate loans.”
†Erasmus University Rotterdam. Email: gryglewicz@ese.eur.nl
‡Tepper School of Business, Carnegie Mellon University. E-mail: mayer@hec.fr.
§EPF Lausanne, Swiss Finance Institute, and CEPR. E-mail: erwan.morellec@epfl.ch.



Banks provide unique services in the form of publicly unobservable screening and moni-

toring of borrowers. A central result in banking theory is that for banks to have the incentive

to provide an efficient level of these services, it is necessary for them to retain part of the

loans they originate (Gorton and Pennacchi, 1995). Lenders who sell loans to investors will

bear fewer costs in the event of default and therefore may have less incentive to screen or

monitor borrowers.

The view that banks have significant skin in the game and therefore provide an efficient

level of these services has been challenged by recent developments in the market for corporate

loans. Indeed, the emergence of an active and liquid secondary market for corporate loans

(Saunders, Spina, Steffen, and Streitz, 2021) has given banks the possibility to reduce their

exposure to borrowers’ default risk by selling their stake over the loan’s life (Drucker and

Puri, 2009; Nadauld and Weisbach, 2012; Irani, Iyer, Meisenzahl, and Peydro, 2021). As

further shown by Blickle, Fleckenstein, Hillenbrand, and Saunders (2022), in the syndicated

loan market,1 lead banks sell their entire share shortly after origination for a significant

fraction of the loans they syndicate. Several important questions naturally arise in this

context. First, what determines optimal initial retention for loan originators, as well as

retention dynamics and loan sales after origination? Second, how do loan sales affect moral

hazard in screening and monitoring, and therefore loan performance and value?

This paper attempts to answer these questions by developing a tractable, unifying frame-

work of loan origination and sales under moral hazard in screening and monitoring. Our

model applies to corporate loans, and in particular to syndicated corporate loans, but is

sufficiently general to apply to other credit markets, such as mortgage loans and their secu-

ritization.2 We then use this framework to characterize the dynamically optimal originator

1Syndicated loans are loans issued to a borrower jointly by multiple financial institutions under one
contract. The syndicated loan market is one of the most important sources of private debt for corporations
(see, e.g. Sufi (2007) or Saunders et al. (2021)).

2As documented for instance in Benmelech, Dlugosz, and Ivashina (2012), the securitization of corporate
loans—most commonly structured as collateralized loan obligations (CLOs)—is fundamentally different from
the securitization of other asset classes. Corporate loans are significantly larger than mortgages and are
typically syndicated. The bank that originated the loan generally retains a fraction of the loan on its
balance sheet. The fractions of the same underlying loan are held simultaneously by CLOs as well as by
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share and its relation to moral hazard and loan performance. This allows us to (i) shed

light on recent empirical findings and (ii) generate new predictions regarding optimal re-

tention by loan originators, the dynamics of loan sales by originators, their relation to loan

characteristics, and their effects on loan performance and value.

We start our analysis by formulating a dynamic agency model in which a lender—the

lead bank in a loan syndicate—originates a loan and sells this loan to competitive investors—

other banks in the syndicate or non-bank financial intermediaries. The loan generates coupon

payments at a constant rate until default or maturity. The lender may undertake a costly

screening effort at origination that results in a lower expected default rate at all future times.

It may also monitor the loan at a cost afterward to further reduce default risk. The loan

default intensity is thus endogenous and decreases with screening and monitoring efforts.

Because screening and monitoring are not observable, there is moral hazard and the lender’s

incentives pin down the respective effort levels. The lender has a lower valuation for the

loan than investors due to a higher discount rate arising from, e.g., regulatory or capital

constraints. There are therefore gains from selling (part of) the loan to investors. However,

loan sales reduce the lender’s exposure to loan performance and undermine its incentives to

screen and monitor, thereby increasing credit risk and reducing loan value.

We derive the optimal contract between the lender (loan originator) and outside investors

that implements costly screening and monitoring, while respecting the limited liability of the

lender and investors. Incentive provision requires exposing the lender to loan performance.

As the lender is protected by limited liability, this is achieved by delaying its payouts so

that the lender loses its expected future payouts upon default. However, delaying payouts

is costly due to the lender’s higher discount rate. Based on this trade-off, the paper derives

an incentive compatible contract that maximizes total surplus. This contract takes a simple

form: The lender retains a share of the loan at origination that it gradually sells over time.

Under the optimal contract, the selloff speed decreases over time, so most loan sales occur

other institutional investors and banks. Furthermore, each loan included in CLOs is rated.
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relatively shortly after origination, in line with observed practice.

The structure of the optimal contract reflects the fact that screening only occurs at

origination, so that the contract front-loads incentives. Therefore, the lender’s exposure to

loan performance and incentives to monitor are especially strong at origination and decrease

over time. To achieve this reduction in skin-in-the-game and incentives, the optimal contract

mandates smooth, time-decreasing payments to the agent. Therefore, the optimal contract

can be implemented by requiring the lender to initially retain a share of the loan that

it gradually sells to investors. Retention and selloff dynamics thus reflect the underlying

moral hazard in screening and monitoring, and vice versa, in line with recent empirical

findings. In particular, the underlying moral hazard problem shapes retention and selloff

dynamics, consistent with the evidence in Chen, Lee, Neuhann, and Saidi (2023), Haque,

Mayer, and Wang (2023), and Jiang, Kundu, and Xu (2023) that reduced moral hazard in

loan syndication is associated with lower retention by the lead arranger and more loan sales.3

And, conversely, monitoring increases with the loan share of the lender, as documented in

Gustafson, Ivanov, and Meisenzahl (2021), and decreases as the lender sells its share.

Our model generates initial retention levels and loan sale dynamics that are consistent

with those documented in the empirical literature. For example, in line with the evidence

in Blickle et al. (2022), (i) most loan sales occur relatively shortly after origination, and (ii)

the lender may sell the entire loan shortly after origination.4 The latter scenario prevails

when the benefits of monitoring (relative to its costs) are limited, that is, when the lender

cannot add much value via the monitoring.

The model also allows us to examine the effects of loan and lender characteristics, such

as loan maturity, borrower quality, or lender cost of capital, on retention dynamics. Higher

intrinsic (pre-screening) credit risk implies earlier default and thus both a shorter time period

3Exploiting plausibly exogenous shocks to the severity of moral hazard in loan origination, Chen et al.
(2023) and Jiang et al. (2023) show that, as the lender’s (lead arranger’s) moral hazard in screening and
monitoring is alleviated, the lender retains a lower loan share and sells more of the loan to non-bank inter-
mediaries. Haque et al. (2023) show for U.S. syndicated loans that the presence and actions of private equity
(PE) sponsors reduce the necessity of bank monitoring for PE-backed loans, thus allowing the lead arranger
retain a lower loan share and to sell more loan shares to non-bank intermediaries.

4For instance, our model can generate an initial retention level of 25%, in line with Sufi (2007), together
with a full loan sale within about 100 days after origination, in line with Blickle et al. (2022).
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over which the lender is exposed to the loan and a lower intrinsic loan value. As such, higher

intrinsic credit risk makes it both more difficult and less interesting financially to incentivize

screening and monitoring, leading to lower initial retention by the lender and faster loan sales

after origination as part of the optimal contract. Thus, while Ivashina (2009)—respectively

Wang and Xia (2014) and Gustafson et al. (2021)—document a negative relation between

screening—respectively monitoring—and credit risk, our results point to a two-way causality.

Not only do screening and monitoring reduce credit risk, but intrinsic credit risk also dampens

monitoring and screening efforts. Through this mechanism, our model provides a rationale

for the segmentation observed in credit markets, whereby lenders (such as banks) that exert

high screening and monitoring typically finance high-quality borrowers.

We also show that a higher cost of capital for the lender implies greater gains from trade,

so that the lender retains a lower share in the loan, sells it faster and is more likely to sell the

entire loan, in line with the empirical findings of Irani and Meisenzahl (2017) and Irani et al.

(2021). Lastly, shorter loan maturity reduces the amount of time that the lender is exposed

to loan performance (but without reducing intrinsic loan value), which weakens its incentives

to screen and increases credit risk. To counteract this effect, the optimal contract front-loads

incentives by increasing initial retention. Therefore, the model predicts that short maturity

debt should feature higher initial retention and monitoring incentives, but also higher selloff

speed and lower screening, relative to long maturity debt.

An important question for empirical research is whether the share of the loan originator

can proxy for screening or monitoring incentives and therefore predict loan performance.

We show that while initial originator retention is monotonic in the cost of screening and

the level of screening effort, it is non-monotonic in the cost of monitoring and the level of

monitoring effort. This suggests that the initial share of the originator can serve as a proxy

for screening but not for monitoring effort because subsequent loan sales undo monitoring

incentives. Empirical measures for monitoring should take into account the selloff dynamics

after origination. In particular, monitoring incentives should increase with the incentives

of the lead bank, as captured by the contemporaneous lead share, in line with evidence
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in Gustafson et al. (2021). We additionally show that while selloff speed is monotonic in

the level of monitoring effort, it is non-monotonic in the level of screening effort. The

non-monotonic relationships between selloff speed and screening as well as between initial

retention and monitoring imply that neither initial retention nor a measure of selloff speed

can (on their own) proxy for both screening and monitoring.

Next, we study various extensions of our baseline model. First, we consider that the lender

originates a portfolio of two loans. Instead of retaining shares in each of the individual loans,

the lender optimally creates tranches of the loan portfolio, akin to securitization. The loan

portfolio is tranched into an equity (junior) tranche, which is wiped out after the first loan

defaults, and a senior tranche, which only takes losses when the entire loan portfolio defaults.

Optimal screening and monitoring incentives are provided by having the lender retain a share

of the equity tranche that is gradually sold after origination, a pattern empirically observed

for mortgage loans (Begley and Purnanandam, 2016).

Second, we consider repeated lender-investor interactions where the process by which the

lender makes a loan and sells it to investors is repeated. The prospect of collecting payoffs

from repeated loan origination provides screening and monitoring incentives, which allows

the lender to retain a lower share of the loan at and after origination, in line with evidence

in Gopalan, Nanda, and Yerramilli (2011). Thus, with repeated interactions, the lender may

have strong incentives to screen and monitor so that loans need not perform poorly even

when the lead lender sells its share relatively quickly after origination, thereby rationalizing

the evidence in Blickle et al. (2022). Additionally, while our baseline analysis solves for the

optimal retention dynamics under full commitment, we show that repeated lender-investor

interactions can generate such commitment. Intuitively, originating the loan and selling it to

outside investors is profitable for the lender. If these gains are sufficiently large and deviating

from the retention path stipulated in the contract implementation hampers future loan sales,

the lender will have sufficient incentives to comply with the prescribed retention path.

Third, in some applications of credit securitization (e.g. mortgages), screening and mon-

itoring of loans are generally undertaken by separate entities: An originator responsible for
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screening and a servicing company in charge of monitoring (Demiroglu and James (2012)).

In other settings (e.g. corporate loans), they are undertaken by the same entity. To under-

stand the consequences of separation, we consider a model variant in which two otherwise

identical agents, respectively, screen and monitor loans and, to have adequate incentives,

retain a stake in the loan. However, raising one agent’s incentives and stake in the loan nec-

essarily limits the other agent’s stake and incentives, leading to negative spillovers between

screening and monitoring incentives. On the contrary, when screening and monitoring are

undertaken by the same agent, there are positive spillovers between screening and monitor-

ing incentives, making it optimal to bundle the two tasks to reduce credit risk. The model

predicts relatively low levels of screening and monitoring in credit markets where these two

tasks are separated, as is common for mortgages, relative to markets where these two tasks

are bundled and undertaken by the same entity, as is common for syndicated loans.

Our paper relates to the extensive banking literature on screening and monitoring. Most

models in this literature are static; see e.g. Diamond (1984), Gorton and Pennacchi (1995),

Holmstrom (1989), or Parlour and Plantin (2008). As a result, they do not distinguish be-

tween monitoring after loan origination and screening at origination and cannot investigate

the dynamics of incentives and loan sales and their effects on credit risk and loan value.

Following early contributions by Sufi (2007) and Ivashina (2009), a growing empirical liter-

ature examines the effects of the share of the lead arranger in syndicated loans on screening

and monitoring (see, e.g., Benmelech et al. (2012), Wang and Xia (2014), Bord and Santos

(2015)). Most of these studies proxy skin in the game by initial retention. This literature

has recently focused on loan sales after origination and their effects on incentives and credit

risk (Lee, Liu, and Stebunovs, 2022; Blickle et al., 2022; Chen et al., 2023).

Our paper contributes to this literature mainly in two ways. First, we highlight the key

role of the originator’s contemporaneous loan share for screening and monitoring incentives,

and rationalize loan sales after origination as part of an optimal contract between loan

originators and outside investors. Second, we shed light on the complex relationship between

screening and monitoring and the originator’s skin in the game. In particular, we demonstrate
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that both initial retention and selloff speed determine incentives and that incentives are

best captured by the share of the agent when they exert effort both for screening—initial

originator share—and for monitoring—contemporaneous originator share.

From a modeling perspective, our paper builds on the literature that studies dynamic con-

tracts in continuous time, starting with DeMarzo and Sannikov (2006) and Biais, Mariotti,

Plantin, and Rochet (2007). In this literature, Piskorski and Westerfield (2016), Malenko

(2019), Orlov (2022), and Gryglewicz and Mayer (2022) analyze incentive provision with

optimal dynamic contracts and monitoring. Halac and Prat (2016), Varas, Marinovic, and

Skrzypacz (2020), and Hu and Varas (2021a) characterize optimal monitoring in dynamic

settings but do not focus on optimal contracts. In a related paper, Hartman-Glaser, Pisko-

rski, and Tchistyi (2012) study optimal securitization and screening of mortgages under

moral hazard. In their model, the optimal contract features a single payout to the agent

when sufficient time has elapsed after the origination. Malamud, Rui, and Whinston (2013)

and Hoffmann, Inderst, and Opp (2021) generalize Hartman-Glaser et al. (2012) by allowing

for more general preferences and sources of uncertainty, respectively. Hoffmann, Inderst, and

Opp (2022) study optimal regulation of compensation in a similar framework.

Our paper advances this literature in several ways. First, while in practice corporate

loans are both screened and monitored, our paper is the first to model screening and moni-

toring in a unifying framework. We show that the combination of screening and monitoring

moral hazard implies that the optimal contract between the lender and investors can be im-

plemented by requiring the lender to retain a time decreasing stake in the loan, a result that

does not obtain in Hartman-Glaser et al. (2012) or Hoffmann et al. (2021, 2022). Notably,

unlike these theories, our model can generate retention and selloff dynamics that mirror the

patterns documented in recent empirical studies. Second, the model allows us to examine

the effects of loan and lender characteristics on retention dynamics. This allows us to ratio-

nalize recent empirical findings and to generate new testable predictions regarding optimal

retention and the dynamics of loan sales by originators and their effects on loan performance.
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1 Model setup

Time t is continuous and defined over [0,∞). A lender (the agent) originates a loan that

can be sold to competitive outside investors (the principal). In the model’s key application,

namely syndicated lending, the lender represents the lead arranger, while investors represent

other banks in the syndicate or institutional investors (e.g., CLOs or loan market mutual

funds) who buy loans in the secondary market. In the baseline model, the loan has infinite

maturity. An equivalent interpretation is that the loan has finite maturity, but is rolled over

every time it matures until default. Section 4.3 shows that the implications of the model are

not affected if loans have finite maturity and are not rolled over.

1.1 Screening, monitoring, and default risk

The loan promises a constant flow payoff (coupon payment) normalized to 1 up to its default,

which occurs at random time τ . The liquidation value of the loan at default is normalized

to zero for simplicity, as, e.g., DeMarzo and He (2021). The default time τ arrives according

to a jump process dNt ∈ {0, 1} with endogenous intensity λt > 0 at time t, where τ :=

inf{t ≥ 0 : dNt = 1}. That is, over a short period of time [t, t + dt), the loan defaults with

probability EdNt = λtdt. The default rate λt depends on the agent’s screening effort q at

time t = 0 and monitoring effort at at time t ≥ 0, in that

λt = Λ− q − at. (1)

In this equation, Λ > 0 captures the intrinsic quality (default intensity) of the loan. Screening

effort q captures the lender’s due diligence and screening of the borrower prior to loan

origination, where a higher q corresponds, e.g., to more information collected and processed

during the due diligence process and, thus, to lower levels of default risk.5

Monitoring effort (at)t≥0 captures the lender’s post-origination due diligence and moni-

5To make our baseline analysis tractable, we model the impact of screening effort on default risk λt
in reduced form as in Hartman-Glaser et al. (2012), Malamud et al. (2013), and Hoffmann et al. (2021).
Appendix B.6 provides a micro-foundation of the loan origination process and the impact of screening effort
on default risk in which screening effort allows the lender to distinguish good from bad borrowers, thereby
reducing the loan’s default risk. The model solution and analysis are similar, but less tractable.
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toring, which can take various forms (see, e.g., Gustafson et al. (2021) and Heitz, Martin,

and Ufier (2022) for direct evidence on bank monitoring). For instance, monitoring could

capture a lender’s on-site inspections of the borrower, third-party appraisals (a third party

is hired by the lender to conduct an audit/inspection of the borrower), the active request

and verification of the borrower’s financial or collateral information, or the monitoring and

enforcement of loan covenants. The lender’s monitoring effort may in practice curb borrower

moral hazard, prevent borrower risk-taking, and more generally improve the likelihood that

the lender is repaid. In the following, we assume that monitoring effort at reduces the de-

fault intensity λt. This modeling assumption is in line with empirical evidence in Heitz et al.

(2022) that active monitoring by the lender (e.g., via on-site inspections) reduces default

risk and in Blickle, Parlatore, and Saunders (2023) that both pre-origination screening and

post-origination monitoring improve loan performance (i.e., reduce default risk).

Screening and monitoring efforts are bounded in that q ∈ [0, q̄] and at ∈ [0, ā] with Λ > ā+

q̄. The bounds ā and q̄ are necessary to ensure that the instantaneous default probability λt is

well defined and positive. Unless otherwise mentioned, we focus on parameter configurations

that lead to optimal efforts at ∈ [0, ā) and q ∈ [0, q̄), so that the upper bounds do not bind

and the model solution, as well as contract dynamics, do not depend on the exact values of

ā and q̄. We discuss formally binding upper bounds in Appendix B.7.

Screening entails a cost 1
2
κq2 at time zero. Monitoring entails a flow cost 1

2
φa2

t at time

t ≥ 0. Screening and monitoring efforts are unobservable and are not contractible, giving rise

to moral hazard. We do not impose any restrictions on the relation between screening and

monitoring. In particular, we do not make any assumptions about whether screening and

monitoring efforts are substitutes or complements. According to equation (1) screening and

monitoring affect the instantaneous default rate λt in a symmetric and independent way.6 If

the lender decides to shirk on either task, the loan will have a higher default rate. Although

both reduce the risk of default, it is important to note that screening occurs only once, when

the loan is originated at time t = 0, whereas monitoring occurs at any point in time t ≥ 0 up

6We can allow screening and monitoring to be complements or substitutes in reducing default risk with
little effect on the model solution and analysis by assuming for example that λt = Λ − q − at − αqat. See
Appendix B.1 for a theoretical analysis of this model variant, Appendix B.6 for its micro-foundation, and
Section 2.2.4 for a numerical analysis.
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to default. Furthermore, the effect of screening is more persistent than that of monitoring,

where we consider for tractability that the impact of monitoring is purely transitory.

1.2 Gains from trade and loan sales

Both the principal and the agent are risk neutral.7 The principal discounts cash flows at rate

r ≥ 0. The agent is more impatient and discounts cash flows at rate γ > r. The difference in

discount rates may reflect regulatory capital requirements, as in DeMarzo and Duffie (1999),

or differences in financial constraints or risk-aversion, as in DeMarzo and Sannikov (2006).

Due to the discount rate differential γ − r > 0, there are gains from selling the loan—or

a security whose payoff depends on loan performance—to outside investors, a process that

works as follows. At inception, the lender designs a long-term contract or, equivalently, a

security C that is sold to competitive investors at price P0. The contract C = {dCt, ât, q̂}

represents a claim on the loan originated by the lender and sets out a profit-sharing rule for

the loan payments 1dt, so that the lender receives dCt and investors receive 1dt−dCt dollars

over each time interval [t, t + dt]. The contract C also specifies the monitoring effort ât (for

all t ≥ 0) and the screening effort q̂. We focus on incentive compatible contracts that induce

actual monitoring and screening efforts to coincide with contracted monitoring and screening

efforts, that is, ât = at and q̂ = q. Unless necessary, we do not explicitly distinguish between

contracted and actual effort levels.

Both the principal and the agent are protected by limited liability. That is, the continua-

tion payoff of the principal and the agent under the contract C must at any time exceed their

outside option, which we normalize to zero. The principal and the agent are able to fully

commit to the transfer rule (dCt)t≥0 stipulated by the optimal contract as long as it meets

their limited liability constraint.8 We do not impose explicit constraints on the transfers dCt

after time zero, but show later that optimal transfers satisfy dCt ≥ 0 for t > 0.

7Alternatively, one can interpret payoffs and probabilities as evaluated under the risk-neutral measure, in
which case the default probability λt can be seen is the risk-neutral or “risk-adjusted” default probability.

8Section 4.4 shows how commitment can arise through repeated originator-investor relations.
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1.3 Contracting problem

In what follows, we denote by t = 0− the time just before the screening effort is chosen and

by t = 0 the time just after the screening effort is chosen. At time t = 0−, the principal and

the agent sign a contract C. Given the contract C, the agent chooses screening effort q and

monitoring effort {at} to maximize the expected present value of private profits

W0− = max
q,(at)t≥0

E
[∫ ∞

0

e−γt
(
dCt −

φa2
t

2
dt

)]
− κq2

2
, (2)

where the subscript 0− denotes values before screening effort is chosen. When buying the

security from the lender (loan originator), outside investors have rational expectations re-

garding the lender’s incentives to exert screening and monitoring efforts. Once the loan

defaults at time τ , there are no more coupon payments and the game ends, so both the

principal’s and the agent’s continuation payoff fall to zero.9 Thus, dCt = 0 for t ≥ τ . We

additionally conjecture (and later verify) that after time t = 0−, payouts to the lender are

smooth in that dCt = ctdt for a compensation stream ct at time t > 0.

The price that competitive investors pay for a contract C at time t = 0− is given by

P0− = P0 where the time-t price of the security is

Pt = Et
[∫ τ

t

e−r(s−t)(1− cs)ds
]

=

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− cs)ds. (3)

In equation (3), the second equality integrates the default intensity λs over the relevant time

interval. The lender receives P0 dollars at time t = 0− from selling the security to investors,

in that dC0− = P0. Under the contract C, the agent’s continuation payoff Wt at time t ≥ 0

is given by the present value of the future payments adjusted for the cost of effort:

Wt := E
[∫ τ

t

e−γ(s−t)
(
cs −

φa2
s

2

)
ds

]
=

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds. (4)

Wt captures the value of the lender’s stake in the loan. The limited liability constraints of

9After default at time τ , the loan is worth zero and so is the sum of agent’s and principal’s payoff. Due
to limited liability, neither the agent nor the principal can have negative payoffs and, because their payoffs
add up to zero, it follows that dCt = 0 for t > τ .

11



the lender and investors are then formally defined as Wt ≥ 0 and Pt ≥ 0 for any t ≥ 0.10

As investors are competitive, the lender can extract all the surplus and therefore chooses

the security that maximizes total surplus F0− := W0− + P0 at time t = 0−. That is, the

lender solves

max
C

F0− , (5)

taking into account its own moral hazard problem (i.e., incentive compatibility constraints)

and the limited liability constraints Wt, Pt ≥ 0 for any t ≥ 0.

Because Pt in equation (3) and Wt in equation (4) can be expressed as deterministic

integrals after integrating out the random default event and because the optimal contract

dynamically maximizes total surplus Ft = Wt + Pt, the dynamic optimization problem (5)

can be formulated as a deterministic problem. Unless otherwise mentioned, we adopt the

deterministic formulation of problem (5).

2 Model solution

2.1 Incentives for screening and monitoring

We now turn to characterizing the lender’s incentives for screening and monitoring, and

hence the resulting effort levels q and (at)t≥0. To begin with, let us fix screening effort at

q and analyze monitoring incentives given q. Due to limited liability, the agent only loses

its claim to future payments, i.e., its continuation payoff Wt, at the time of default. With

its monitoring activity, the agent controls the probability of default or, equivalently, the

probability of losing future payments Wt over the next instant, which is given by λtdt =

(Λ− at − q)dt. Thus, the agent’s optimal monitoring effort is

at = arg max
a∈[0,ā]

(
−(Λ− a− q)Wt −

φa2

2

)
= arg max

a∈[0,ā]

(
aWt −

φa2

2

)
.

10That is, if Wt < 0 or Pt < 0, the lender or investor would be better off leaving the contractual relationship
and enjoying their outside option (normalized to zero). At time t = 0−, the limited liability constraint for

the lender implies W0− = W0 − κq2

2 ≥ 0, that is, the expression for the agent payoff in (2) is positive.
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As we focus on monitoring effort satisfying at ∈ [0, ā) and Wt ≥ 0 (limited liability), the

lender’s optimal monitoring effort is

at =
Wt

φ
. (6)

The incentive constraint for monitoring effort (6) shows that incentive compatibility requires

ât = at = Wt

φ
for all t ≥ 0. Granting the lender a higher stake Wt increases its exposure to

default risk and monitoring incentives, but is costly due to its relative impatience (γ > r).

While monitoring at impacts the default intensity λt at a single point in time t, screening q

affects all future default intensities (λt)t≥0 and thus the entire sequence of expected payments,

encapsulated in W0 = W0(q). Note that we now explicitly recognize the dependence of W0

on the screening effort q chosen at time t = 0−. The agent chooses q to maximize W0− which

is the value of its claim after screening is chosen, W0(q), net of the screening effort cost, κq2

2
:

max
q∈[0,q̄]

(
W0(q)− κq2

2

)
. (7)

Denote by Vt the agent’s gain from a marginal increase in q measured from time t onward:

Vt =
∂

∂q
Wt(q). (8)

We can use V0 to write the first-order condition solving (7) for the optimal screening effort:

q =
V0

κ
. (9)

Vt captures the agent’s screening incentives at time t and, because screening effort is chosen

at time t = 0−, V0 determines the amount of screening q exerted by the agent. Lemma 1

below derives a condition such that the first-order approach is valid. Under that condition,

the equation (9) describes incentive compatibility for the screening effort, in that q = q̂ = V0
κ

.

While V0 determines screening effort, the optimal contract will depend on the whole path

of Vt beyond t = 0. Notably, we show later that Vt becomes a state variable for the dynamic

optimization problem of the lender because the optimal long-term contract takes into account

how time-t incentives affect screening incentives at time t = 0. To characterize Vt and V0,

13



we differentiate the integral representation of Wt in (4) under optimal at to obtain:11

Vt =

∫ ∞
t

(s− t)e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds =

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWsds. (10)

Note that both screening and monitoring incentives are provided by exposing the agent to

loan performance via Wt > 0. Higher Wt exposes the agent more strongly to loan perfor-

mance and therefore motivates screening. Furthermore, a higher Wt increases monitoring at,

which delays default and strengthens screening incentives measured by Vt. Equation (10) re-

veals a simple interpretation of Vt and of screening incentives in our model. Specifically, as a

derivative of the lender’s continuation value with respect q, which is a persistent component

of the discount rate, Vt is closely related to the notion of duration. To obtain the duration of

the lender’s exposure to the loan, one needs to scale Vt by the value of the exposure. That

is, the duration measured in units of time is equal to Dt = Vt
Wt

. It follows that screening

incentives Vt are equal to the product of the duration and value of the lender’s exposure,

i.e., Vt = DtWt. This decomposition captures the intuition that screening incentives are the

strongest if the exposure Wt to the loan is large and has a high duration Dt. This creates

a trade-off as late payments increase duration but decrease value. The determination of

screening incentives must therefore resolve the tension between duration and value.

Next, we characterize the dynamics of the agent’s monitoring and screening incentives

Wt and Vt. We can differentiate (4) with respect to time and obtain

Ẇt :=
dWt

dt
= (γ + λt)Wt +

φa2
t

2
− ct. (11)

Similarly, differentiating Vt in (10) with respect to time t, we obtain the dynamics of Vt:

V̇t :=
dVt
dt

= (γ + λt)Vt −Wt. (12)

We close this section by stating some regularity conditions that we impose on the problem.

11When differentiating Wt, we can ignore the effect on at due to the envelope theorem. Also, because
screening effort q is neither observable nor contractible, an unobserved change in q cannot affect the con-
tracted flow payments ct. A derivation of (10) is provided in the proof of Proposition 2.
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Lemma 1. Suppose that the model parameters satisfy

κ >
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)2
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)3
. (13)

Incentive conditions (6) and (9) hold and uniquely pin down monitoring and screening ef-

forts. Incentive conditions (6) and (9) are sufficient and the first-order approach is valid.

Throughout the paper, we assume that condition (13) is met and that

κ >
φā

q̄(γ + Λ− ā− q̄)
, (14)

which is needed in the proof of Proposition 2.

2.2 Optimal contract

2.2.1 Benchmark: observable and contractible screening

To highlight the differences between monitoring and screening incentives more thoroughly, we

start by studying the “second-best” benchmark in which screening is not subject to moral

hazard, in that q is publicly observable and contractible. To solve the model under this

benchmark, we first fix screening q. Note that with observable q, unobservable actions at

have immediate rather than persistent effects. Additionally, absent default, our environment

remains constant over time. We thus conjecture (and verify) that the optimal contract is

stationary and features constant flow payments to the manager ct = c = cB(q) > 0 until

default, so that Ẇt = ȧt = 0, Wt = W = WB(q), and at = aB(q) for all t. Inserting Ẇt = 0

into (11) yields

c = (γ + Λ− a− q)W +
φa2

2
. (15)

Given screening q and monitoring a, the default rate is constant and equal to Λ− a− q, and

the price of the security paying flow payouts 1− c to investors becomes

PB(q) =
1− c

r + Λ− a− q
. (16)
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Equation (15) implies a one-to-one mapping between c and W . As a result, controlling c is

equivalent to controlling W and we can treat W as a choice variable instead of c. Next, note

that given q, optimal monitoring effort a (and equivalently optimal deferred compensation

W = φa) is chosen to maximize total surplus after screening, FB(q) = PB(q) + W . Using

equations (15) and (16), we thus get that the lender solves

FB(q) = max
W∈[0,FB(q)]

(
1

r + Λ− a− q︸ ︷︷ ︸
Market value

− (γ − r)W
r + Λ− a− q︸ ︷︷ ︸

Agency cost

−
φa2

2

r + Λ− a− q︸ ︷︷ ︸
Monitoring cost

)
, (17)

subject to a = W/φ (incentive compatibility) and W ∈ [0, FB(q)] (limited liability). Equa-

tion (17) shows that the surplus FB(q) consists of the present value of the loan payments

minus agency and direct cost of monitoring. Because the lender is subject to moral hazard,

it must retain a stake W , which generates agency costs due to its relative impatience, γ > r.

The maximization problem in (17) yields optimal levels of monitoring effort

aB(q) = max

{
FB(q)− (γ − r)φ

φ
, 0

}
, (18)

and WB(q) = φaB(q) < FB(q), given a level of screening q. Using (10), we can also calculate

V B(q) =
WB(q)

γ + Λ− aB(q)− q
. (19)

Equation (19) characterizes the agent’s screening incentives under the second-best solution

and plays an important role in the solution with non-contractible screening. Finally, we

optimize FB(q) over q to determine optimal screening in this second-best benchmark: qB =

arg maxq∈[0,q̄]

(
FB(q)− κq2

2

)
. We summarize our findings in the following proposition.

Proposition 1 (No moral hazard over screening). Suppose that screening effort q is con-

tractible so that there is no moral hazard with respect to screening. At the optimum, moni-

toring effort aB(q), payouts cB(q), and deferred payouts WB(q) (< FB(q)) are constant over

time and jointly characterized by (6), (15), and (17) for any choice of q. Optimal monitoring

effort aB(q) increases with q. Optimal screening effort qB maximizes FB(q)− κq2

2
.
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2.2.2 Moral hazard over screening and monitoring

We now assume that q is unobservable to investors and consider the full contracting problem

with moral hazard over both screening and monitoring. We solve this problem in two steps.

We first fix screening q and solve the continuation problem for t ≥ 0. We then determine

optimal screening q = q∗, taking into account the solution to the continuation problem.

Given monitoring a and screening q, we can write the total surplus at time t as12

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− cs)ds︸ ︷︷ ︸

=Pt

+

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds︸ ︷︷ ︸

=Wt

=

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds, (20)

with Wt = φat. The time-0− optimization can then be written via the Lagrangian:

L0− = F0− + `(κq − V0),

where ` is the Lagrange multiplier for the screening incentive constraint κq = V0. Maximizing

the Lagrangian for each time t while taking into account the monitoring incentive constraint

(6) yields that optimal effort at, if interior, satisfies the first order condition:

e−rt(Ft − (γ − r)φ− φat)− `e−γt(φ+ Vt) = 0.

Therefore, we have that when at is interior

at =

Reduction of
default risk︷︸︸︷

Ft −

Agency
costs︷ ︸︸ ︷

(γ − r)φ

Screening
incentives︷ ︸︸ ︷

−`e−(γ−r)t(Vt + φ)

φ︸︷︷︸
Direct cost

∧ Ft
φ
, (21)

12For a derivation, take Ft = Pt +Wt in the first line of (20) and take the derivative with respect to t:

Ḟt = (r + λt)Pt − 1 + ct + (γ + λt)Wt − ct +
φa2t
2

= (r + Λt)(Pt +Wt︸ ︷︷ ︸
=Ft

)− 1 +
φa2t
2
− (γ − r)Wt.

This expression can be integrated over time, t, to arrive at the second line of (20).

17



where min{x, y} = x∧y and where we account for the possibility that the principal’s limited

liability constraint binds (in which case Wt = φat = Ft). See Appendix A.3.3 for a derivation

of this result. The intuition for (21) is that monitoring reduces the probability of default

but comes at additional direct and agency costs. In addition, in a long-term contract, the

optimal choice of effort at time t > 0 takes into account its effect on screening incentives

at origination, as captured by −`e−(γ−r)t(Vt + φ), which distorts optimal monitoring away

from the benchmark level with contractible screening in (18). As the agent is relatively more

impatient and γ > r, this effect, however, vanishes over time. Thus, optimal monitoring

at and, consequently, Vt,Wt, and Ft approach the respective levels of the benchmark with

observable screening as time t tends to ∞, in that

lim
t→∞

(at,Wt, Vt, Ft) = (aB(q),WB(q), V B(q), FB(q)).

For times t <∞, Vt affects the optimal choice of monitoring effort in (21), and thus becomes

a relevant state variable in the dynamic optimization of total surplus.

As Vt andWt characterize the agent’s incentives and there is no other source of uncertainty

than the arrival of the loan default time τ , the state variables Vt and Wt summarize all payoff-

relevant information. Thus, we can express the total surplus as a function of Vt and Wt,

in that Ft = F (Vt,Wt). In what follows, we omit time-subscripts, unless necessary. The

integral expression (20) implies that the total surplus F (V,W ) solves:

rF (V,W ) = max
a,c

{
1− φa2

2
− (γ − r)W − λF (V,W ) (22)

+ FV (V,W )((γ + λ)V −W ) + FW (V,W )

(
(γ + λ)W +

φa2

2
− c
)}

,

where FV (V,W ) = ∂F (V,W )
∂V

and FW (V,W ) = ∂F (V,W )
∂W

, and where we have used the dynamics

of W and V given in (11) and (12).13 Equation (22) is solved subject to the incentive

condition (6), the limited liability constraints, and the conjecture that payouts to the lender

13For a derivation, conjecture that Ft = F (Vt,Wt), so Ḟt = FV (Vt,Wt)V̇t + FW (Vt,Wt)Ẇt. Differentiate

(20) with respect to time to get Ḟt = (r + λt)Ft − 1 +
φa2t
2 − (γ − r)Wt, which becomes (22) after inserting

Ḟt = FV (Vt,Wt)V̇t + FW (Vt,Wt)Ẇt and Ft = F (Vt,Wt).
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are smooth, in that dC = cdt. Note that it is always possible to stipulate that the lender

receives an incremental payout of ∆ dollars,14 which leaves V unchanged but changes W

by −∆ dollars. That is, controlling payouts to the lender is equivalent to controlling W .

As a result, we can formulate the dynamic optimization problem of the lender such that W

instead of c enters (22) as a control variable. Optimal payouts to the lender are then defined

as the residual that implements the optimal W , as we show in Section 3.1.

As we do not impose any constraints on the payout rate c and it is always possible to

increase or decrease c, the optimality of payouts c requires the first order condition

∂F (V,W )

∂c
= −FW (V,W ) = 0

to hold. Substituting FW (V,W ) = 0 back into (22) yields

rF (V ) = max
a∈[0,ā],W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + λ)V −W

)}
, (23)

where (with a slight abuse of notation) F (·) is a function of V only and W is a control.

Equation (23) is solved subject to the incentive condition for monitoring effort (6), i.e.,

W = φa, and the principal’s and the agent’s limited liability conditions, i.e., W ∈ [0, F (V )].

As t → ∞, the state variable Vt approaches V B(q) which is defined in (19). Expressed

in terms of the state variable V , equation (23) is solved subject to the boundary condition

lim
V→V B(q)

F (V ) = FB(q). (24)

We assume that a unique, continuously differentiable solution F (V ) to (23) subject to (24)

exists. We show in the Appendix that κq = V0 > V B(q) in optimum. Over time, V

drifts down to V B(q), in that V̇t < 0 with limt→∞ V̇t = 0. Thus, the state space can be

characterized by the interval (V B(q), V0]. The value function is downward sloping, with

F ′(V ) < 0 for V ∈ (V B(q), V0]. We also show that the value function is strictly concave.

Having characterized the model solution for t ≥ 0 and given q, we are now in a position

14If payouts to the lender are not smooth, then it follows similar to (11) that dWt = (γ+λt)Wtdt+
φa2t
2 dt−

dCt, so a payout of dC = ∆ dollars reduces W by ∆, that is, dW = −∆.
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to endogenize screening effort. Optimal screening effort q = q∗ maximizes the initial value of

surplus net of the screening cost while satisfying the incentive compatibility condition (9):

q∗ = arg max
q∈[0,q̄]

(
F (V0)− κq2

2

)
s.t. V0 = κq. (25)

The following proposition summarizes the properties of the optimal contract.

Proposition 2 (Moral hazard over screening and monitoring). In optimum, the state vari-

ables Wt and Vt are characterized in (4) and (10) respectively, and have dynamics given by

(11) and (12) respectively. Furthermore, the following holds:

1. For any given q, total surplus at time t is a function of V only, in that Ft = F (Vt).

The value function F (V ) solves (23) subject to boundary condition (24).

2. Optimal monitoring is characterized by the maximization in (23) subject to (6). Opti-

mal screening effort q = q∗ is characterized in (25).

3. When q = q∗ > 0, it holds that κq = V0 > V B(q), and V drifts down (i.e., V̇t < 0) to

V B(q), but never reaches V B(q) (i.e., Vt > V B(q)).

4. The value function F (V ) strictly decreases in V on [V B(q), V0) with limV→V B(q) F
′(V ) ≤

0, so that F ′(V ) < 0 for V > V B(q). The value function is strictly concave

5. Payouts to the agent are smooth and positive.

Finally, note that the optimal contract is designed to maximize the total surplus for the

lender and investors, given that the loan is originated. As such, the optimal contract would

not change if we modelled the initial decision to extend a loan of size K to the borrower. In

that case, the optimal contract would be designed to maximize F0− − K = F0 − κq2

2
− K.

While the exact value of K would affect the initial surplus, subject to the participation

constraint F0− −K ≥ 0, it would not affect the contract dynamics.15

2.2.3 Contract Dynamics

Figure 1 provides a numerical example of the optimal contract. For the numerical analysis,

15Section B.6.8 provides a micro-foundation for loan size.
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Figure 1: Total surplus F (V ), monitoring a(V ), and the agent’s flow payouts c(V ).
In the upper panels, the vertical dashed red line denotes the V0. In the lower panels, the
horizontal dotted red line denotes the benchmark levels that are attained in the limit t→∞.

we normalize r = 0 and Λ = 1 so that, without monitoring and screening, the expected time

to default is 1/Λ = 1 year and the loan has a pre-effort (or intrinsic) value 1/(Λ + r) = 1.16

In addition, we set γ = 0.1 and φ = κ = 9 to generate the desired trade-offs. Lastly, we pick

ā = 0.125 and q̄ = 0.24 to satisfy conditions (13) and (14). Our parameter choices imply

that the constraints at ≤ ā and q ≤ q̄ never bind. The model’s qualitative outcomes are

robust to the choice of these parameters.

The three upper panels of Figure 1 plot total surplus F (V ), monitoring a(V ), and the

agent’s flow payouts c(V ) as functions of the state variable V . The contract starts at V = V0

and V decreases with time. Observe that flow payouts c(V ) to the agent are always positive

and increase with V , i.e., decrease over time since V̇ < 0. As Vt is a deterministic function

of time (before default), we can represent the evolution of the contract quantities over time.

This is done in the lower three panels depicting screening incentives Vt, total surplus Ft,

and monitoring effort at as functions of time t (for t < τ). (As Wt is proportional to at by

Wt = φat, we do not plot it separately.) Observe that Vt, Wt, and at decrease over time

16Λ need not be interpreted as the actual rate of default (absent screening and monitoring), but can rather
be seen as risk-adjusted default intensity (i.e., the default intensity under the risk-neutral measure).
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Figure 2: Comparative Statics. This figure plots monitoring effort a0 for α = 0 (solid black
line) and screening effort q∗ against the parameters φ, κ, and Λ, for α = −1 (dotted red line), and
α = −2 (dashed yellow line). We use our baseline parameters.

with a decreasing speed. In contrast, total surplus Ft increases over time. These dynamics

of the value function Ft = F (Vt) and monitoring effort at = a(Vt) are shaped by the optimal

incentive provision for screening. As screening only occurs at time t = 0, screening incentives

and therefore the agent’s exposure to loan performance are front-loaded, thereby inducing

a monitoring effort that exceeds the benchmark level aB(q∗). Intuitively, the provision of

screening incentives distorts monitoring incentives upward, which is costly and curbs total

surplus. Over time, these distortions taper off, improving total (continuation) surplus Ft,

which approaches the second-best level FB(q∗) in the long run.

2.2.4 Determinants of Incentives

We now study the determinants of incentives by performing a comparative static analysis of

monitoring and screening efforts with respect to exogenous model parameters. The key find-

ing of this section is that due to moral hazard, screening and monitoring endogenously arise

as complements. To underscore the robustness of this result, we consider a generalization of
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our baseline model in which the loan default intensity is given by:

λt = Λ− at − q − αatq.

When α > 0 (α < 0), screening and monitoring are complements (substitutes) in reducing

default risk. In the baseline model, we have α = 0. That is, we do not make any assumptions

on whether screening and monitoring efforts are substitutes or complements. The solution

for this model variant is analogous to that of the baseline model as shown in Appendix B.1.

A micro-foundation of this default intensity can be found in Appendix B.6.

Figure 2 plots initial monitoring a0 (which proxies for overall monitoring) and screening

q as functions of the cost of screening κ, the cost of monitoring φ, intrinsic credit risk Λ, and

lender cost of capital γ for α = 0, α = −1, and α = −2. Panels A, B, E, and F of Figure 2

show that monitoring effort at and screening effort q decrease with both the costs of moni-

toring and screening, φ and κ. That is, screening and monitoring efforts are complements.

The underlying mechanism is that screening and monitoring incentives are determined and

linked by the agent’s deferred compensation. The provision of strong screening incentives

implies and requires strong monitoring incentives, while strong monitoring incentives boost

the agent’s screening incentives. As a result, when the cost of screening κ increases, it be-

comes optimal to reduce contracted screening effort, leading to lower screening incentives

and, as such, to lower monitoring (incentives). Likewise, when the cost of monitoring φ

increases, it becomes optimal to curb monitoring (incentives), leading to lower screening

(incentives). Notably, screening and monitoring endogenously arise as complements for in-

centive purposes even for negative values of α, that is, when assuming that screening and

monitoring are substitutes in reducing credit risk and absent moral hazard.17

Panels C and G of Figure 2 illustrate that a decrease in the intrinsic quality of the loan,

as reflected by the higher baseline default intensity Λ, leads to a decrease in monitoring and

screening. That is, our paper suggests a two-way relation between credit risk and lenders’

screening and monitoring. Notably, a lower credit quality leads to laxer monitoring and

17The complementarity of screening and monitoring may vanish for sufficiently large negative values of α.
Obviously, the complementarity is stronger for positive values of α.
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screening, which in turn exacerbates credit risk. Indeed, a higher rate of default Λ implies a

lower expected duration for the loan and the agent’s payments, which in turn makes it more

costly to provide screening incentives. Thus, for larger values of Λ, it becomes optimal to

reduce screening incentives which also leads to a reduction of monitoring incentives.

Finally, Panels D and H of Figure 2 show that screening and monitoring efforts decrease

with γ, as it becomes more costly to delay payouts to the lender and to provide incentives.18

3 Dynamic Retention and Loan Sales

3.1 Contract Implementation via Dynamic Retention

This section shows that the optimal contract can be implemented by having the lender keep

a time-decreasing share of the loan. At origination, the lender retains a fraction β0 of the

loan and sells a fraction 1− β0 to outside investors. After origination (for t ≥ 0), the lender

(progressively) sells off its stake so that βt decreases over time. That is, the agent owns a

fraction βt of the loan at time t, where βt is adjusted to provide appropriate incentives Wt.

A per-unit claim on the loan pays the loan rate 1 up to default at time τ and therefore

has a competitive price

Lt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu1 ds, (26)

at any time t ≥ 0 where credit risk is captured via the instantaneous default intensities

(λs)s≥t. Over a short period of time [t, t+ dt], the agent receives βt1dt in coupon payments

from the loan. In addition, selling the loan at rate −dβt yields trading revenues −dβtLt.

Therefore, matching the payoffs to the payouts ctdt of the optimal contract requires that

βtdt− dβtLt = ctdt. (27)

We can solve (11) to get

ct = (γ + λt)Wt +
φa2

t

2
− Ẇt > 0. (28)

18This is consistent with the evidence in Purnanandam (2011) that securitization reduces screening and
performance in mortgage markets and that this effect is more pronounced for more capital-constrained banks.
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As payouts to the lender are smooth and positive for t > 0, retention will be smooth too, so

dβt = β̇tdt. Equations (28) and (27) then imply the ODE:

βt − β̇tLt = (γ + λt)Wt +
φa2

t

2
− Ẇt. (29)

This equation is solved subject to limt→∞ βt = cB = cB(q∗), where cB(q) is the constant

payout level in the limit t→∞ (or, equivalently, Vt → V B(q)) characterized in Proposition

1 under optimal screening q = q∗ (see also Appendix A.4).

Proposition 3 (Implementation). The optimal contract can be implemented as follows. The

agent retains a fraction βt of the originated loan at time t, whereby a unit stake pays out a

flow payoff of 1 dollars until liquidation at time τ and has a competitive time-t price given

by (26). Over time, the agent sells its stake according to (29).

It is instructive to discuss the implementation of the optimal contract when there is only

one type of moral hazard, i.e., either over screening or monitoring but not both. When there

is only moral hazard over monitoring (i.e., q is observable and contractible), the solution is

characterized in Section 2.2.1, and the optimal contract is stationary with constant moni-

toring aB(q) = WB(q)/φ and constant payouts cB(q) up to default. The contract can then

be implemented by having the agent retain a constant share of the loans βB(q) = cB(q).

In the limit φ → ∞,19 monitoring is prohibitively costly, so both contracted and actual

monitoring equal zero and mechanically there is no moral hazard over monitoring.20 Thus,

the default intensity equals Λ − q and is constant over time. Without moral hazard over

monitoring, the optimal contract stipulates constant payouts ct = 1 up to time τ 0 (finite and

endogenous). At time τ 0, the agent receives, in addition, a lumpy payout dCτ0 > 0. This

contract maximizes the agent’s exposure to loan performance before time τ0, while respecting

the principal’s limited liability. The implementation of the optimal contract then requires

19Likewise, one could consider the case φ = 0 so that at = ā without moral hazard. This leads to default
intensity Λ− ā− q. The model with φ = 0 is isomorphic to the limit φ→∞ upon replacing Λ with Λ− ā.

20An increase in φ relaxes the parameter condition (13) but tightens (14) (which in fact cannot hold in
the limit). We therefore can stipulate ā = χ̄/φ for appropriate constant χ̄ > 0 (large enough to ensure effort
is interior) so that (14) is met in the limit φ→∞. This is merely a technical assumption and does not affect
any of the conclusions, as at tends to zero regardless for φ→∞.
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the lender to retain the entire loan until time τ 0, at which point it fully sells the loan to

investors. As an alternative to the limit argument, Appendix B.8 solves the model when

there is no moral hazard over monitoring (at is observable and contractible) but φ <∞, and

shows that the outcomes in this model variant are similar, i.e., the agent retains the entire

loan at origination and does not sell up to some time τ 0. We thus have that:

Proposition 4. The following holds:

1. When there is no moral hazard over screening, the optimal contract stipulates after

time t = 0 constant payouts up to default at rate cB. The optimal contract can be

implemented by having the agent retain a constant fraction of the loan βB = cB.

2. When there is no moral hazard over screening, there exists a finite time τ 0 ∈ (0,∞)

such that the optimal contract stipulates smooth payouts at rate ct = 1 for all times

t ∈ (0, τ 0). At time τ 0, the optimal contract stipulates a (strictly positive) lumpy payout

dCτ0 > 0 to the agent. The optimal contract can be implemented by requiring the lender

to retain the entire loan until time τ 0, at which point it fully sells the loan to investors.

3.2 Application to Syndicated Loans

While our model applies to credit markets broadly, we focus in what follows on the market

for syndicated loans in which loan sales are common, as shown for example by Drucker and

Puri (2009); Irani et al. (2021).21 We start this section with a brief discussion of some of the

institutional details of the syndication process and how they relate to our model.

The syndication process, which is described in greater detail in Bruche, Malherbe, and

Meisenzahl (2020), consists broadly of three stages. In the first stage (“origination stage”),

the lead lender—also referred to as the lead bank or lead arranger—matches with a borrower

and conducts due diligence (screening). Provided the outcome of the screening process is

positive, the lead lender and co-investors (other banks in the syndicate) jointly commit the

21Loan sales and securitization are common in other markets too and affect lender incentives. For instance,
Purnanandam (2011) and Keys, Mukherjee, Seru, and Vig (2010) find that securitization and the originate-
to-distribute model have led to reduced screening in the market for mortgages prior to the subprime crisis.
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loan to the borrower, with loan terms being determined based on the screening outcome.22

In the second stage (“book running” or “primary market”), the deal is marketed to

outside investors, which can be other banks or institutional investors (e.g., CLOs or loan

market mutual funds). During this stage—which lasts on average 46 days (Bruche et al.,

2020)—outside investors may buy loan shares right away or commit to buying loan shares

in the secondary market.23 That is, during the primary market stage, the lead arranger

gradually reduces its exposure to the loan by engaging in loan sales or, alternatively, pre-

committed loan sales (akin to a forward sale of the loan). During this primary market stage,

the lead arranger is exposed to pipeline risk, i.e., the risk that it cannot sell the loan if

investor demand dwindles, e.g., due to bad news about the borrower (not necessarily limited

to actual default).24 Broadly interpreted, the Poisson process dNt captures such bad news.

In the third stage (“secondary market”), the secondary market opens. Outside investors can

then buy the loan and pre-committed sales can be executed.

In our model, the first stage runs from time t = 0− to time t = 0 and β0 can be seen

as the lead arranger’s initial share of total credit commitment. Then, times t > 0 represent

the second and third stages (i.e., primary and secondary market), during which the lender

gradually reduces its exposure to the loan. Crucially, the implementation of the optimal

contract via the lender’s time-varying retention βt allows us to map our model to the data.

In particular, the empirical analog for βt is the lead arranger’s share which is reported at

origination in the Dealscan database and over time in the Shared National Credit Registry.

Figure 3 plots the lender’s share βt against time t, both under our baseline parameters

(Panel A) and when φ and γ are larger (Panel B). As time passes, the agent sells its stake

βt. Thus, our model generates optimal loan sales by the (lead) lender as part of the optimal

lender-investor contract. Notably, as we argue next, the retention and loan sales dynamics

qualitatively resemble the patterns observed in the data.

First, observe that the selloff speed, as captured by −β̇t in Figure 3, decreases with

22While loan terms can be changed during the syndication process (e.g., due to lack of investor demand),
it is very uncommon that the lenders renege the loan commitment.

23Typically and as discussed in Blickle et al. (2022), CLOs pre-commit to buy loan shares in the secondary
market for tax reasons, instead of directly participating in the syndicate.

24Part of the pipeline risk is also borne by the borrower, as loan terms may be adjusted in response to
weak demand from investors. Bad news may also annul pre-committed loan sales.
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Figure 3: Implementation of the optimal contract and per unit value of the loan.
Panel A uses our baseline parameters and Panel B sets γ = 0.12 and φ = 65.

time t since origination. That is, in Panel A, βt is convex and decreasing in t approaching

βB in the limit (the selloff speed tends to zero as t → ∞), while in Panel B the selloff

speed becomes zero at some point. The interpretation is that most of the loan sales occur

(relatively) shortly after origination, consistent with the findings in Blickle et al. (2022) or

Lee et al. (2022). In fact, under certain parameter conditions, the lender sells off its entire

stake in finite time. In particular, our model is able to capture the selloff dynamics reported

in Blickle et al. (2022) that in some cases (especially for Term B loans) the lender sells its

entire stake relatively shortly after origination (e.g., within 100 days).25 Panel B of Figure 3

plots the retained share when the cost of monitoring φ and lender’s discount rate are larger

than in the baseline. The lender retains initially β0 ≈ 25% of the loan—in line with the

initial retention level reported in Sufi (2007)—and sells its entire stake after 104 days.

More generally, Corollary 1 shows analytically that when the lender’s cost of capital γ

or the cost of monitoring φ are sufficiently large, the lender sells off its entire stake in finite

time. Thus, our model provides an explanation for some of the recent puzzling findings in

the empirical literature on performance and skin in the game. Notably, our results suggest

that lenders will only keep on their books loans that have a low holding cost (low γ) and to

which they can add value through monitoring (low φ):

Corollary 1. Under the implementation from Proposition 3, we have that

25Blickle et al. (2022) report the number of days that it takes the lead arranger to sell its share from the
point that the loan trades on the secondary market. However, as argued above, the lead lender effectively
reduces its exposure to loan performance already in the primary market, which lasts for about 46 days on
average. Thus, the quantities reported in Blickle et al. (2022) (e.g., days to selloff) represent a lower bound
on the actual time that the lender is exposed to loan performance since committing the loan to the borrower.
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1. When the cost of monitoring is sufficiently high in that

φ > max

{
1

(r + Λ− q̄)(γ − r)
,

1

(r + Λ− q̄ − ā)(γ + Λ)

}
, (30)

the lender sells off its entire stake in finite time. In this case, β0 > 0 and there exists

time T ∈ (0,∞) such that βt = 0 and Wt = 0 for t ≥ T .

2. When the cost of monitoring is sufficiently high in that φ < 1
(r+Λ)(γ−r) , the lender never

sells its entire stake, i.e., βt > 0 and Wt > 0 for all t ≥ 0. Thus, φ ≥ 1
(r+Λ)(γ−r) is a

necessary condition for selloff in finite time.

Importantly, the sufficient condition (30) and the necessary condition (φ ≥ 1
(r+Λ)(γ−r)) for

full selloff do not depend on the cost of screening κ. Thus, holding Λ, r, and γ fixed, it is not

possible to rule out that the loans which are sold off in finite time may perform systematically

better than loans that are not sold off. This would happen if the former types of loans are

characterized by high φ and low κ, while the latter ones have low φ but high κ. Therefore, a

regression with a measure of loan performance as the dependent variable and a measure of

selloff (i.e., whether the entire loan is sold in finite time) as an independent variable, as in

Blickle et al. (2022), may yield that loans which are sold in finite time perform better. This

result would, for instance, arise if the cross-sectional correlation between φ and κ is strongly

negative and, as a consequence, that the loans sold by originators are characterized by high

screening (i.e., low κ) and low monitoring (i.e., high φ).

We now provide a comparison of our model to alternatives in how they can generate

retention and loan sales dynamics that are qualitatively similar to those observed in the

data. Note that our model is able to generate retention and loan sales dynamics that are

qualitatively similar to those observed in the data only when we model both screening and

monitoring. Indeed, as discussed above, when there is no monitoring task—as in, e.g.,

Hartman-Glaser et al. (2012)—the lender retains the entire loan up to a time τ 0 and then

sells its entire stake. In this case, retention is either zero or one, which is at odds with the

evidence on the market for syndicated corporate loans. When there is no screening, the

implementation stipulates a constant retention level and no loan sales after origination, a
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pattern that is also inconsistent with the empirical evidence.

Likewise, existing dynamic asymmetric information models of asset trade—such as Daley

and Green (2012) or Adelino, Gerardi, and Hartman-Glaser (2019)—feature lumpy sales, that

is, the seller (the analog of the lender in our model) either holds the asset to be sold or sells it

entirely and there is no partial retention. More recently, Gottardi, Moreira, and Fuchs (2022)

develop a dynamic model of adverse selection in which privately informed sellers decide on

how much to sell/retain of an asset when trades can take place continuously over time. They

show that delay of trade dominates fractional trade as a device to achieve separation, so that

in equilibrium each type trades all of its assets at a unique point in time.26

Finally, we would like to highlight that empirical evidence points toward moral hazard as

an important driver of loan sale dynamics and vice versa. Gustafson et al. (2021) document

that the extent of active monitoring crucially depends on the lead arranger’s retained share

and loan sales. Chen et al. (2023) and Haque et al. (2023) empirically show that changes in

the severity of the lender’s moral hazard problem shape loan sales.

3.3 Loan Characteristics and Retention Dynamics

The optimal contract between the loan originator and outside investors can be implemented

by having the loan originator retain a time-decreasing stake in the loan. As a result, both

the initial retention level and the speed at which the lender sells its stake determine the

strength of dynamic screening and monitoring incentives. We now study how intrinsic credit

risk, the costs of monitoring and screening, and the originator’s cost of capital affect initial

retention and selloff dynamics. To this end, the upper four panels of Figure 4 plot the

lender’s retention level βt for t = 0 (solid black line), t = 3 (dotted red line), and t → ∞

(dashed yellow line) against κ, φ, Λ, and γ. The lower four panels of Figure 4 plot a measure

of the selloff speed, 1 − βt/β0, against κ, φ, Λ, and γ. Note that 1 − βt/β0 is the fraction

of its initial stake that the lender sells up to time T . Thus, if 1 − βt/β0 is high (low), the

lender sells off its initial stake quickly (slowly).

26While delay of trade always weakly dominates fractional trade as signaling device, this relationship is
strict only under limited commitment in their setup.
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Figure 4: Retention and dynamics. Initial retention and selloff speed as functions of the costs
of screening and monitoring κ and φ, intrinsic credit quality Λ, and the lender’s cost of capital γ.

Figure 4 reveals that retention decreases and selloff speed increases as intrinsic credit risk

Λ or the lender’s discount rate γ increase (see Panels C, D, G, and H), so that the lender’s

incentives to screen and monitor decrease, in line with Figure 2. The model, thus, predicts

that the originator initially retains a lower fraction of the loan and sells its stake faster when

ex-ante credit risk (Λ) is high or when it is more capital-constrained. These results are in

line with the findings in Blickle et al. (2022) that lead share sales are positively correlated

with the ex-ante riskiness of the loan and the lead arranger’s capital constraints, the finding

in Irani and Meisenzahl (2017) and Irani et al. (2021) that less-capitalized banks reduce loan

retention, and the finding in Adelino et al. (2019) that mortgage quality is positively related

to the time to sale for securitized mortgages.

Panels A and E present the effects of the cost of screening κ on retention and selloff

speed. Initial retention decreases with κ. However, selloff speed is hump-shaped in κ.27 As

κ increases, contracted screening and monitoring efforts decrease (see Figure 2), leading to

a decrease in incentives and initial retention. To get some intuition for why selloff speed

is the highest for intermediate κ, note that when κ is sufficiently low, moral hazard over

27These results are robust for a larger range of κ and across different parameter values.
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screening becomes negligible and the optimal contract only needs to incentivize monitoring.

Thus, the contract comes close to that in the benchmark with only monitoring moral hazard

and a constant level of retention, that is, a zero selloff speed (see Proposition 4). When κ

is sufficiently large and screening is prohibitively costly, there is effectively no moral hazard

over screening either as the agent’s choice of screening effort tends to zero. Again, in this

case, the contract comes close to that in the benchmark with only monitoring moral hazard

and a zero selloff speed. Consequently, screening effort, which is monotonically decreasing

in κ, can be either increasing or decreasing in selloff speed.

Panels B and F of Figure 4 show the relation between the cost of monitoring φ and

the levels of retention and selloff speed. Remarkably, in contrast to the effect of κ, initial

retention is non-monotonic in φ. The intuition for why initial retention is the lowest for

intermediate φ is related to the observation that when the cost of monitoring φ is sufficiently

low or prohibitively high, moral hazard over monitoring becomes negligible and the optimal

contract only needs to incentivize screening. According to Proposition 4, when the cost of

monitoring φ is sufficiently large, initial retention equals one and selloff occurs only after

sufficient time has elapsed. As a consequence, monitoring effort, which is monotonically

decreasing in φ, can be either increasing or decreasing in initial retention.

These results have important implications for empirical research on incentives and loan

performance. Indeed, our model implies that moral hazard in loan screening and monitoring

does not generate a simple relation between loan performance and initial retention or selloff

speed. As noted above, monitoring effort is non-monotonic in initial retention and screening

effort is non-monotonic in selloff speed. Because loan performance depends on both screening

and monitoring, these non-monotonic relations help rationalize the finding of Blickle et al.

(2022) that initial retention or selloff speed may not predict loan performance.

Instead, the model suggests that screening and monitoring are distinct and that screening

and monitoring levels can be separately matched with observables. Notably, while initial

retention proxies for screening incentives and effort, it does not proxy monitoring incentives

and effort. The intuition for this finding is that initial retention is more relevant for screening

than for monitoring because screening occurs at origination, while monitoring occurs after

32



origination and thus potentially after the loan originator has sold some of its stake. High

initial retention, while stimulating screening, may come along with low monitoring incentives

when the originator quickly sells off its share. Monitoring incentives after time t depend only

on the retention level βt at time t and selloff dynamics after time t, but not directly on β0

or the loan sales up to time t. In line with our theory, Gustafson et al. (2021) find that

monitoring in a given year is positively related to the lead share in the same year.

4 Extensions and Model Variants

4.1 Loan Portfolios

Loan originators often hold a portfolio of loans. In this section, we investigate whether there

are advantages in structuring lender compensation based on the performance of the overall

portfolio by relaxing the loan-level limited liability. To do so, we consider two identical and

independent loans i = 1, 2 that require separate screening and monitoring. Each loan i pays

coupons at rate 1 up to its time of default τ i. Each loan i defaults with the time-varying

intensity

λit = Λ− qi − ait,

where qi is the lender’s screening of loan i at time t = 0− and ait is the lender’s monitoring

of loan i at time t. The two loans’ random default times are independent, conditional on the

lender-investor contract C. The detailed description and solution of this model variant can

be found in Appendix B.2.

One possibility to incentivize loan origination for two identical loans is to write separate

contracts for each loan with the lender. In this case, the baseline contract applies to each

individual loan and—in the proposed contract implementation—the lender retains a time-

decreasing share of each loan. The performance of one loan does not affect the value of the

lender’s stake in the other loan. For instance, if loan i = 2 defaults, the agent’s stake in this

loan becomes worthless, but the value of its stake in loan i = 1 is not directly affected. The

lender is in effect protected by loan-level limited liability, i.e., the punishment the lender
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incurs upon default of loan i is no larger than the loss of her stake in loan i.

We show in Appendix B.2 that such an arrangement is generally not optimal. Instead,

it is optimal to relax loan-level limited liability and replace it with portfolio-level limited

liability, in that the agent loses its entire stake—instead of only its stake in loan i—upon

default of loan i. Structuring the lender’s compensation on the portfolio level facilitates a

more efficient incentive provision for screening and monitoring. As we show in Appendix

B.2, the optimal contract for loan portfolios leads then to higher screening and monitoring,

which reduces default risk and increases total surplus from origination.

We also propose an intuitive and practically relevant implementation of the optimal

contract. In this implementation, the loan portfolio is divided into different tranches, namely,

a junior/equity tranche and a senior tranche. The junior tranche is riskier and fully wiped

out upon the first default event, while the senior tranche maintains its value past the first

default event and absorbs only the second default event. The lender is provided incentives

by retaining the junior tranche of the loan portfolio—an outcome empirically observed in the

mortgage loans market (see, e.g., Begley and Purnanandam (2016))—while investors hold

the senior tranche. As a result, the value of the lender’s stake drops drastically if one loan

defaults which in turn provides the lender incentives to screen and monitor.

4.2 The Effects of Credit Ratings and CLOs

Many loans are rated before they are sold to investors. For instance, in the market for

syndicated loans, institutional investors (e.g., CLOs or loan market mutual funds) typically

buy Term B loans which are most of the time rated. We now analyze how credit ratings

affect the lender’s incentives, retention, and loan sale dynamics. A key finding of this section

is that for rated loans (e.g., Term B loans sold to institutional investors), the lender retains

less of the loan and may sell its entire share shortly after origination.

In this section, we assume that with a credit rating at origination, screening effort be-

comes publicly observable and contractible, which removes the moral hazard over screening

at origination. A micro-foundation of this assumption is provided in Appendix B.6. The in-

tuition underlying this assumption is that the credit rating at origination reveals loan quality
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Figure 5: The effects of credit ratings. ∆y denotes the percentage change in the initial value
of the outcome variable y caused by a credit rating, where y ∈ {a0, q

∗, β0}. Outcome variables are
plotted as functions of the cost of monitoring κ, the cost of screening φ, the raw default intensity
Λ, and the lender’s discount rate γ.

and generates screening incentives, as lax screening would lead to a low rating. Because the

credit rating cannot condition on the actual levels of monitoring that are chosen after the

rating, it does not directly affect the originator’s monitoring incentives after the time of the

rating. As a result, the benchmark model without moral hazard over screening described in

section 2.2.1 can be seen as a model with credit ratings. Proposition 1 characterizes optimal

screening and monitoring in this model.

Figure 5 illustrates the effects of credit ratings on outcome variables by plotting the

percentage change in monitoring effort (first row), screening effort (second row), and initial

retention (third row) at t = 0 due to a credit rating. The credit rating increases screening

at origination but reduces monitoring a0. The reason is that the credit rating increases

the lender’s incentives to screen loans at origination without requiring increasing its skin

in the game. The lender, therefore, retains a lower share in the loan β0, leading to lower

monitoring incentives W0 = φa0. In the market for syndicated loans, Term B loans are

typically rated and sold to institutional investors, such as CLOs or loan market mutual
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funds. Our findings on the effects of credit ratings imply that such loans are subject to more

screening at origination and less monitoring after origination. Finally, our model predicts

that the share retained by the originator should be lower when the originator sells rated

loans to CLOs. The bottom row in Figure 5 indicates that the retention of rated loans is

particularly low when φ or γ are large.

4.3 The Effects of Loan Maturity

Our baseline model features infinite maturity loans or finite maturity loans that are rolled

over up to default. We now consider finite maturity loans that are not rolled over. The

extension is important for two reasons. First, we want to show that our main results do

not hinge on a specific modeling of maturity. Second, as screening and monitoring efforts

have effects of different duration, loan maturity—which affects a loan’s duration—could have

different effects on these two tasks, with important implications for how loan maturity shapes

the lender’s dynamic retention and loan sales.

To model finite maturity, we follow Chen, Xu, and Yang (2021) and consider that the

loan randomly matures with Poisson intensity δ > 0. That is, ignoring default, the expected

loan maturity is 1/δ. Up to its maturity date, the loan makes coupon payments at rate 1.

When the loan matures, the firm pays back the face value, which is the joint terminal payoff

of the lender and outside investors. The baseline setting corresponds to the case δ = 0.

The model with a finite maturity and its solution are described in Appendix B.3. With

finite maturity loans, the contracting problem is essentially the same as in the baseline

model, except that one needs to take into account the impact of finite maturity on the value

function and state variables. The contract dynamics in the model with finite maturity are

qualitatively similar to those in the baseline model, and the contract can be implemented by

requiring the originator to hold a time-decreasing share of the loan. As we show in Appendix

B.3, the agent’s screening incentives at time t = 0 read

V0 =

∫ ∞
0

e−(γ+δ)t−
∫ t
0 λsdsWtdt, (31)
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Figure 6: The effects of debt maturity. We use our baseline parameters and set T = 3 for
selloff speed. The dotted red line depicts the outcomes with infinite debt maturity.

which is the product of the value and the duration of the lender’s exposure. At maturity,

the lender exits and is no longer exposed to default risk, so its screening incentives fall to

zero; thus, the difference between (10) and (31) is that δ augments the discount rate, which

reduces screening incentives. That is, keeping the value of the lender’s claim constant, a

shorter maturity reduces the duration of the claim and thus the lender’s long-run exposure

to loan performance, thereby undermining screening incentives. In contrast, loan maturity

has no direct effect on monitoring incentives, as the impact of monitoring is short-lived.

The total effect of finite maturity also depends on its impact on the value of the lender’s

claim. Figure 6 plots initial monitoring effort a0 (Panel A) and screening effort q∗ (Panel D)

for varying loan maturities. Short maturity undermines screening incentives by shortening

the duration of the lender’s claim. To counteract this adverse effect, the optimal contract

stipulates a higher value of the lender’s initial exposure W0 which leads to high monitoring

effort a0 for short maturity loans (Panel A). Despite high initial exposure, the duration effect

dominates, and so screening effort decreases for short maturity loans (Panel D). Therefore,

our model predicts relatively low screening but high initial monitoring for loans with a short

maturity. Implementing these incentives for short maturity loans requires a higher initial
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retention level β0 (Panel C) and a relatively quick selloff (Panel D) after origination.

The effects of debt maturity on screening and monitoring feed back into default risk.

Notably, Panel E of Figure 6 shows that because monitoring has less persistent effects than

screening and the initially high-powered monitoring incentives taper off over time as the

lender sells off her stake, loans with shorter maturity have higher default risk.28 Panel B of

Figure 6 shows that total surplus increases with debt maturity due to lower agency costs.

4.4 Repeated Loan Origination

Repeated lender-borrower and lender-investor interactions are common in credit markets, in

particular in syndicated lending. To formally analyze repeated lender-investor interactions,

we consider that (after screening) the lender originates a loan with face value K, coupon

payments at rate 1, and stochastic maturity arriving with exogenous intensity δ > 0 at time

τ δ. When the loan matures at time τ δ, the face value is repaid, and the lender originates

a new and identical loan to a new borrower with exogenous probability pδ, so that the

lender has to re-screen and exert costly screening effort when a new loan is originated.29

Otherwise, with probability 1− pδ, the lender exits and cannot originate further loans. If a

loan defaults at time τ , the lender originates another loan with (exogenous) probability pλ.

With probability 1− pλ, the lender exits (i.e., the relationship breaks down). We introduce

the probabilities pδ and pλ to make the continuation of the relationship probabilistic, thereby

capturing the fact that the number of repeated interactions is not infinite in practice. For

simplicity, we assume that pδ = 1 and pλ ≤ 1. That is, the lender faces the possibility

of being excluded from the secondary market upon default and not being able to originate

further loans (due, e.g., to a loss in competitiveness related to the inability to sell the loan).

28To compare credit risk across different loan maturities on a fair basis, we calculate the expected time
to default (at time t = 0) conditional on the loans not maturing. That is, we use the (inverse) measure of
credit risk

τ :=

∫ ∞
0

e−
∫ t
0
λududt

which eliminates the effect of maturity on the duration over which the loan is exposed to credit risk.
29Note that our baseline setting already captures repeated lender-borrower interactions. Notably, our

baseline model can be interpreted as follows: The lender extends a loan with face value K and coupon
payments at rate 1 to the borrower with a possibly finite maturity, and this loan is rolled over at identical
terms and without re-screening at maturity until a default occurs at time τ .
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This assumption is consistent with empirical evidence in Gopalan et al. (2011) showing that,

following poor performance (e.g., a default of a previously syndicated loan), lead arrangers

sell less of the loans they syndicate. Setting pλ = 0 and δ = 0 yields our baseline model.

A detailed description of this model variant as well as its solution and analysis are pre-

sented in Appendix B.4. In this Appendix, we derive two main findings. First, the going-

concern value from repeated loan origination and sale serves as an incentive mechanism for

screening and monitoring, which substitutes for loan retention (as found in Gopalan et al.

(2011)).30 Thus, with repeated interactions, the lender generally retains a lower share or

sells the loan faster. As such, due to repeated origination and lender-investor relationships,

the lender may have strong incentives to screen and monitor so that the loan’s default risk

is low, even if loan retention by the originator is low and or if it sells its share quickly after

origination. This provides a rationale for the finding that, in the market for syndicated loans,

loans need not perform poorly even when the lead lender sells its share relatively quickly

after origination (Blickle et al., 2022).

Second, repeated interactions facilitate lender commitment to a specific retention path

stipulated in the contract implementation. Recall from Section 3.1 that the optimal con-

tract can be implemented by having the lender retain a time-decreasing share of the loan,

thus inducing optimal loan sales as part of the optimal full-commitment contract. This im-

plementation also applies in the context of the model variant with repeated lender-investor

interactions. Because the lender has a higher cost of capital and thus values the loan less

than investors, the lender might be tempted to deviate from the recommended retention

schedule and sell a larger share of the loan to investors. In Appendix B.4, we consider that

if the lender were to deviate by selling more than recommended, investors would cut the

relationship, thereby precluding further loan origination by the lender. That is, investors

play a grim-trigger strategy. We then show that, provided the lender expects sufficiently

large payoffs from future loan origination, the lender indeed finds it optimal not to deviate

from the contracted retention path, even when it cannot commit.

30Hartman-Glaser (2017) obtains a similar result in a model of repeated asset sales under adverse selection,
showing that reputation concerns can substitute for retention in signaling.
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4.5 Is it Optimal to Bundle Monitoring and Screening?

We have so far assumed that the loan originator is responsible for both screening and moni-

toring. In practice, screening and monitoring may be undertaken by separate entities. Some

securitized loans are serviced by a third-party servicing company and, depending on the spe-

cific arrangements, servicing can subsume monitoring activities. In these cases, the originator

is in charge of screening, and the servicer is in charge of monitoring. The important question

is, therefore, whether bundling screening and monitoring affects incentives and credit risk.

To address this question, we consider a setting in which monitoring and screening are

conducted by two different agents (called the monitor and screener). To make the comparison

with the baseline model sensible, we assume that the monitor and the screener have identical

preferences; monitoring effort (screening effort) is only and privately observed by the monitor

(screener). Appendix B.5 provides a detailed description and solution of the model with

separated screening and monitoring tasks. Below, we describe the intuition for the optimal

contract, its dynamics, and present numerical results related to key outcome variables.

Screening and monitoring incentives are provided by having the screener and monitor

retain a share of the loan. The screener’s and monitor’s shares add up to one until sufficient

time has elapsed and the screener sells off its entire stake at once to investors; the monitor

continues to maintain (time-varying) exposure to the loans. Notably, monitoring incentives

(provided to the monitor) have two opposing effects on screening incentives. On the one hand,

monitoring reduces the likelihood of default, leading to a longer lasting impact of screening

and, therefore, to stronger screening incentives. On the other hand, stronger monitoring

incentives require raising the monitor’s stake, which, in turn, requires lowering the screener’s

stake as their shares add up to one. This second effect leads to negative spillovers between

monitoring and screening incentives. In contrast, when one agent is responsible for both

monitoring and screening, monitoring unambiguously boosts screening incentives, leading to

positive spillovers between monitoring and screening incentives.

As a result, while bundling monitoring and screening leads to positive synergies, separat-

ing these two tasks can lead to negative synergies. Accordingly, as we show in Appendix B.5,

bundling screening and monitoring leads to higher screening and monitoring efforts, increases
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total surplus, and reduces credit risk (i.e., increases the expected time to default). Our model

therefore predicts relatively low levels of monitoring and screening in the mortgage market,

where screening and monitoring tasks are often separated (Demiroglu and James, 2012). The

analysis also predicts that bundling is more likely to occur in credit markets in which screen-

ing and monitoring are important for credit risk (i.e., the effects of screening/monitoring are

large relative to the cost), such as the market for corporate and syndicated loans.

5 Conclusion

We study a dynamic moral hazard problem in which a lender (e.g., the lead bank in a

syndicate) originates a loan to sell it to investors (e.g., other financial institutions in the

syndicate). The lender controls the loan’s default risk through screening at origination

and monitoring after origination, both of which are subject to moral hazard. Screening

and monitoring incentives are provided by exposing the lender to loan performance. As

screening occurs only once at the origination of the loan, incentives are front-loaded and

stronger shortly after origination. The optimal contract can be implemented by requiring the

loan originator to retain a time-decreasing stake in the loan so that its incentives to monitor

decrease and credit default risk increases over time. The model implies that there are positive

synergies between screening and monitoring incentives, making screening and monitoring

complements. The optimal contract also implies that screening and monitoring decrease

with intrinsic (pre-screening) credit risk, suggesting that lenders specializing in financing

high-quality borrowers (such as banks) exert higher levels of screening and monitoring.

The unique and novel feature of our paper is that it allows us to analyze how loan and

originator characteristics affect initial retention and subsequent loan sales, thereby ratio-

nalizing a number of empirical findings and providing new testable empirical hypotheses.

For instance, we show that initial retention decreases while the selloff speed increases with

borrowers’ intrinsic credit risk, the lender’s cost of capital, or loan maturity. Moreover, our

model implies that while initial retention increases with the cost of screening, which maps

one-to-one to hidden screening effort, it is non-monotonic in the cost of monitoring, which
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maps one-to-one to hidden monitoring effort. In contrast, the speed at which the lender sells

off its stake in the loan increases with the cost of screening, but is non-monotonic in the

cost of monitoring. Our model, therefore, suggests that the originator’s initial retention can

serve as a proxy for screening but not for monitoring incentives, whereas the selloff speed

can serve as a proxy for monitoring but not screening incentives.

Our model is simple and general enough that it can be used to analyze a wide range

of credit markets. For example, we extend our model to analyze the provision of incentives

when screening and monitoring are performed by separate entities, which is often the case for

mortgages: An originator that selects loans initially and a servicer that monitors them later.

We show that such a separation of monitoring and screening tasks reduces both monitoring

and screening effort, thereby increasing credit risk.

Finally, the moral hazard problem we study also has applications in contexts other than

credit securitization and syndicated lending. In particular, screening before funding an

investment and monitoring afterward is also common in venture capital financing (see Bern-

stein, Giroud, and Townsend (2016) for evidence on monitoring and Abuzov (2023) for evi-

dence on screening). Our theory could be easily modified to study venture capital financing

with moral hazard over screening and monitoring. We leave this for future research.
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Appendix

A Proofs

A.1 Proof of Lemma 1

We first characterize the agent’s monitoring incentives. By the dynamic programming principle

and the arguments presented in the main text, the agent chooses monitoring effort at to solve

max
at∈[0,ā]

(
atWt −

φa2
t

2

)
, (A.1)

which yields

at = min

{
Wt

φ
, ā

}
.

Observe that when optimal monitoring effort is interior and at < ā, the above condition simplifies

to (6), i.e., at = Wt
φ , which is the first order condition to (A.1). The second order condition to

(A.1), i.e., ∂2

∂a2t

(
atWt − φa2t

2

)
= −φ < 0, is satisfied. Thus, contracted effort level in an incentive

compatible contract satisfies ât = Wt/φ.

Second, we characterize the agent’s screening incentives. Note that the agent chooses screening

effort to solve

max
q∈[0,q̄]

(
W0(q)− κq2

2

)
, (A.2)

where we make the dependence of W0 on q explicit. Define

V0(q) =
∂

∂q
W0(q).

The integral expression (10) and the fact that Wt ≥ 0 (with strict inequality on a set with positive

measure) imply that V0(0) > 0. Thus, the solution q to (A.2) satisfies q > 0.

Now observe that

q = min

{
V0(q)

κ
, q̄

}
(A.3)

is the unique solution to (A.2) if

∂2

∂q2

(
W0(q)− κq2

2

)
=

∂

∂q
V0(q)− κ < 0 (A.4)

holds for any q ∈ [0, q̄], in which case the objective in (A.2) is strictly concave over the entire interval

[0, q̄] and the first order approach is valid. When optimal screening effort is interior, condition (A.3)

simplifies to (9), i.e., q = V0/κ, which is the first order condition to (A.2).

In what follows, we provide a sufficient condition for (A.4) to hold for all q ∈ [0, q̄], which

concludes the proof. Define

Yt(q) =
∂

∂q
Vt(q),
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and note that (A.4) can be rewritten as Y0(q) < κ. Next, insert at = Wt(q)/φ into (12) to obtain

V̇t =
dVt(q)

dt
=

(
γ + Λ− Wt(q)

φ
− q
)
Vt(q)−Wt(q), (A.5)

bearing in mind λt = Λ−Wt(q)/φ− q. We now differentiate (A.5) with respect to q to obtain

Ẏt =
dYt(q)

dt
= (γ + λt)Yt(q)− 2Vt(q)−

(Vt(q))
2

φ
.

We can integrate the above ODE over time to obtain

Yt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
2Vs(q) +

(Vs(q))
2

φ

)
ds (A.6)

for all t ≥ 0. In addition, (10) implies

Vt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWs(q)ds (A.7)

for all t ≥ 0. Note now that (owing to at ≤ ā and q ≤ q̄)

λt = Λ− at − q ≥ Λ− ā− q̄. (A.8)

Next, observe that the agent’s continuation value is bounded from above by

Wt ≤ Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds

<

∫ ∞
t

e−(r+Λ−ā−q̄)(s−t)1ds =
1

r + Λ− ā− q̄
=: Wmax (A.9)

where the first inequality follows from outside investors’ limited liability, i.e., Pt = Ft −Wt ≥ 0.

Using these two relations (A.8) and (A.9) as well as (A.7), we obtain that

Vt(q) <

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWmaxds ≤

∫ ∞
t

e−(γ+Λ−ā−q̄)(s−t)Wmaxds

≤ Wmax

γ + Λ− ā− q̄
<

1

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)
(A.10)

Using this inequality (A.10) and the integral representation in (A.6), we obtain that

Yt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
2Vs(q) +

(Vs(q))
2

φ

)
ds

≤
∫ ∞
t

e−(γ+Λ−ā−q̄)(s−t)
(

2Vs(q) +
(Vs(q))

2

φ

)
ds

<
1

(γ + Λ− ā− q̄)

(
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)2

)
.
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As a result, a sufficient condition for (A.4), i.e., for

Y0(q) < κ,

to hold for any q ∈ [0, q̄] is given by

κ >
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)2
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)3
. (A.11)

That is, when (A.11) holds, the first order approach is valid and (A.3) or, equivalenty, (9) (due to

q < q̄) pins down screening effort. Note that (A.11) is equivalent to condition (13) (Lemma 1).

Also notice that (13) but not per-se necessary.

A.2 Proof of Proposition 1

To characterize the model solution when screening q is observable and contractible, we proceed in

several steps. We first fix q and solve the continuation problem for times t > 0. We then determine

optimal screening effort, q = qB.

At any time t > 0, total surplus, Ft = Pt +Wt, can be written as

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1ds− dCs)︸ ︷︷ ︸
=Pt

+

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
dCs −

φa2
s

2
ds

)
︸ ︷︷ ︸

=Wt

,

where

Pt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1ds− dCs)

is the principal’s continuation payoff and

Wt =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
dCs −

φa2
s

2
ds

)
is the agent’s continuation payoff from time t onward. We can differentiate the expressions for Wt

and Pt with respect to time, t, to get

dPt = (r + λt)Ptdt− 1dt+ dCt (A.12)

dWt = (γ + λt)Wtdt+
φa2

t

2
dt− dCt. (A.13)

As a result, the dynamics of total surplus are given by

dFt = dPt + dWt (A.14)

= (r + λt)Ptdt− 1dt+ dCt + (γ + λt)Wtdt− dCt +
φa2

t

2
dt

= (r + λt)(Pt +Wt︸ ︷︷ ︸
=Ft

)dt− 1dt+
φa2

t

2
dt− (γ − r)Wtdt. (A.15)
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We can integrate (A.14) over time, t, to get

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds, (A.16)

which is (20) from the main text.

Recall that the agent chooses the payout agreement C to maximize total surplus at time zero

F0 −
κq2

2
, (A.17)

where F0 is characterized in (A.16). Note that it is always possible to stipulate payouts dCt to the

agent, which decreases Wt by some amount dCt. As such, controlling payouts to the agent dCt is

equivalent to controlling the agent’s continuation payoff Wt. In the following, we take Wt rather

than dCt as control variable for the dynamic optimization, and we drop the control variable dCt.

By the dynamic programming principle, total surplus Ft must solve at any time t > 0 the HJB

equation

rFt = max
Wt∈[0,Ft],at≥0

(
1− φa2

t

2
− (γ − r)Wt + Ḟt − λtFt

)
,

which is solved subject to the monitoring incentive condition (6) and where Ḟt = dFt
dt . As default

is the only source of uncertainty and as there are no relevant state variables for this dynamic

optimization problem, the solution is stationary, so that Ḟt = 0 and we can omit time sub-scripts

(i.e., we write Ft = FB(q)). In turn, the HJB equation simplifies to

rFB(q) = max
W∈[0,FB(q)],a∈[0,ā]

(
1− φa2

2
− (γ − r)W − λFB(q)

)
(A.18)

subject to the monitoring incentive constraint (6), which can be rewritten as (17).

The maximization in the above HJB equation yields that, if interior, optimal monitoring effort

reads

aB(q) =
FB(q)− φ(γ − r)

φ
, (A.19)

and the optimal lender continuation value is WB(q) = φaB(q), due to (6). With a slight abuse

of notation, if the above expression for aB(q) is negative, then optimal monitoring effort aB(q) is

zero. If the above expression for aB(q) exceeds ā, then optimal monitoring effort aB(q) is ā. Note

that the first order condition (A.19) implies φaB(q) = WB(q) < FB(q), so the principal’s limited

liability constraint does not bind in optimum. Since, clearly, FB(q) increases with q, it follows that

aB(q) increases with q, i.e., ∂
∂qa

B(q) ≥ 0.

Optimal monitoring effort implies the instantaneous default probability λ = λB(q) = Λ − q −
aB(q). The law of motion (A.12) and dWt = 0 imply then that payouts to the agent take the form

dCt = cB(q)dt with

cB(q) = (γ + λB(q))WB(q) +
φ(aB(q)2

2
. (A.20)

That is, payouts to the agent are smooth and positive.
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The objective (A.17) can be rewritten as

max
q∈[0,q̄]

(
FB(q)− κq2

2

)
. (A.21)

At time t = 0, the agent chooses screening effort q ∈ [0, q̄] to maximize (A.21), leading to optimal

screening effort qB.

A.3 Proof of Proposition 2

A.3.1 Preliminaries

To begin, we derive the dynamics of Wt, i.e., (11), the dynamics of Vt (defined in (8)), and the

integral expression (10). Now, recall the definition of Wt in (4) and differentiate (4) with respect

to time, t, to obtain

Ẇt :=
dWt

dt
= (γ + λt)Wt +

φa2
t

2
− ct,

which is (11). Using (11), we can write the intermediary’s optimization with respect to monitoring

effort at at time t as

γWt = max
at∈[0,ā]

(
− (Λ− at − q)︸ ︷︷ ︸

=λt

Wt −
φa2

t

2
+ ct + Ẇt

)
, (A.22)

which yields optimal at = min
{
Wt
φ , a

}
(as in (6)) and, as we focus on interior levels, at = Wt/φ.

Next, note that because screening effort q is neither observable nor contractible, an unobserved

change in screening effort q cannot affect contracted flow payments ct. We now use the envelope

theorem to differentiate both sides of (A.22) under optimal at with respect to q so that

γVt = Wt − λtVt + V̇t ⇐⇒ V̇t = (γ + λt)Vt −Wt,

which is (12) as desired. Note that we used ∂
∂qẆt = ∂

∂q
d
dtWt = d

dt
∂
∂qWt = dVt

dt = V̇t as well as
∂
∂q

∂Wt
∂at

= 0 (envelope theorem) and ∂ct
∂q = 0.31 We can integrate V̇t = (γ + λt)Vt −Wt over time t

31In more detail, note that

d

dq
Wt =

∂Wt

∂q
+
∂Wt

∂at

∂at
∂q

+
∂Wt

∂ct

∂ct
∂q

=
∂

∂q
Wt,

as ∂Wt

∂at
= 0 and ∂ct

∂q = 0. An alternative derivation (not relying explicitly on envelope theorem) simply

rewrites (11) by inserting monitoring incentive compatibility, at = Wt/φ, to obtain

Ẇt =

(
γ + Λ− Wt

φ
− q
)
Wt +

W 2
t

2φ
− ct.

Differentiating both sides with respect to q and using ∂ct
∂q = 0, we obtain

V̇t = (γ + λt)Vt −Wt −
VtWt

φ
+
VtWt

φ
,
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to obtain the integral expression (10), that is, Vt =
∫∞
t e−γ(s−t)−

∫ s
t λuduWsds.

The remainder of the proof is split in six parts. Part I characterizes total surplus as a function

of the agent’s screening incentives Vt = V and shows that in optimum, total surplus (i.e., the

value function F (V )) solves the HJB equation (23). Part II demonstrates that limt→∞ Vt = V B(q).

Part III characterizes the agent’s initial choice of optimal screening effort q = q∗. Part IV verifies

that κq∗ = V0 > V B(q∗), and shows that V̇t < 0 at all times t ≥ 0. Part V proves that total

surplus (i.e., the value function) decreases in V and is concave. Part VI shows that payouts to the

agent are smooth and positive. Unless otherwise mentioned, we focus on optimal interior effort

levels, at ∈ (0, ā) and q ∈ (0, q̄). As in the main text, we characterize the solution for t ≥ 0 given

screening effort q, and then determine the optimal screening effort q = q∗; unless necessary we do

not distinguish notation-wise between q and the optimally chosen screening effort q∗.

We make the following regularity assumption. Throughout, we assume that there exists a

unique solution F (V ) to the HJB equation (23) which is continuously differentiable. Further, we

assume that the second derivative F ′′(V ) exists almost everywhere in the state space (V B(q), V0)

(i.e., the set of points at which F ′(V ) is not differentiable is not dense).

A.3.2 Part I

Our aim is to characterize the model solution when screening effort q is neither observable nor

contractible. As in the proof of Proposition 1, we first fix the choice of q made at time t = 0 and

solve the continuation problem for times t > 0. Recall that according to Lemma 1, the incentive

condition (9) holds at time t = 0 so that V0 = κq.

The optimal contract maximizes total surplus characterized in (A.16):

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds.

Note that it is always possible to stipulate payouts dCt to the agent, which decreases Wt by some

amount dCt and leaves Vt unchanged. As such, controlling payouts to the agent dCt is equivalent

to controlling the agent’s continuation payoff Wt. In the following, we take Wt rather than dCt
as control variable. Thus, the agent’s optimization problem only depends on the state variable Vt
summarizing the agent’s screening incentives. As a consequence, we can express total surplus as

function of Vt, in that Ft = F (Vt). In what follows, we omit time-subscripts whenever possible.

Recall that screening incentives V evolve according to (12), i.e., V̇ = (γ + λ)V −W. By the

dynamic programming principle, total surplus F (V ) solves in any state V the HJB equation

rF (V ) = max
W∈[0,F (V )],a∈[0,ā]

{(
1− φa2

2
− (γ − r)W

)
− λF (V ) + F ′(V )((γ + λ)V −W )

}
,

which is solved subject to the monitoring incentive constraint (6). Recall that both the principal

and the agent are subject to limited liability, so that W ∈ [0, F (V )] and the principal’s payoff

F (V )−W satisfies F (V )−W ∈ [0, F (V )] too. The above HJB equation coincides with (23). The

which simplifies to (12), as desired.
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maximization in the above HJB equation yields that, if interior, optimal monitoring effort is

a(V ) =
F (V )− F ′(V )(V + φ)− (γ − r)φ

φ
∧ F (V )

φ
. (A.23)

With slight abuse of notation, when above expression is negative, then a(V ) = 0. Under the

benchmark solution from Proposition 1 (for given q), all model quantities are constant, monitoring

is aB(q), and the agent’s continuation value is WB(q) = φaB(q). As such, screening incentives

are constant at level V B(q) and by inserting V̇ = 0 and the optimal levels of effort aB(q) and

continuation value WB(q) = φaB(q) into (12), we can solve for

V B(q) =
WB(q)

γ + Λ− aB(q)− q
. (A.24)

It follows that when V = V B(q), the continuation surplus is FB(q). That is, the surplus function

F (V ) satisfies

F (V B(q)) = FB(q). (A.25)

Also note that optimal effort a(V ) satisfies a(V B(q)) = aB(q). In the next Part (i.e., Part II) of

the proof, we show that limt→∞ Vt = V B(q), which then—together with (A.25)—implies

lim
V→V B(q)

F (V ) = FB(q),

as well as limV→V B(q) a(V ) = aB(q).

A.3.3 Part II

In this part, we prove that limt→∞ Vt = V B(q). To do so, we set up the Lagrangian for the total

surplus maximization at time t = 0

L =

∫ ∞
0

e−rt−
∫ t
0 λudu

(
1− (γ − r)Wt −

φa2
t

2

)
dt︸ ︷︷ ︸

=F0

+`
(
κq −

∫ ∞
0

e−γt−
∫ t
0 λuduWtdt︸ ︷︷ ︸

=V0

)

= F0 + `(κq − V0). (A.26)

where ` is the Lagrange multiplier with respect to the screening incentive constraint (9) and Wt =

φat is the effort incentive constraint which we directly insert into the objective function.

Next, we rewrite (A.14) as

dFt = rFtdt− 1dt+ (γ − r)Wtdt−
φa2

t

2
dt+ λFtdt,

which can be integrated over time to obtain

Ft =

∫ ∞
t

e−r(s−t)
(

1− φa2
s

2
− (γ − r)Ws − λsFs

)
ds. (A.27)
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Likewise, we can rewrite (12) as

dVt = γVtdt−Wtdt+ λtVtdt,

which can be integrated over time to get

Vt =

∫ ∞
t

e−γ(s−t) (Ws − λsVs) ds. (A.28)

Using (A.27) and (A.28), we can rewrite the Lagrangian (A.26) as

L =

∫ ∞
0

e−rt
(

1− (γ − r)Wt −
φa2

t

2
− λtFt

)
dt+ `

(
κq −

∫ ∞
0

e−γt(Wt − λtVt)dt
)
. (A.29)

We can maximize the Lagrangian point-wise (that is, for each time t) with respect to at, taking

into account the monitoring incentive constraint (6), i.e., at = Wt/φ. If interior, optimal effort at
satisfies the first order condition:

e−rt(Ft − (γ − r)φ− φat)− `e−γt(φ+ Vt) = 0 (A.30)

Multiplying both sides of (A.30) by ert, we obtain

Ft − (γ − r)φ− φat − `e−(γ−r)t(φ+ Vt) = 0. (A.31)

Accounting for limited liability Wt = φat ≤ Ft and at ≥ 0, we can solve (A.31) for

at = max

{
0,
Ft − (γ − r)φ− `e−(γ−r)t(Vt + φ)

φ

}
∧ Ft

φ
. (A.32)

Taking the limit t→∞ in (A.32) upon noticing that limt→∞Wt < limt→∞ Ft leads to

lim
t→∞

at = lim
t→∞

(
Ft − (γ − r)φ

φ

)
< lim

t→∞

Ft
φ
, (A.33)

as Vt is bounded (see inequality (A.10) in the proof of Lemma 1 and note that by definition, Vt ≥ 0).

We conjecture (and verify) that, in the limit t → ∞, the solution becomes stationary and Ft
and at become constant, in that

lim
t→∞

Ft = F̂ and lim
t→∞

at = â

for (endogenous) constants F̂ and â.32 Note that by (A.33),

â = max

{
0,
F̂ − (γ − r)φ

φ

}
. (A.34)

32Equivalently,
lim
t→∞

Ḟt = 0 and lim
t→∞

ȧt = 0.
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Using that Wt → φâ and λt → Λ− â− q as t→∞, we can use (20) to calculate that

F̂ =
1− (γ − r)φâ− φâ2

2

r + Λ− â− q
, (A.35)

which confirms that limt→∞ Ft = F̂ . As

â = arg max
a∈[0,ā]

(
1− (γ − r)φa− φa2

2

r + Λ− a− q

)
, (A.36)

it follows that optimal effort satisfies limt→∞ at = â for an endogenous constant â.

Recall the definition of FB(q) from (A.18). Now note that (A.34) and (A.35) as well as (A.36)

jointly imply that F̂ = FB(q) and â = aB(q), so that Ŵ = WB(q). As a result, it also follows that

lim
t→∞

Vt = lim
t→∞

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWsds =

φâ

γ + Λ− â− q
= V B(q) and lim

t→∞
V̇t = 0. (A.37)

As Vt is the only relevant state variable for the dynamic optimization problem, it follows that Vt
cannot have a stationary point Vt 6= V B(q) with V̇t = 0, as otherwise (A.37) would not hold.

That is, when V0 = κq > V B(q), it follows that V̇t < 0, with convergence according to (A.37).

Likewise, when V0 = κq < V B(q), it follows that V̇t > 0, with convergence according to (A.37). In

the knife-edge case V0 = κq = V B(q), it holds that Vt = V B(q) and V̇t = 0.

Last, we characterize the limit limV→V B(q) F
′(V ). Note that due to (A.25), that is, F (V B(q)) =

FB(q), and limt→∞ Vt = V B(q), it follows that limV→V B(q) F (V ) = FB(q) and limV→V B(q) a(V ) =

aB(q). We know from Proposition 1 thatWB(q) < FB(q), so that limV→V B(q)W (V ) < limV→V B(q) F (V ).

Thus, for V close to V B(q), the principal’s limited liability constraint does not bind. Using (A.23),

limV→V B(q) a(V ) = aB(q) becomes equivalent to

lim
V→V B(q)

F ′(V ) = 0, (A.38)

when aB(q) > 0. In the case that aB(q) = V B(q) = 0, we have

lim
V→V B(q)

F ′(V ) =
FB(q)− (γ − r)φ

φ
≤ 0, (A.39)

so that a(V ) from (A.23) converges to aB(q) = 0 as V → V B(q) = 0.

A.3.4 Part III

At time t = 0, initial screening incentive V0 pins down screening effort q by means of the screening

incentive constraint (9). The agent picks the amount of initial screening incentives V0 to maximize

max
q∈[0,q̄]

(
F (V0)− κq2

2

)
s.t. V0 = κq. (A.40)
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Even if optimal screening is not interior and satisfies q∗ = q̄, it would be optimal to set V0 = κq∗,

as F (V ) decreases in V > V B(q) and the screening incentive condition (9) is optimally tight.

The first order condition to (A.40) is

∂F (V0)

∂q
|q=q∗ + F ′(V0)κ = κq∗, (A.41)

which holds if q = q∗ ∈ (0, q̄).

A.3.5 Part IV

We now explicitly distinguish between q∗ (optimal screening level) and q (potentially different

screening). This part of the proof shows that in optimum (i.e., for q = q∗), we have κq∗ = V0 >

V B(q∗). Because limt→∞ Vt = V B(q∗) and because there is no stationary point with V̇t = 0,

V0 > V B(q∗) implies V̇t < 0 whenever Vt > V B(q∗). It suffices to consider q∗ > 0 and aB(q∗) > 0.

Suppose to the contrary that

κq∗ = V0 ≤ V B(q∗) =
WB(q∗)

γ + Λ− aB(q∗)− q∗
, (A.42)

where the last equality follows (A.24). Note that Wt ≤ Ft at all times t ≥ 0 and, in particular,

WB(q∗) ≤ FB(q∗). We then obtain

κq∗ = V0 ≤
WB(q∗)

γ + Λ− aB(q∗)− q∗
<

FB(q∗)

r + Λ− aB(q∗)− q∗
, (A.43)

where the first inequality follows (A.42) and the second inequality uses γ > r andWB(q∗) ≤ FB(q∗).

Next, define the following (continuous) function (of q):

G(q) := FB(q)− κq2

2
.

For any screening effort q ∈ (0, q̄), recall the HJB equation for V = V B(q), that is, (A.18) or

rFB(q) = max
W∈[0,FB(q)],a∈[0,ā]

(
1− φa2

2
− (γ − r)W − λFB(q)

)
.

We can use the envelope theorem and differentiate both sides of (A.18) with respect to q to obtain

under the optimal controls (WB(q), aB(q)):

(r + λ)
∂FB(q)

∂q
= FB(q) ⇐⇒ ∂FB(q)

∂q
=

FB(q)

r + Λ− aB(q)− q
> 0. (A.44)

As aB(q) increases with q (see Proposition 1), above relation implies that ∂2FB(q)
∂q2

> 0 and ∂3FB(q)
∂q3

>
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0.33 Using (A.44), we obtain

G′(q) =
FB(q)

r + Λ− aB(q)− q
− κq. (A.45)

We also calculate

G′′(q) =
∂2

∂q2
FB(q)− κ and G′′′(q) =

∂3

∂q3
FB(q) > 0.

Due to G′′′(q) > 0, the function G(q) is either concave on the entire interval [0, q̄] or concave on an

interval [0, q′] and convex on the interval [q′, q̄] for q′ < q̄. This observation implies that G(q) has

at most one local maximum on [0, q̄].

We focus on interior optimal levels of q. Therefore, the maximum of G(q) on the interval [0, q̄]

is denoted by

qB = arg max
q∈[0,q̄]

G(q) = arg max
q∈[0,q̄]

(
FB(q)− κq2

2

)
,

and satisfies G′(qB) = 0 (first order condition) as well as G′′(qB) < 0 (second order condition).

Thus, qB < q̄ holds by assumption, and q = qB is the unique maximum of G(q) on [0, q̄]. Hence, on

[0, qB), G′(q) 6= 0, and G′(qB) = 0. As G′′(qB) < 0 and G′′′(q) > 0, it follows that G′′(q) < 0 on the

interval [0, qB). Furthermore, G(q) must strictly increase on the interval [0, qB), in that G′(q) > 0

and G′′(q) < 0 for q ∈ [0, qB).

Next, define the (continuous) function of q:

K(q) := V B(q)− κq, (A.46)

with V B(q) from (A.24), that is,

V B(q) =
WB(q)

γ + Λ− aB(q)− q
=

φaB(q)

γ + Λ− aB(q)− q
.

Recall that aB(q) and WB(q) = φaB(q) increase with q (see Proposition 1). Thus, the function

V B(q) is strictly convex, implying that K(q) is strictly convex too. Observe that

K(q) = V B(q)− κq =
WB(q)

γ + Λ− aB(q)− q
− κq < FB(q)

r + Λ− aB(q)− q
− κq = G′(q), (A.47)

33To see this, note that ∂aB(q)
∂q = ∂FB(q)

∂q
1
φ . Thus, differentiating (A.44) with respect to q:

(r + λ)
∂2FB(q)

∂q2
=
∂FB(q)

∂q
+

1

φ

(
∂FB(q)

∂q

)2

> 0.

Differentiating this relationship with respect to q:

(r + λ)
∂3FB(q)

∂q3
=
∂2FB(q)

∂q2
+

2

φ

∂FB(q)

∂q

∂2FB(q)

∂q2
+
∂aB(q)

∂q

∂2FB(q)

∂q2
> 0.
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where the first inequality uses that r < γ and WB(q) ≤ FB(q) and the last equality uses (A.45).

Because i) G′(q) has a unique root on [0, qB], ii) because K(q) < G′(q), iii) because K(q) is convex,

and iv) because K(0) ≥ 0, K(q) has a unique root q̂ < qB on [0, qB] so that K(q̂) = 0, K(q) > 0

for q < q̂, and K(q) < 0 for q ∈ (q̂, qB]. If K(q) had a second root q2 with qB ≥ q2 > q̂, then it

must be due to convexity that K ′(q) > 0 for q ≥ q2 and thus K(qB) ≥ G′(qB) = 0, a contradiction

to (A.47).

Next, note that for q = q̄:

K(q̄) =
WB(q̄)

γ + Λ− aB(q̄)− q̄
− κq̄ =

aB(q̄)φ

γ + Λ− aB(q̄)− q̄
− κq̄ ≤ āφ

γ + Λ− ā− q̄
− κq̄ < 0,

where the second equality uses (6) and that the incentive constraint for monitoring effort binds, the

first inequality uses aB(q̄) ≤ ā, and the second inequality uses parameter condition (14). Because

K(q) is strictly convex on [0, q̄], K(q) has precisely one root on [0, q̄), which is denoted q̂ and

satisfies q̂ < qB. Suppose now κq∗ = V0 < V B(q∗), which implies K(q∗) > 0. Because K(q) has a

unique root on [0, q̄], denoted q̂, it follows that q∗ < q̂ < qB.

Total initial surplus can now be written as

F0− = F0 −
κ(q∗)2

2
≤ FB(q∗)− κ(q∗)2

2
< FB(q̂)− κ(q̂)2

2
,

where the first inequality uses F0− ≤ FB(q) (which holds for any q) and the second inequality uses

that G(q) = FB(q)− κq2

2 strictly increases on [0, qB) as well as 0 < q∗ < q̂ < qB. As a result, total

surplus is higher under a stationary contract that implements screening q̂ and Vt = V B(q̂) = κq̂ at

all times t ≥ 0, which contradicts the optimality of q∗. Thus, V0 < V B(q∗) cannot be optimal.

Now consider the case V0 = V B(q∗) = κq∗, so that q∗ = q̂ < qB. Take ε > 0 and set qε = q∗+ ε

so that qε < qB. Because of q∗ < qB, it follows that

∂

∂q∗

(
FB(q∗)− κ(q∗)2

2

)
= G′(q∗) > 0, (A.48)

where G(q∗) = FB(q∗)− κ(q∗)2

2 is total surplus under the optimal choice of q, i.e., q = q∗ = q̂.

Under the screening level qε = q∗ + ε, it follows that κqε = V0 > V B(qε). Denote the value

function under screening level qε by F (V ). The total surplus under screening level qε is

F (V0)− κ(qε)2

2
= FB(qε) + F ′(V B(qε))ε+ o(ε2)− κ(qε)2

2
= FB(qε) + o(ε2)− κ(qε)2

2

=

(
FB(q∗)− κ(q∗)2

2

)
+

∂

∂q∗

(
FB(q∗)− κ(q∗)2

2

)
ε+ o(ε2),

which — by (A.48) — exceeds FB(q∗)− κ(q∗)2

2 for ε > 0 sufficiently small. The second equality uses

that given screening level qε, limV→V B(qε) F
′(V ) = 0 (see (A.38)) which holds because of aB(qε) > 0

which in turn follows from aB(q∗) > 0 by continuity for small ε. However, this contradicts the

optimality of q = q∗. Thus, V0 = κq∗ > V B(q∗) holds under the optimal choice of q = q∗.
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A.3.6 Part V

In this part, we show F ′(V ) < 0 in all accessible states and, in particular, verify our conjecture

that F ′(V0) ≤ 0.

First, consider F (V ) = W (V ), in that the principal’s limited liability constraint binds. The

expression for effort a(V ) = W (V )/φ in (A.23) implies that F ′(V ) < 0, because F ′(V ) ≥ 0 would

imply a(V ) < F (V )/φ and W (V ) < F (V ). Next, take F (V ) = W (V ) = φa(V ) and insert this

relation into the HJB equation (23) to obtain

γF (V ) = 1− F (V )2

2φ
−
(

Λ− q − F (V )

φ

)
F (V ) + F ′(V )

[(
γ + Λ− q − F (V )

φ

)
V − F (V )

]
.

At points V at which F ′(V ) is differentiable and V̇ 6= 0, we can differentiate above ODE with

respect to V to calculate

F ′′(V ) =
(F ′(V ))2 − F ′(V )F (V )/φ+ (F ′(V ))2V/φ

(γ + λ)V − F (V )
< 0,

as we have shown that V̇ = (γ + λ)V −W < 0 as well as F ′(V ) < 0 for V > V B(q).

Second, suppose that F (V ) > W (V ) and the principal’s limited liability constraint does not

bind, and consider V > V B(q) and V̇ 6= 0. To start with, note that because the principal’s limited

liability constraint does not bind, optimal effort a(V ) solves the first order condition ∂F (V )
∂a = 0

provided a ∈ (0, ā). For any points V at which F ′(V ) is differentiable, we can then invoke the

envelope theorem and totally differentiate the HJB equation (23) under the optimal controls with

respect to V , which yields

F ′′(V ) =
−(γ − r)F ′(V )

(γ + λ)V −W
. (A.49)

First, note that as shown in Part II of the proof, V̇ = (γ+λ)V −W < 0 for V > V B(q). Thus, F ′′(V )

has the same sign as F ′(V ). It follows by (A.49) that either F ′(V ), F ′′(V ) < 0 or F ′(V ), F ′′(V ) ≥ 0

must hold for all V ∈ (V B(q), V0].

Next, let us consider V = V B(q) (or the limit V → V B(q)). When aB(q) = 0, then (A.39)

implies limV→V B(q) F
′(V ) ≤ 0. Otherwise, when aB(q) > 0, then (A.38) implies F ′(V B(q)) = 0

and — according to the expression for effort (A.23):

a(V B(q)) =
F (V B(q))− (γ − r)φ

φ
⇒ W (V B(q)) < F (V B(q)),

owing to γ > r.

If it were F ′(V ), F ′′(V ) ≥ 0 in a right-neighborhood of V B(q) (i.e., for V ∈ (V B(q), V B(q) + ε),

then F (V ) ≥ FB(q) for V ∈ (V B(q), V B(q) + ε) However, it must be that F (V ) < FB(q) for

V > V B(q), as providing higher screening incentive V > V B(q) than under the benchmark without

screening moral hazard for a given level of q necessarily reduces surplus. As a result, as F ′(V ) is

continuous, it follows that F ′(V ), F ′′(V ) < 0 in a right-neighbourhood of V B(q).
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Note that when F ′(V ) is differentiable, then

sign(F ′′(V )) =

{
−1 if W (V ) = F (V )

sign(F ′(V )) if W (V ) < F (V ).

Combined with the fact that F ′(V ), F ′′(V ) < 0 in a right-neighbourhood of V B(q), it follows that

F ′′(V ) < 0 at all V ∈ (V B(q), V0) at which F ′(V ) is differentiable (and F ′′(V ) exists). As such,

the value function is strictly concave on (V B(q), V0).

A.3.7 Part VI

In this part, we show that payouts to the agent are smooth and positive.

We can solve (11) to get the payout rate

ct = (γ + λt)Wt +
φa2

t

2
− Ẇt. (A.50)

If Ft = Wt, note that according to (A.14), Ḟt = (γ + λt)Ft − 1 +
φa2t

2 . Inserting the law of

motion Ḟt = Ẇt into (A.50) yields ct = 1 > 0. Further, provided a(V ) is differentiable, we have

a′(V ) = F ′(V )/φ < 0, so that ȧt = a′(Vt)V̇t > 0.

Next, consider V = Vt with Wt < Ft. Then, according to (A.23):

a(V ) = max

{
0,
F (V )− F ′(V )[V + φ]− (γ − r)φ

φ

}
,

and, provided a(V ) is differentiable, then a′(V ) = −F ′′(V )[V+φ]
φ > 0, as F ′′(V ) < 0. Thus, ȧt =

a′(Vt)V̇t < 0 and, by (6), Ẇt < 0. Inserting Ẇt < 0 into (A.50) implies ct > 0.

A.4 Proof of Proposition 3 and details on the implementation

The proof of Proposition 3 follows partially from the arguments presented in the main text.

Next, we provide more details for the implementation and show how to calculate βt = β(Vt),

given the optimal contract from Proposition 2 which yields a(V ), W (V ) = φa(V ), c(V ), and V̇ as

functions of V as well as optimal screening q. Recall that λt = Λ− at − q, where at = a(Vt).

First, observe that

Lt =

∫ ∞
t

e−r(s−t)−
∫ s
t λududs,

solves the ODE

(r + Λ− a(V )− q)L(V ) = 1 + L′(V )V̇

subject to the boundary condition

lim
V→V B(q)

L′(V ) = 0 ⇐⇒ lim
V→V B(q)

L(V ) =
1

r + Λ− aB(q)− q
,

whereby limV→V B(q) V̇ = 0 and limV→vB(q) a(V ) = aB(q).
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Second, calculate

Ẇt = W ′(Vt)V̇t and β̇(V ) = β′(Vt)V̇t,

where β(V ) is the agent’s retention level in state V under the proposed implementation of the

optimal contract. Third, insert these relations into (29) to obtain the following ODE in state V

β(V )− β′(V )V̇ L(V ) = (γ + Λ− a(V )− q)W (V ) +
φa(V )2

2
−W ′(V )V̇ , (A.51)

which is solved subject to

lim
V→V B(q)

β′(V ) = 0 ⇐⇒ lim
V→V B(q)

β(V ) = cB(q) = (γ+Λ−aB(q)−q)WB(q)+
φ(aB(q))2

2
. (A.52)

Noting there is a one-to-one mapping from time t to Vt = V , we thus obtain βt = β(Vt) by solving

(A.51), as desired. Throughout, we assume the existence and uniqueness of a (non-constant)

solution to (A.51) subject to (A.52) on (V B(q), V0].

Finally, we show that Lt(1− βt) = Pt = Ft −Wt. For this sake, take

Pt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− cs)ds =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− βs + β̇sLs)ds

so that

Ṗt = (r + λt)Pt − (1− βt + β̇tLt).

Next calculate

L̇t = (r + λt)Lt − 1.

We start by conjecturing that Pt = (1 − βt)Lt, and in what follows verift this conjecture. We

calculate

Ṗt = (r + λt)Pt − (1− βt + β̇tLt) = (r + λt)(1− βt)Lt − (1− βt + β̇tLt)

= (1− βt)L̇t − β̇tLt =
d

dt

[
(1− βt)Lt

]
,

where the second equality uses Pt = (1 − βt)Lt, the third equality uses L̇t + 1 = (r + λt)Lt and

simplifies, and the fourth equality collects terms. Thus, Pt = (1−βt)Lt implies Ṗt = d
dt

[
(1−βt)Lt

]
.

To conclude our argument we consider the limit t → ∞ in which case Vt → V B(q) as well

as Wt → WB(q), Ft → FB(q), and Lt → LB(q) = 1
r+λB(q)

. Then, under the optimal controls

aB(q),WB(q) and payouts cB(q) = (γ + λB(q))WB(q) + φ(aB(q))2

2 = βB(q), we have

PB(q) =
1− cB(q)

r + λB(q)
=

(1− βB(q))

r + λB(q)
= (1− βB(q))LB(q).

Thus, in the limit t → ∞, we have Pt → PB(q) as well as (1 − βt)Lt → PB(q), i.e., limt→∞ Pt =

limt→∞(1− βt)Lt. Because, in addition, Pt = (1− βt)Lt implies Ṗt = d
dt

[
(1− βt)Lt

]
holds, we have

Pt = (1− βt)Lt at all times.
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A.5 Proof of Proposition 4

The first claim follows from Proposition 1; it readily follows that the optimal contract can be

implemented by having the agent retain constant share βt = cB(q) of the loan.

We now prove the second claim about the limit case of φ→∞. For this sake, fix q. The below

arguments hold for any q, including the optimal q = q∗ determined at time t = 0−. For given V

and q, we use the notation x̂ = limφ→∞ x.

To begin, recall limV→V B(q) F (V ) = FB(q), limV→V B(q) a(V ) = aB(q), and limV→V B(q)W (V ) =

WB(q) with

FB(q) = max
a∈[0,ā]

1− 0.5φa2 − (γ − r)φa
r + Λ− a− q

,

aB(q) = max

{
FB(q)− (γ − r)φ

φ
, 0

}
,

WB(q) = φaB(q) = max
{
FB(q)− (γ − r)φ, 0

}
,

and

V B(q) =
WB(q)

γ + Λ− aB(q)− q
.

Because FB(q) is bounded (specifically, FB(q) < 1
r+Λ−ā−q̄ ), it is clear that there exists φ′ > 0

such that for all φ > φ′, aB(q) = WB(q) = V B(q) = 0. In particular, in the limit φ→∞, we have

âB = 0 as well as ŴB = 0 and V̂ B(q) = 0. Thus, the relevant interval for the state variable V ,

(V B(q), V0], becomes (0, V0]. We restrict attention to levels of V lying in this interval.

Next, recall from (A.23) that the optimal effort a(V ) solves

a(V ) =
F (V )− F ′(V )(V + φ)− (γ − r)φ

φ
∧ F (V )

φ
, (A.53)

Because of limV→0 a(V ) = aB(q) with a(V ) > 0 in a right-neighbourbood of zero, we have

lim
V→0

F ′(V ) =

{
0 if aB(q) > 0
FB(q)−(γ−r)φ

φ if aB(q) = 0.

As argued above, there exists φ′ > 0 such that for all φ > φ′, aB(q) = 0 and therefore limV→0 F
′(V ) =

FB(q)−(γ−r)φ
φ . Because the value function is strictly concave, we have

F ′(V ) <
FB(q)− (γ − r)φ

φ

for all V > 0. We assume that for any V ∈ (0, κq], the limit limφ→∞ F (V ) = F̂ (V ) exists and that

the function F̂ (V ) is twice continuously differentiable and strictly concave, i.e., F̂ ′′(V ) < 0.

Next, for V > 0, we can take the limit φ→∞ to obtain:

F̂ ′(V ) ≤ lim
φ→∞

(
FB(q)− (γ − r)φ

φ

)
= −(γ − r).
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Due to strict concavity of F̂ (V ), i.e., F̂ ′′(V ) < 0 for V > 0, it follows that above inequality is strict,

i.e., F̂ ′(V ) < −(γ − r) for V > 0.

Next, using (A.53), we have

W (V ) = φa(V ) = min{F (V )− F ′(V )(V + φ)− (γ − r)φ, F (V )}. (A.54)

We can take the limit φ → ∞ for optimal continuation payoff in (A.54), which, conditional on

F̂ ′(V ) < −(γ − r), is Ŵ (V ) = F̂ (V ). It follows

lim
V→0

lim
φ→∞

W (V ) = lim
V→0

Ŵ (V ) = lim
V→0

F̂ (V ) > Ŵ (0) = lim
φ→∞

lim
V→0

W (V ) = lim
φ→∞

WB = 0.

As Ŵ (V ) is dis-continuous and exhibits an upward jump at V = 0, it follows that Ŵ (Vt) drops

down once Vt reaches zero (from above). Moreover,

lim
φ→∞

V̇ = (r + λ̂(V ))V − Ŵ (V )

is strictly negative in an open right-neighbourhood of V = 0, so that V reaches zero in finite time

τ0 = inf{t ≥ 0 : Vt = 0} in the limit φ→∞.

We can rewrite the continuation payoff allowing for a general payment process

Wt := E
[∫ τ

t
e−γ(s−t)

(
dCs −

φa2
s

2
ds

)]
=

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
dCs −

φa2
s

2
ds

)
.

Thus

dWt = (γ + λt)Wt +
φa2

t

2
− dCt ⇐⇒ dW (V ) = (γ + λ(V ))W (V ) +

φa(V )2

2
− dC(V ).

In the limit,

dŴ (V ) = (γ + λ̂(V ))Ŵ (V )− dĈ(V ).

It follows that at time τ0 (once Vt reaches zero), there is a lumpy payout

dĈτ0 = dĈ(0) = lim
V→0

Ŵ (V ) = lim
V→0

F̂ (V ) =
1

r + Λ− q
.

Recall (20) so that dF (V ) = (r+ λ(V ))F (V )dt+ φa(V )2

2 dt+ (γ − r)W (V )dt− 1dt. Before time τ0,

i.e., for V > 0, we have F̂ (V ) = Ŵ (V ), implying

dŴ (V ) = (γ + λ̂(V ))Ŵ (V )dt− dĈ(V ) = dF̂ (V ) = (r + λ̂(V ))F̂ (V ) + (γ − r)Ŵ (V )dt− 1dt,

which — due to F̂ (V ) = Ŵ (V ) implies dĈ(V ) = 1dt for t < τ0.

The implementation of the optimal contract then satisfies

β̂(V )dt− dβ̂(V )L = dĈ(V ),

where L = 1/(r+Λ−q) is the loan’s fair market value. At time τ0, i.e., for V = 0, we have dĈt = L
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so that dβ̂τ0 = −1. Before time τ0, i.e., for V > 0, we have dĈ(V ) = 1dt. Thus, above relationship

holds for β̂(V ) = 1, which concludes the argument.

Finally, we verify strict concavity of F̂ (V ). For this sake, take the limit φ → ∞ in the HJB

equation (23) for V > 0 noticing that Ŵ (V ) = F̂ (V ), â(V ) = φ(â(V ))2 = 0 to obtain

(r + λ̂(V ))F̂ (V ) = 1− (γ − r)Ŵ (V ) + F̂ ′(V )((γ + λ̂(V ))V − Ŵ (V )),

which—after inserting Ŵ (V ) = F̂ (V )—is equivalent to

(γ + λ̂(V ))F̂ (V ) = 1 + F̂ ′(V )((γ + λ̂(V ))V − F̂ (V )).

We can take the derivative with respect to V to obtain:

F̂ ′′(V ) =
(F̂ ′(V ))2

(γ + λ)V − F (V )
< 0.

A.6 Proof of Corollary 1

A.6.1 Part 1

A necessary condition for the lender’s stake to approach zero is that aB = limt→∞ βt = βB =

cB = 0. We first show that when φ is sufficiently large and satisfies the condition presented in the

Proposition, it follows that aB = cB = 0. We take the (optimal) screening level q∗ = q as given.

First, we recall that given q:

FB = FB(q) = max
a∈[0,ā]

(
1− (γ − r)φa− 0.5φa2

r + Λ− a− q

)
.

Because ∂FB

∂q > 0, we obtain

FB ≤ max
a∈[0,ā]

(
1− (γ − r)φa− 0.5φa2

r + Λ− a− q̄

)
,

i.e., an upper bound for FB = FB(q) that does not depend on q.

Next, the first order derivative with respect to a satisfies

∂(Λ + r)FB

∂a
= FB − (γ − r)φ− φa ⇐⇒ ∂FB

∂a
=
FB − (γ − r)φ− φa

Λ + r
. (A.55)

We have a = aB = 0 when

∂FB

∂a
|a=0 ≤ 0 ⇐⇒ FB|a=0 ≤ (γ − r)φ.

Owing to FB|a=0 ≤ 1
r+Λ−q̄ , we obtain FB|a=0 ≤ (γ − r)φ if

1

r + Λ− q̄
≤ (γ − r)φ ⇐⇒ φ ≥ 1

(r + Λ− q̄)(γ − r)
.
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Next, notice that the second order derivative of FB with respect to a satisfies:

∂2(Λ + r)FB

∂a2
=
∂FB

∂a
− φ =

FB − (γ − r)φ− φa
Λ + r

− φ

<
1

Λ + r

(
1

r + Λ− q̄ − ā
− (γ − r)φ

)
− φ =

1

Λ + r

(
1

r + Λ− q̄ − ā
− (γ + Λ)φ

)
,

where the second equality uses (A.55), the inequality uses FB−φa < 1
r+Λ−q̄−ā , and the last equality

collects terms.

Thus, we obtain aB = 0 if

φ > max

{
1

(r + Λ− q̄)(γ − r)
,

1

(r + Λ− q̄ − ā)(γ + Λ)

}
,

i.e., if φ is sufficiently large. As such, we have aB = V B = WB = 0, limt→∞ Vt = limt→∞ V̇t = 0,

as well as cB = 0 and limt→∞ ct = 0.

Next, note that

FB = FB(q) = max
a∈[0,ā]

(
1− (γ − r)φa− 0.5φa2

r + Λ− a− q

)
≥ 1

r + Λ

As such, a necessary condition condition for aB = 0 — that is, ∂FB

∂a |a=0 ≤ 0 — and thus βB = 0 is

that (see (A.55))

1

r + Λ
≤ (γ − r)φ ⇐⇒ 1 ≤ (γ − r)(r + Λ)φ ⇐⇒ φ >

1

r + Λ(γ − r)
.

Thus, when 1 > (γ−r)(r+Λ)φ, the lender never sells its entire stake in finite time, i.e., limt→∞ βt =

cB > 0 as well as aB > 0.

A.6.2 Part 2

It remains to check whether Vt reaches 0 in finite time in which case Wt and ct reach zero in finite

time; this implies then under our implementation that the agent sells its entire stake in finite time,

in that the implementation stipulates β(0) = 0.

Recall V̇ = G(V ) with G(V ) = (γ + λ(V ))V −W , so that limV→0 V̇ = 0. As limV→0 F (V ) =

FB(q), we have

F ′(0) := lim
V→0

F ′(V ) =
FB(q)− (γ − r)φ

φ
< 0,

so that a(V ) from (A.23) converges to aB(q) = 0 as V → V B(q) = 0.

Because of aB = a(V B) = 0, we have a(V ) < F (V )/φ as well as

F ′′(V ) =
−(γ − r)F ′(V )

V̇
. (A.56)

in a right-neighbourhood of zero (0, ε̂) for appropriate ε̂ > 0. Also recall that in this right-
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neighbourhood

W (V ) = a(V )φ = F (V )− F ′(V )[V + φ]− (γ − r)φ

and a(V ) are also differentiable.

We can calculate

W ′(V ) = −F ′′(V )[V + φ] =
(γ − r)F ′(V )

V̇
=

(γ − r)F ′(V )

G(V )
,

where the second equality uses (A.56). As such, we can calculate

lim
V→0

W ′(V ) = +∞

as well as

lim
V→0

∂V̇

∂V
= lim

V→0

∂G(V )

∂V
= lim

V→0
G′(V ) = lim

V→0

(
γ + λ(V )−W ′(V )(1 + V/φ)

)
= −∞.

It follows that G(V ) is not continuously differentiable on [0, V0] and thus is also not Lipschitz

continuous in the same interval.

Next, notice that G(V ) < −V ⇐⇒ G(V )/(−V ) > 1 on an interval (0, ε′). This follows

from the fact that

lim
V→0

G(V )

−V
= lim

V→0

G′(V )

−1
=∞,

and continuity of G(V ) for V > 0, where we used L’Hopital’s rule.

As a next step, we show that for α ∈ (0, 1) there exists 0 < ε < ε′ such that on (0, ε):

G(V ) < −V α ⇐⇒ −V α

G(V )
< 1.

To do so, we calculate

0 ≤ lim
V→0

−V −α

G(V )
= lim

V→0

−αV α−1

G′(V )
= lim

V→0

αV α−1

(γ−r)F ′(V )
G(V )

= lim
V→0

−αV α−1G(V )

(γ − r)F ′(V )
= lim

V→0

−αV α−1G(V )

(γ − r)F ′(0)

= lim
V→0

αV α−1G(V )

(γ − r)F ′(0)
≤ lim

V→0

αV α−1(−V )

(γ − r)F ′(0)
= lim

V→0

αV α

−(γ − r)F ′(0)
= 0,

where we used L’Hopital’s rule in the first equality and that G(V ) < −V in a neighbourhood of

zero (and thus in the limit V → 0) in the second last inequality. The remaining steps carry out

simplifying calculations. Thus, by continuity, we have G(V ) < −V α < 0 on (0, ε).

Let T = inf{t ≥ 0 : Vt = ε}. As ε > 0 and G(V ) < 0 for V ≥ ε, it readily follows that T is

finite, i.e., T <∞.

Next, for times t ≥ T , consider the ODE Xt = −Xα
t with XT = K > 0 for α ∈ (0, 1) which
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admits the general solution:34

Xt =


[
K1−α − (1− α)(t− T )

] 1
1−α

for t < T ′

0 for t ≥ T ′

for a constant K. Thus, XT = K > 0. It follows that Xt reaches 0 at time T ′ = T + K1−α

1−α <∞.

Set K = ε, so that XT = VT = ε. Due to G(V ) ≤ −V α as well as V̇t = G(Vt) and Ẋt = −Xα
t ,

it follows that Vt ≤ Xt for t ≥ T . As such, Vt reaches 0 in finite time T ′′ ≤ T ′ < ∞. Thus, in the

implementation, βt reaches β(0) = βB = 0 in finite time, which was to show.

B Additional Results

B.1 Model variant with different default intensity

We now assume a different specification for the default rate λt, in that

λt = Λ− at − q − αatq

and ∂2λt
∂atq

= −α, where α captures whether screening and monitoring are substitutes (α < 0) or

complements (α > 0) in reducing default risk. The baseline model is obtained upon setting α = 0.

A micro-foundation for this default rate can be found in Section B.6. As in the baseline, we first

fix the level of q and solve the model for a given level of q, and finally determine optimal q.

Continuation value and monitoring incentives. Under this alternative specification of

the default rate, the model solution and solution technique remain analogous to the ones of the

baseline, but the formulae change in some instances. We sketch the solution and heuristically derive

the relevant equations that characterize the optimal contract. To begin, recall that continuation

value is given in (4) and follows (11), i.e., Ẇt = (γ+λt)Wt+
φa2t

2 −ct for smooth payouts dCt = ctdt

after time zero. The agent chooses monitoring effort according to

at = arg max
a∈[0,ā]

{
−(Λ− a− q − αaq)Wt −

φa2

2

}
,

so that provided at ∈ (0, ā):

at =
(1 + αq)Wt

φ
.

The screening incentive condition can be written as V0 = κq, just as in the baseline.

34For a verification of this “guess,” simply calculate for t < T ′:

Ẋt = −
[
K1−α − (1− α)(t− T )

] 1
1−α−1

=
[
K1−α − (1− α)(t− T )

] α
1−α

= −V αt .
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Screening incentives. Next, to derive the law of motion of Vt, we notice ∂ct
∂q = 0 (i.e., changes

in hidden screening effort do not affect contracted payouts) and differentiate (11) with respect to

q (using the envelope theorem, i.e., taking optimal monitoring at as given) to obtain:

V̇t = (γ + λt)Vt − (1 + αat)Wt,

so that

Vt =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu(1 + αas)Wsds

after integrating over time. As before, the state space is (V B(q), V0] with limt→∞ Vt = V B = V B(q).

HJB equation and boundary conditions As in the baseline model, we conjecture and

verify that Wt = W is a control variable while Vt = V is the only state variable in the dynamic

optimization, in that total surplus is a function Vt only (i.e., Ft = F (Vt)). We omit time subscripts

unless necessary. Invoking the dynamic programming principle and using the integral representation

of total surplus in (20), we obtain that F (V ) solves on (V B(q), V0] the HJB equation

rF (V ) = max
a∈[0,ā],W∈[0,F (V )]

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + λ)V − (1 + αa)W

)}
,

which is very similar to the baseline HJB equation (23). We can use a = W (1+αq)
φ ⇐⇒ W = φa

1+αq

to eliminate W from the HJB equation, which yields

rF (V ) = max
a

{
1− φa2

2
− (γ − r)

(
φa

1 + αq

)
− λF (V ) + F ′(V )

[
(γ + λ)V − (1 + αa)

(
φa

1 + αq

)]}
,

subject to W = φa
1+αq ∈ [0, F (V )], i.e., the principal’s limited liability constraintc, and a ∈ [0, ā].

The first order condition with respect to a reads

(1 + αq)(F (V )− F ′(V )V )− φa− φ(γ − r)
1 + αq

− F ′(V )

(
φ

1 + αq
+

2αaφ

1 + αq

)
= 0.

Thus, if optimal effort is interior, we have:

a = a(V ) =
(1 + αq)(F (V )− F ′(V )V )− φ(γ−r)

1+αq −
F ′(V )φ
1+αq

φ+ 2αφF ′(V )
1+αq

.

Finally, the boundary condition for above HJB arises arises when Vt → V B and V̇t → 0, where

V B = V B(q) =
(1 + αaB)WB

γ + λB

and λB = Λ − aB − q − αaBq as well as aB = 1+αq)WB

φ . The optimal level of aB is determined
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according to:

rFB = max
aB∈[0,ā]

{
1− φ(aB)2

2
− (γ − r)

(
φaB

1 + αq

)
− λBFB

}
,

so that

aB = max

0,
(1 + αq)FB − φ(γ−r)

1+αq

φ


Note that aB may be equal to zero, e.g., when φ is sufficiently large.

Optimal screening The screening incentive condition is V0 = κq. The total surplus function,

given q, is characterized above and denoted F (V ). Optimal q is determined to maximize

max
q∈[0,q̄]

F (V0) s.t. V0 = κq,

which is entirely analogous to the baseline. As in the baseline, we generally have V0 > V B and Vt
drifts down over time, i.e., V̇t < 0 with limt→∞ V̇t = 0.

B.2 Loan Portfolio

We now allow the lender to originate a portfolio of loans which consists, for simplicity, of two ex-

ante identical loans indexed by i ∈ {1, 2}. Unless otherwise mentioned, the assumptions underlying

this model variant as well as players’ preferences remain as in the baseline model. Each loan i pays

coupons at rate 1 up to its time of default τ i. Each loan i defaults with the time-varying intensity

λit = Λ− qi − ait,

where qi is the lender’s screening of loan i at time t = 0− and ait is the lender’s monitoring of loan i

at time t. The two loans’ random default times are independent, conditional on the lender-investor

contract C. Both efforts are bounded, i.e., ait ∈ [0, ā] and qi ∈ [0, q̄].

The lender-investor contract C = (q̂i, âit, dCt), signed at time t = 0−, stipulates incremental

payouts dCt as well as recommended screening and monitoring (q̂i, âit) for both loans i. The costs

of screening and monitoring are, as in the baseline, quadratic and separable across loans. Given C,
the lender’s payoff at time t = 0− (i.e., before screening) reads

W0− = max
q,{at}

E
[∫ ∞

0
e−γt

(
dCt −

φ(a1
t )

2

2
dt− φ(a2

t )
2

2
dt

)]
− κ(q1)2

2
− κ(q2)2

2
, (B.57)

with exogenous screening and monitoring cost parameters κ, φ ≥ 0. After screening at time t = 0−,

the lender’s continuation payoff for t ≥ 0 reads

Wt := E
[∫ ∞

t
e−γ(s−t)

(
dCs −

φ(a1
s)

2

2
ds− φ(a2

s)
2

2
ds

)]
. (B.58)

As in the baseline model, we focus on incentive-compatible contracts, so that ait = âit and qi = q̂i.
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Monitoring effort ait becomes zero after loan i defaults. As both loans are identical, we also focus

on contracts that implement symmetric screening and monitoring efforts, i.e., q̂1 = q̂2 and â1
t = â2

t

(before the first time of default min{τ1, τ2}).
The principal’s payoff reads

Ft = Et
[∫ ∞

t
e−r(s−t) (Xsds− dCs)

]
,

where

Xs =


2 for s < min{τ1, τ2}
1 for s ∈

[
min{τ1, τ2},max{τ1, τ2}

]
0 for s > max{τ1, τ2}

is the loan portfolio’s cash flow. Analogous to (20), total continuation surplus can then be written

as

Ft = Et
[∫ ∞

t
e−r(s−t)

(
Xsds−

φ(a1
s)

2

2
ds− φ(a2

s)
2

2
ds− (γ − r)Wsds

)]
. (B.59)

The optimal contract chosen at time t = 0− maximizes total continuation surplus at time t = 0−

F−0 = F0 −
κ(q1)2

2
− κ(q2)2

2
,

subject to all relevant incentive constraints (derived shortly) and the lender’s and investors’ limited

liability constraints. As in the baseline model, we assume for convenience that parameters are such

that optimal efforts are interior.

In what follows, we provide the heuristic solution of this model variant, assuming that all neces-

sary regularity conditions (e.g., for solution existence) are met and the first order approach is valid.

Before proceeding, note that it is always possible to incentivize both loans separately, for instance,

by signing the baseline contract which we denote for convenience by C = (qBase, aBaset , dCBaset =

cBaset ) for both contracts. In our notation of this variant, this would be achieved via q̂i = qBase,

âit = aBaset (where effort becomes zero once the respective loan defaults), and dCt = 2cBaset dt. The

notable result of the following analysis is that structuring lender compensation on the portoflio

level generally improves upon the baseline contract and thus does better in terms of incentives.

The intuition is that structuring the lender’s compensation on the portfolio level relaxes loan-level

limited liability, hence facilitating more efficient incentive provision.

B.2.1 Optimal Contract for Loan Portfolio

We start by solving the model, taking q = q1 = q2 as given. We denote now by τ ′ = min{τ1, τ2}
the time of the first default and by τ = max{τ1, τ2} the time of the second default. It is natural

to conjecture that, upon any default, the agent looses its entire continuation payoff/stake, so as to

provide incentives to screen and monitor effectively. Specifically,

lim
t↑τ̂

Wt ≥Wτ̂ = 0 for τ̂ ∈ {τ ′, τ}.
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Solution after time τ ′. Let us consider t > τ ′ and conjecture that dCt = ctdt. Suppose that

loan i has not defaulted yet while loan −i has defaulted, where we adopt the notation that i = 1

(i = 2) implies −i = 2 (−i = 1). The model solution after time τ ′ is akin to our baseline solution

(modulo starting values). We obtain

Ẇt = (γ + λit)Wt − ct +
φ(ait)

2

2
.

As in the baseline, the lender chooses ait to maximize −λitWt − φ(ait)
2

2 , so that ait = Wt
φ for t > τ ′.

Next, let us define V Post
t = ∂Wt

∂qi
for t > τ ′. As in the baseline, we have for t > τ ′:

V̇ Post
t = (γ + λit)V

Post
t −Wt

or

V Post
t =

∫ ∞
t

e−γ(s−t)−
∫ s
t λ

i
uduWsds.

As in the baseline model, we conjecture the optimal continuation contract after time τ ′ is fully

characterized by the state variable V Post = V Post
t . Thus, total surplus Ft, continuation payoff

Wt, monitoring ait, and payouts ct can be written as functions of V Post = V Post
t only, in that

Ft = FPost(V Post), Wt = WPost(V Post), ait = aPost(V Post), and ct = cPost(V Post). We omit time

subscripts unless necessary.

That is, V Post is the state variable in the dynamic optimization, while W = WPost becomes a

control variable. Using (B.59), total surplus FPost(V Post) satisfies the HJB equation:

rFPost(V Post) = max
aPost∈[0,ā],WPost

{
1− φ(aPost)2

2
− (γ − r)WPost − λPostFPost(V Post)

+ (FPost)′(V Post)
(
(γ + λPost)V Post −WPost

)}
(B.60)

subject to aPost = WPost/φ and WPost ∈ [0, FPost(V Post)] and with λPost = Λ− aPost −WPost.

To characterize the boundary behavior, let

V B,Post =
WPost(V B,Post)

γ + λB,Post

with λB,Post = Λ− aPost(V B,Post)− q. HJB equation (B.60) is solved for V Post > V B,Post subject

to the boundary condition

lim
V Post→V B,Post

FPost(V ) = FB,Post,

with

FB,Post = max
WPost∈[0,FB,Post]

(
1− (γ − r)WPost − 0.5φ(aPost)2

r + Λ− aPost − q

)
subject to aPost = WPost/φ.

Lastly, having solved for optimal effort aPost(V Post) and continuation payoff WPost(V Post), we
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obtain for t > τ ′

ct = (γ + λt)Wt − Ẇt +
φ(ait)

2

2
,

that is,

cPost(V Post) = (γ + λPost(V Post))WPost(V Post)− (WPost)′(V Post)V̇ Post +
φ(aPost(V Post))2

2
.

Solution before time τ ′. Consider times t < τ ′, so neither loan has defaulted yet. Recall that

upon the first default event at time τ ′, the agent looses its entire stake. Further, conjecture and

verify that payouts are smooth prior to time τ ′, i.e., dCt = ctdt for t < τ ′. At time τ ′, there can be

a (negative) lump-sum payment dCPostt := dCτ ′ to the agent, to be clarified later. Then, we obtain

Ẇt = (γ + λ1
t + λ2

t )Wt − ct +
φ(a2

t )
2

2
+
φ(a2

t )
2

2
− (λ1

t + λ2
t )(dC

Post
t +WPost

t ), (B.61)

where it is optimal to set dCPostt +WPost
t = 0. That is, upon first default at time t = τ ′, the lender

looses its entire stake. To gain a potentially positive new stake lims↓τ ′Ws ≥ 0, the agent makes a

(possibly negative) lump-sum payment of dCPostt to the investors.

The lender chooses ait to maximize

max
a1t ,a

2
t∈[0,ā]

(
−(λ1

t + λ2
t )Wt −

φ(a1
t )

2

2
− φ(a2

t )
2

2

)
,

so that ait = Wt
φ . As such, λit = Λ− qi − ait = Λ− qi − Wt

φ .

Next, we define V i
t = ∂

∂qi
Wt for t < τ and i = 1, 2. We assume that the first order approach

is valid. As such, using the lender’s objective at time t = 0− in (B.57), the screening incentive

conditions become

V i
0 = κqi for i = 1, 2.

We now characterize the dynamics of V i
t (for t < τ). To do so, note that

∂dCPostt

∂qi
= 0 as

the contracted lump-sum payment at the first time of default cannot depend on hidden screening.

Likewise, ∂ct
∂qi

= 0. Second, observe that
∂WPost

t

∂qi
= V Post

t I{τ i > τ ′}, i.e., the impact of screening

effort qi lasts beyond time τ ′ if and only if loan i is not the loan that defaults first. Here, I{·} is the

indicator function which equals one if {·} is true and zero otherwise. With these insights in mind,

we can differentiate the law of motion of Wt from (B.61) with respect to qi (using the envelope

theorem, i.e., taking optimal monitoring ait as given). After some algebra, we obtain

V̇ i
t = (γ + λ1

t + λ2
t )V

i
t −Wt − λ−it V Post

t .

That is,

V i
t =

∫ s

t
e−γ(s−t)−

∫ s
t (λ1u+λ2u)du(Ws + λ−is V

Post
s )ds. (B.62)

Because the two loans are identical and we focus on symmetric screening and monitoring of these

two loans prior to time τ ’, we have V 1
t = V 2

t ≡ Vt for t < τ ′ and q = q1 = q2.

Using ait = Wt/φ as well as each loan’s default intensity λt ≡ λit = Λ − qi − ait = Λ − qi − Wt
φ ,
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we obtain

V̇t = (γ + 2λt)Vt −Wt − λtV Post
t .

As in our previous analysis, we conjecture and verify that prior to time τ ′, all payoff-relevant

quantities can be written as functions of V = Vt only, in that Ft = F (V ), Wt = W (V ), ait = a(V ),

and ct = c(V ). We omit time subscripts, unless necessary.

Using (A.27) as well as invoking the dynamic programming principle, F (V ) satisfies:

rF (V ) = max
a,W,V Post

{
2− φa2 − (γ − r)W + F ′(V )V̇ + 2λ

[
FPost(V Post)− F (V )

]}
,

subject to W ∈ [0, F (V )] and a = W/φ. Using W = aφ, we can rewrite this HJB equation to get

rF (V ) = max
a,V Post

{
2− φa2 − (γ − r)φa+ 2λ(FPost(V Post)− F (V ))

+ F ′(V )
(

(γ + 2λ)V − φa− λV Post
)}

Note that V Post —which is determined b by the continuation contract after time τ ′ — is a choice

variable that affects screening incentives before time τ ′ and at time t = 0. The derivative with

respect to V Post reads

2(FPost)′(V Post)− F ′(V ).

Provided there exists an interior solution, we then have

2(FPost)′(V Post)− F ′(V ) = 0,

which pins down V Post as a function of V , i.e., V Post
t = V Post(V ). We assume this is the case; we

verify this outcome in our numerical solution procedure.

Next, provided it is interior, optimal effort a satisfies the first order condition

0 = −2φa− (γ − r)φ+ 2(F (V )− FPost(V Post))− 2F ′(V )V − F ′(V )φ+ F ′(V )V Post

so that

a(V ) = min

{
2(F (V )− FPost(V Post))− (γ − r)φ− 2F ′(V )V − F ′(V )φ+ F ′(V )V Post

2φ
,
F (V )

φ

}
.

Thus, W (V ) = φa(V ).

Finally, we characterize the boundary behavior of the HJB equation. For this sake, consider

V B =
W (V B) + λBV Post

γ + 2λB
,

with λB = Λ − q − a(V B). Above HJB equation is solved for V > V B subject to the boundary

condition

lim
V→V B

F (V ) = FB,
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with

FB = max
W∈[0,FB ],V Post

(
2− (γ − r)W − φa2 + 2(Λ− a− q)FPost(V Post)

r + 2(Λ− a− q)

)
subject to a = W/φ.

Having solved the optimal contract for t < τ ′, we obtain payouts ct = c(Vt)

c(V ) = (γ + 2λ(V ))W (V ) + φa(V )2 −W ′(V )V̇ .

Optimal screening effort at time t = 0− is then determined according to:

max
q∈[0,q̄]

F (V0)− κq2 s.t. V0 = κq.

We note that the continuation surplus at t = 0, i.e., F0 = F (V0), depends on q = qi.

B.2.2 Implementation

We now discuss the implementation of the optimal contract. For this sake, consider times t < τ ′

and t > τ ′ separately. After the first default, the implementation becomes analogous to the one

from the baseline. Specifically, for t > τ ′, we define

LPostt =

∫ ∞
t

e−r(s−t)−
∫ s
t λ

Post
s 1ds

as the market value of the loan. Then, the lender’s retention βPostt is determined according to

cPostt = cPost(V Post
t ) = βPostt − β̇Postt LPostt .

The boundary condition is limt→∞ β̇
Post
t = 0. We assume that a unique (non-constant) solution to

this ODE exists. As in the baseline model, we expect β̇Postt < 0.

Next, consider t before the first time of default, t < τ ′. We now offer an implementation in

which the loan portfolio is tranched into an equity and safe tranche. The lender only retains the

equity tranche. Suppose that the equity tranche is in net supply E > 0. The equity tranche (in

supply E) pays cash flows of one only up to the first time of default τ ′; the safe tranche is implicitly

defined as the residual tranche and discussed in more detail below. Specifically, one unit of equity

tranche pays cash flows at rate 1 up to τ ′, leading to market value/price:

LEt =

∫ ∞
t

e−r(s−t)−2
∫ s
t λudu.

The contracted payouts to the agent prior to time τ ′ read

ct = (γ + 2λt)Wt + φa2
t − Ẇt.

Then, we get the retention level of the equity tranche via:

βEt + (−β̇Et )LEt = ct.
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The boundary condition is limt→∞ β̇
E
t = 0. We assume that a unique (non-constant) solution to

this ODE exists. Again, notice that the contracted payments ct are implemented by having the

agent retain a time-varying share of the equity tranche βEt .

We still need to determine E, the supply of the equity tranche. It is natural to set E =

max{1, βE0 }, so that the total supply of the equity tranche E is bigger than the lender’s holding at

time t = 0. Next, we normalize the supply of the safe tranche to 1. The safe tranche then pays

cash flows 2− E per unit before time τ ′ and cash flows of 1 per unit for times t ∈ [τ ′, τ ]. The safe

tranche becomes worthless at time τ (i.e. when both loans have defaulted).

At time t = τ ′, the equity tranche is wiped out (i.e., its value drops to zero), while 1 unit of

the safe tranche remains. The market value of the safe tranche equals LPostt for t ∈ (τ ′, τ) and

LSt =

∫ ∞
t

e−r(s−t)−2
∫ s
t λudu

(
2− E + 2λsL

Post
s

)
ds

for time t < τ ′. Thus, in general, the equity tranche changes its value at time τ ′.

At time t = τ ′, the lender needs to buy βPostτ ′ units of the loan to rebuild its stake. The lender

buys at price WPost
τ ′ /βPostτ ′ so that it pays in total −dCPostτ ′ = WPost

τ ′ at time τ ′ in exchange for

continuation value WPost
τ ′ .

B.2.3 Analysis

One way to incentivize the origination of the two identical loans is to contract for each loan sep-

arately by utilizing the baseline contract (which is optimal on the individual loan level). The

interpretation of this arrangement is that the lender retains a share of each individual loan and

sells off these shares over time. Crucially, if loan i defaults, the agent’s stake in loan i is wiped out,

but the value of the agent’s stake in loan −i is (not directly) affected and maintains value. That

is, the agent is de facto protected by limited liability on the loan level.

In contrast, the optimal contract for loan portfolios stipulates that if loan i defaults, the agent

is punished by loosing its entire stake, so that the contract does not respect loan-level limited

liability but merely portfolio-level limited liability. By construction, the optimal contract for loan

portfolios does at least weakly better than contracting separately for each loan. We now numerically

compare the outcomes of the optimal contract for loan portfolios and the baseline contract (i.e.,

separate contracts for each loan). To this end Figure B.1 plots initial monitoring and screening

efforts against the parameters φ, κ, Λ, and γ both under the baseline (solid black line) and when

lender compensation is structured on the portfolio level. It can be seen that, as expected, the

optimal contract for loan portfolios incentivizes higher screening and monitoring efforts across than

the baseline contract, notably, across all parameters considered. A corollary of this observation is

that, because the two contracts differ in that way, the optimal contract for loan portfolios leads to

higher surplus. The intuition is that structuring lender compensation on the portfolio rather than

the individual loan level relaxes loan-level limited liability and thus facilitates the more efficient

provision of screening and monitoring incentives. An applied insight of our analysis is that optimal

incentive provision for a portfolio of loans involves tranching in a way that the lender mostly retains

the riskier tranche.
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Figure B.1: Comparative Statics and Loan Portfolios. This figure plots monitoring effort
a0 and screening effort q against the parameters φ, κ, Λ, and γ both under the baseline (solid black
line) and when lender compensation is structured on the portfolio level (dotted red line). We use
our baseline parameters, but consider higher cost of screening and monitoring (i.e., φ = κ = 15) to
ensure optimal efforts are interior also when considering portfolios.

A30



B.3 Model Extension with Finite Maturity

B.3.1 Solution

We now provide additional details, the solution, and derivations for the model variant with finite

debt maturity where δ > 0. The incentive constraints with respect to monitoring and screening

effort remain unchanged relative to the baseline, i.e., Wt = φat and V0 = κq, pinning down

λt = Λ − at − q. To solve the model, one first takes q as given to characterize the solution after

time t = 0; then, taking into account the continuation solution, one maximizes initial surplus

F0− = F0 − κq2

2 over q.

To begin, we define the agent’s continuation value (before maturity) as

Wt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2
+ δdCδs

)
ds,

where dCδs is the agent’s payoff in the form of a lump-sum payment upon maturity (which occurs

randomly at rate δ) at time s and cs the payout rate before maturity (we conjecture and verify

that payments before maturity are smooth). Observe that over [t, t + dt), the loan matures with

proability δdt in which case the agent is paid dCδt dollars (note that dCδt is not of order dt).

Differentiating above expression with respect to time, t, we obtain:

Ẇt = (γ + δ + λ)Wt +
φa2

t

2
− ct − δdCδt . (B.63)

According to the dynamic programming principle, the agent solves at any time t the optimization:

(γ + δ)Wt = max
at∈[0,ā]

(
ct − λtWt −

φa2
t

2
+ δdCδt + Ẇt

)
, (B.64)

yielding at = Wt/φ (if monitoring effort is interior).

Note also that because screening effort q is neither observable nor contractible, an unobserved

change in screening effort q cannot affect contracted flow payments ct or the lump-sum payment

dCδt upon maturity. Using the envelope theorem (i.e., ∂
∂q

∂Wt
∂at

= 0) and ∂ct
∂q =

∂dCδt
∂q = 0, we can

differentiate both sides of above equation (B.64) with respect to q to obtain for Vt = ∂
∂qWt:

35

V̇t = (γ + δ + λt)Vt −Wt. (B.65)

35An alternative derivation (not relying explicitly on envelope theorem) simply rewrites (B.63) by inserting
monitoring incentive compatibility, at = Wt/φ, to obtain

Ẇt =

(
γ + δ + Λ− Wt

φ
− q
)
Wt +

W 2
t

2φ
− ct − δdCδt .

Differentiating both sides with respect to q and using ∂ct
∂q =

∂dCδt
∂q = 0, we obtain

V̇t = (γ + δ + λt)Vt −Wt −
VtWt

φ
+
VtWt

φ
= (γ + δ + λt)Vt −Wt.
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Equivalently, we obtain the integral representation

Vt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λuduWsds,

which becomes (31) for t = 0.

Next, we denote the continuation surplus after maturity at a time s by F δs . Thus, the continu-

ation surplus at time t before maturity is characterized by

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws + δF δs

)
ds. (B.66)

This expression differs from that in the baseline model in (20) as the loan matures at rate δ, leading

to the terminal payoff F δs when the loan matures at time s.

By the dynamic programming principle, the value function Ft = F (Vt,Wt) solves the HJB

equation

(r + δ)F (V,W ) = max
a,c

{
1− φa2

2
− (γ − r)W − λF (V,W ) + δF δ

+ FV (V,W )((γ + δ + λ)V −W ) + FW (V,W )

(
(γ + λ+ δ)W +

φa2

2
− c− δW δ

)}
.

As in the baseline, the optimality of payouts requires

∂F (V,W )

∂c
= −FW (V,W ) = 0.

Recall that ex-ante, we do not restrict c to be positive, but afterward verify that c ≥ 0.

With slight abuse of notation, we write Ft = F (Vt) (i.e., Ft is a function of Vt only) and using

FW = 0, the HJB equation simplifies to

(r + δ)F (V ) = max
a,W

{
1− φa2

2
− (γ − r)W − λF (V ) + δF δ + F ′(V )

(
(γ + δ + λ)V −W

)}
, (B.67)

with W = φa and W ≤ F (V ) (limited liability).

As in the baseline, the state variable Vt converges to a limit V B(q), i.e., limt→∞ Vt = V B(q),

whereby limt→∞ V̇t = 0.36 Then, the HJB equation (B.67) is subject to the boundary condition

lim
V→V B(q)

F (V ) = FB(q) =

max
W∈[0,FB(q)]

(
1 + δF δ

r + Λ− a− q + δ
− (γ − r)W
r + Λ− a− q + δ

−
φa2

2

r + Λ− a− q + δ

)
, (B.68)

36We numerically verify that, indeed, V̇t < 0. A formal proof could be constructed using arguments
analogous to those in the proof of Proposition 2.
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which is analogous to (24) in the baseline model. Here,

V B(q) =
WB(q)

r + δ + Λ− aB − q
with WB(q) = W (V B(q)) and aB(q) =

WB(q)

φ
. (B.69)

We assume that a unique solution to (B.67) (subject to above boundary condition) exists.

In addition, as in the baseline model, optimal screening effort q∗ = q maximizes total initial

surplus F0− = F (V0)− κq2

2 subject to the incentive constraint V0 = κq. We numerically verify that

(under the chosen parameters) in optimum, V0 ≥ V B(q), so that V̇t < 0 and Vt drifts down over time

V B(q), as well as that the value function is strictly concave and decreases (i.e., F ′(V ), F ′′(V ) < 0).

A rigorous proof could be constructed using analogous arguments as those presented in the proof

of Proposition 2.

In what follows, we assume for simplicity that F δs = Fs (or F δ = F (V )), i.e., the stochastic

maturity event leaves the total loan value unchanged, in which case (20) and (B.66) coincide. At

maturity, the lender is paid Wt and outside investors are paid Ft − Wt. Therefore, there is no

value effect associated with the maturity event.37 This assumption reflects in reduced form the

fact that the value of the loan is the same just before maturity and at maturity; in a model with a

deterministic maturity date, this property would be called a value matching condition.38

Thus, using F δ = F (V ), the HJB equation (B.67) simplifies to

rF (V ) = max
a,W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + δ + λ)V −W

)}
,

with W = φa and W ≤ F (limited liability). The boundary condition (B.68) simplifies to

lim
V→V B(q)

F (V ) = FB(q) = max
W∈[0,FB(q)]

(
1

r + Λ− a− q
− (γ − r)W
r + Λ− a− q

−
φa2

2

r + Λ− a− q

)
.

Optimal effort becomes

a(V ) =
F (V )− F ′(V )(V + φ)− (γ − r)φ

φ
∧ W (C).

It follows that a′(V ) ≥ 0 as well as ȧ, Ẇ < 0. The exact level of dCδt (or dCδ) is payoff-irrelevant

and does not affect key equilibrium quantities, such as total surplus, credit risk, and screening or

monitoring incentives.

B.3.2 Implementation

Payouts to the agent read by (B.63)

ct = (γ + λt + δ)Wt +
φa2

t

2
− Ẇt − δdCδt .

37This assumption has no bearings on our key findings and is for mere simplicity; our results would remain
qualitatively unchanged had we assumed different F δt , for instance, F δt = K for a constant K ≥ 0.

38In reality, loans mature deterministically and this feature naturally holds, preventing arbitrage.
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Finally, we define the retention level βt via

βt − β̇tLt = ct ⇐⇒ β(V )− c(V ) = L(V )β′(V )V̇ ,

where the market value of debt, Lt = L(Vt), is defined as

Lt =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu(1 + δLδs)ds

and payouts to the agent, ct = c(Vt). Or

c(V ) = (γ + δ + λ(V ))W (V ) +
φa(V )2

2
−W ′(V )V̇ − δdCδ.

Set dCδ = β(V )F (V ) (i.e., dCδt = βtFt) so that upon maturity, the agent receives fraction β(V )

of the payout F (V ). Here, Lδs is the market value of debt at the maturity event (i.e., the “face

value” repaid to lenders at maturity). For simplicity, we assume — in line with F δs = Fs — that

Lδs = Ls, leading to Lt =
∫∞
t e−r(s−t)−

∫ s
t λudu1ds. That is, the maturity event is value neutral for

total surplus F (V ) and the value of debt.

B.3.3 Main Results and Figures with Finite Maturity

We now replicate Figures 2 and 4 for finite maturity, where we choose δ = 0.2, i.e., a maturity

of 5 years which is close to the average maturity reported in Blickle et al. (2022) (that is, 4.43

years). Similar to Figure 2 in the baseline (infinite maturity) case, Figure B.2 plots screening and

monitoring effort against κ, φ, Λ, and γ for different levels of α. Recall we use λt = Λ−at−q−αatq.
Indeed, as Figure B.2 illustrates, monitoring and screening efforts decrease with κ, φ, Λ, and γ for

any α considered, producing qualitatively similar patters as Figure 2 does.

Next, similar to Figure 4 in the baseline (infinite maturity) case, Figure B.3 plots retention

levels and selloff speed against κ, φ, Λ, and γ. Again, it can be seen that Figure B.3 produces

qualitatively similar results as Figure 4 does. As such, we conclude that our model’s key results

(on effort incentives and retention dynamics) are robust to the level of loan maturity.

B.4 Repeated Interactions

Repeated lender-borrower and lender-investor interactions are common in credit markets, in par-

ticular in syndicated lending. To begin, note that our baseline setting already captures repeated

lender-borrower interactions as it can be interpreted as follows: The lender extends a loan (with

face value K and coupon payments at rate 1) to the borrower with a possibly finite maturity and

this loan is rolled over (at identical terms and without re-screening) at maturity until default oc-

curs. The cash flows from these repeated lender-borrower interactions are 1 up to default at time

τ as the loan is simply rolled over at maturity dates.

Next, we analyze (possibly infinitely many) repeated lender-investor interactions with repeated

loan origination. A key result of the analysis below is that repeated interactions facilitate lender

commitment to a specific retention path stipulated in the contract implementation.
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Figure B.2: Comparative statics with finite maturity. This figure plots monitoring effort
at at t = 0 (solid black line), at t = 5 (dotted red line), and t→∞ (dashed yellow line) and screening effort
q∗ against the parameters φ, κ, Λ, and γ. We use our baseline parameters and set δ = 0.2.
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Figure B.3: Retention and dynamics with finite maturity. We use our baseline parameters
and δ = 0.2.
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To formally analyze repeated lender-investor interactions, we consider that (after screening) the

lender originates a loan with face value K, coupon payments at rate 1, and stochastic maturity

arriving with exogenous intensity δ > 0 at time time τ δ. Here, we assume that the face value is

not prohibitively large, so originating a loan has a positive net present value and is optimal for

the lender. When the loan matures at time τ δ, the face value is repaid, and the lender originates

a new and identical loan to a new borrower with exogenous probability pδ, so that the lender

has to re-screen and exert costly screening effort when a new loan is originated. Otherwise, with

probability 1− pδ, the lender exits and cannot originate further loans. If a loan defaults at time τ ,

the lender originates another loan with (exogenous) probability pλ. With probability 1 − pλ, the

lender exits (i.e., the relationship breaks down). We introduce the probabilities pδ and pλ to make

the continuation of the relationship probabilistic, thereby capturing the fact that the number of

repeated interactions is not infinite in practice. For simplicity, we assume that pδ = 1 and pλ ≤ 1.

That is, the lender faces the possibility of being excluded from the secondary market upon default

and not being able to originate further loans (due, e.g., to a loss in competitiveness related to the

inability to sell the loan). Setting pλ = 0 and δ = 0 yields our baseline model.

We further assume that whenever the lender originates a loan, it receives an exogenous lump-

sum reward R ≥ 0, capturing the fees earned during the origination process. The parameter R is

not central to the following arguments and can be set to zero without qualitatively changing the

results. Nevertheless, it is useful to introduce R to illustrate that origination fees substitute for

retention in incentive provision; thus, when retention is low in practice, the lender’s incentives need

not be low, as higher R can substitute for lower retention in incentive provision.

Unless otherwise mentioned, we maintain the assumptions of the baseline model, i.e., each loan’s

default intensity at time t is λt = Λ − at − q where q is the screening effort and at is monitoring

effort. At time t = 0−, the lender and investors sign a long-term and full-commitment contract C
stipulating payouts to the agent dCt as well as recommended screening q̂ and monitoring levels ât.

We focus on incentive compatible contracts.

As in the previous proofs, we take the optimal level of q as given and characterize the contin-

uation contract after screening q is chosen. This continuation contract yields continuation surplus

Ft at time t. The initial level of screening is chosen to maximize F0− = maxq∈[0,q̄] F0 − κq2

2 , which

is the payoff from loan origination excluding the lump-sum reward R and the face value K.

B.4.1 Solution and Optimal Contract

We now provide the heuristic solution for the lender-investor long-term and full-commitment con-

tract, signed between investors and the lender at time t = 0− (i.e., before screening of the initial

loan). In doing so, we take the screening level q as given and first determine the optimal continua-

tion contract after screening. We also assume that relevant regularity conditions (so that a solution

exists and is unique) are met and the first order approach is valid.

We conjecture and verify that outside loan origination, default, and maturity events, payouts

to the agent are smooth at rate ct. To begin, we define the agent’s continuation value at time t as

Wt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2
+ δ(W δ

s + dCδs ) + λsp
λ(W λ

s + dCλs )

)
ds, (B.70)
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where W δ
s (W λ

s ) is the agent’s continuation payoff just after the loan matures (defaults and a new

loan is originated) at time s and dCδs (dCλs ) is a lump-sum payment that the agent receives when the

loan matures (defaults) at time s and the lender originates a new loan. Taken together, the agent’s

total value jumps from Ws to W δ
s + dCδs (W λ

s + dCλs ) at maturity (default and new origination)

at time s. Note that when the loan defaults and the lender cannot originate another loan (with

probability 1 − pλ), its continuation payoff is zero and there is no lump-sum payment. Limited

liability requires W δ
s + dCδs ≥ 0 and W λ

s + dCλs ≥ 0, i.e., the agent’s continuation pay (including

lump-sum transfer) is positive at maturity and default events. Limited liability (for the lender)

also requires, as in the baseline model, Ws ≥ 0 as well as W δ
s ,W

λ
s ≥ 0.

Next, we can differentiate (B.70) with respect to time t to obtain

Ẇt = (γ + δ + λt)Wt +
φa2

t

2
− δ(W δ

t + dCδt )− λtpλ(W λ
t + dCλt )− ct. (B.71)

The lender chooses monitoring effort to maximize

max
at∈[0,ā]

(
λt
[
pλ(W λ

t + dCλt )−Wt]−
φa2

t

2

)
,

so that, provided monitoring effort is interior, we have

at =
Wt − pλ(W λ

t + dCλt )

φ
.

It is natural to conjecture that, to provide efficient and optimal incentives to screen and monitor,

the optimal contract sets (W λ
t + dCλt ) = 0, so as not to “reward” the agent for default. Thus, in

what follows, we consider that (W λ
t + dCλt ) = 0 so that at = Wt/φ.

As a next step, we differentiate (B.71) with respect to q noting that
∂dCδt
∂q = 0 (i.e., hidden

screening does not affect contracted payouts) and
∂W δ

t
∂q = 0 (i.e., the effects of screening effort

impact do not extend beyond maturity) to obtain

V̇t = (γ + δ + λt)Vt −Wt

so that Vt =
∫∞
t e−(γ+δ)(s−t)−

∫ s
t λuduWsds. The screening incentive condition is analogous to that

in the baseline model, i.e., V0 = κq.

Next, we denote the continuation surplus after maturity (default and new origination) at a time

s by F δs (F λs ); if the loan defaults and origination is not possible, the continuation surplus becomes

zero. As all originated loans are ex-ante identical and thus feature in optimum identical screening,

we obtain F δs = F0− +R and F λs = F0− −K +R. Thus, upon maturity, the lender is paid back the

face value K and immediately extends a new loan (with face value K), yielding additional payoff

F0− − K plus R (“origination fees”) so that F δs = K + F0− + R − K. When default occurs, the

lender is not paid back anything; with probability pλ, the lender originates a new loan with face

value K and accordingly earns F0− −K +R.
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Thus, the continuation surplus at time t before maturity is characterized by

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws + δF δs + pλλsF

λ
s

)
ds

=

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws + (δ + pλλs)(F0− +R)− pλλsK

)
ds.

Limited liability for investors requires Ft − Wt ≥ 0 as well as F λt − dCλt − W λ
t = F λt ≥ 0 and

F δt − dCδt −W δ
t ≥ 0.

As in our previous analysis, we conjecture and verify that all payoff-relevant quantities can be

written as functions of V = Vt only, in that Ft = F (V ), Wt = W (V ), at = a(V ), and ct = c(V ). We

omit time subscripts, unless necessary. Using above integral expression for Ft as well as invoking

the dynamic programming principle, total surplus F (V ) satisfies the HJB equation:

(r + δ)F (V ) = max
a,W

{
1− φa2

2
− (γ − r)W − λF (V ) + δF δ + λpλF λ + F ′(V )

(
(γ + δ + λ)V −W

)}
,

subject to W ∈ [0, F (V )] and a = W/φ. Recall F δ = F0− +R and F λ = F0− −K +R.

The optimization with respect to monitoring effort a yields

a(V ) =
F (V )− pλF λ − (γ − r)φ− F ′(V )[V + φ]

φ
.

Finally, we characterize the boundary behavior of the HJB equation. For this sake, consider

V B =
W (V B)

γ + δ + λB
,

with λB = Λ− q− a(V B). The above HJB equation is solved for V > V B subject to the boundary

condition

lim
V→V B

F (V ) = FB,

with

FB = max
W∈[0,FB ],V Post

(
1− (γ − r)W − φa2 + pλ(Λ− a− q)F λ + δF δ

r + δ + Λ− a− q

)
subject to a = W/φ.

Optimal screening effort at time t = 0− is then determined according to:

F0− = max
q∈[0,q̄]

F (V0)− κq2 s.t. V0 = κq,

where we assume that parameters imply F0− > K.

Notice that at maturity or default, a new loan is originated and the lender essentially solves the

same problem as at time t = 0−. As such, total surplus becomes F0− and the lender’s continuation

payoff is reset to W0, so that W δ
t = W λ

t = W0 which pins down dCλt = −W0. As a next step, we

determine dCδt , i.e., the agent’s payment upon maturity, and flow payouts ct. Using W λ
t = W δ

t =
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−dCλt = W0, we can rewrite (B.71) to obtain

ĉt := ct + δdCδt = (γ + δ + λt)Wt +
φa2

t

2
− δW0 − Ẇt. (B.72)

As the optimal contract pins down Wt = W (Vt) and Ẇt = W ′(Vt)V̇t as well as optimal monitoring

at and default intensity λt, it also uniquely pins down ĉt := ct+δdC
δ
t . However, while ĉt := ct+δdC

δ
t

is uniquely pinned down, the individual components of this sum ct and dCδt are not unique and can

be chosen arbitrarily, subject to ĉt = ct + δdCδt and F δt − dCδt −W δ
t ≥ 0, i.e., F0− +R−W0 ≥ dCδt .

In the implementation below, we will pick a specific value of dCδt , which then pins down uniquely

the payout rate ct via (B.72).

B.4.2 Implementation, Retention, and Commitment

The optimal contract in the model with repeated interactions leads to an optimal state-contingent

level of continuation payoff for the agent Wt = W (Vt), with dynamics Wt characterized in (B.71)

or (B.72). We now discuss the implementation of the optimal contract by means of time-varying

retention of a share by the agent. For this purpose, consider the market value of the loan

Lt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu1ds.

In optimum, the market value of the loan is a function of Vt, i.e., Lt = L(Vt) and satisfies the ODE

(r + λ(V ))L(V ) = 1 + L′(V )V̇

subject to limV→V B L(V ) = 1
r+Λ−a(V B)−q .

The lender retains a share βt = β(Vt). The lender’s retention βt = β(Vt) is determined according

to

ct = βt − β̇tLt ⇐⇒ c(Vt) = β(Vt)− β′(Vt)V̇tL(Vt). (B.73)

That is, the lender receives coupon payments at rate one per unit retained of the loan, i.e., in total

β(Vt) dollars, and obtains additional payoff −β′(Vt)V̇tL(Vt) from selling the loan at market price

L(Vt). The sum of coupon payments and payoff from selling must equal contracted payouts in the

implementation.

As a next step, we determine dCδt , i.e., the agent’s payment upon maturity. Using (B.73), we

can rewrite (B.72):

βt − β̇tLt = (γ + δ + λt)Wt +
φa2

t

2
− δ(W0 + dCδt )− Ẇt. (B.74)

As a next step, we determine dCδt , i.e., the agent’s payment upon maturity.

Recall that we can pick arbitrary dCδt ≤ F0− +R−W0, which then pins down the payout rate

ct via (B.72) and accordingly βt − β̇tLt via (B.74). We pick dCδt = F0− −K −W0 + βtK + R =

F0− +R −W0 − (1− βt)K. We motivate this choice as follows. First, on the maturity date t, the

lender owns a fraction βt of the maturing loan and thus is paid a fraction βt of the face value K (i.e.,
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βtK). Second, the lender extracts the entire surplus F0− −K + R from the follow-up origination.

That is, W δ
0 + dCδt = F0− − (1− βt)K +R. As a result, using (B.74), we obtain the following ODE

β(V )−β′(V )V̇ L(V ) = (γ+δ+λ(V ))W (V )+
φa(V )2

2
−δ(F0−+R−(1−β(V ))K)−W ′(V )V̇ , (B.75)

which determines the (state-contingent) retention level β(V ). The ODE is solved for V > V B with

boundary condition

lim
V→V B

β(V ) =
1

1 + δK

(
(γ + δ + λB)W (V B) +

φa(V B)2

2
− δ(F0− +R−K)

)
(B.76)

We assume that a solution exists and is unique.

According to (B.75) and (B.76), expected future payoffs from loan origination, as captured by

δ(F0− + R − (1 − βt)K), all else equal reduce flow payouts to the agent ct and thus the required

retention level βt. This effect is stronger when the loan maturity 1/δ is shorter (i.e., when δ is

larger) as the payoff from repeated origination only materializes when the outstanding loan matures.

Likewise, the expected future payoff from origination is larger and thus the required retention level

is lower when R (capturing origination fees) or F0− −K (capturing “net” surplus from origination)

are larger. That is, expected future payoffs from loan origination provide screening and monitoring

incentives to the lender and are a substitute to loan retention in incentive provision.

We now discuss whether lender commitment is necessary for the implementation. For this

purpose, consider the extreme case in which the lender cannot commit to retaining part of the

loan. However, if the lender deviates from the retention path stipulated in the contract at any

point in time, it can no longer sell loans to investors and, as a result, originate loans (due to the

fact that other lenders can better price loans that they can resell to investors). The underlying

assumption is that in the absence of investors who buy the loans originated by the lender, the

lender is not able or willing to originate loans in autarky, e.g., because it is not profitable to do

so if it cannot sell the loans or because it is not able to originate loans on its own due to capital

constraints. In other words, investors cut the relationship and thus play a grim-trigger strategy.

The market price at time t equals Lt. If the lender is able to sell its entire stake at price Lt (i.e.,

there is no price impact), it earns Ltβt but looses its continuation payoff Wt. Thus, the lender

prefers not to sell its entire stake if Ltβt ≤Wt or in terms of the state variable

L(V )β(V ) ≤W (V ) for all V ∈ (V B, V0) (B.77)

holds. Given the grim-trigger strategy of investors, selling the entire stake at market price L(Vt) =

Lt (i.e. without price impact) is the best possible scenario for the agent. Thus, (B.77) is sufficient

for the implementation to work even in the lack of commitment.

We now numerically check under what circumstances condition (B.77) holds. For this purpose,

we set the average maturity of the loan to 4.43 years, as reported in Blickle et al. (2022), by setting

δ ≈ 0.23. We further set K = 0.75, normalize R = pλ = 0, and use our baseline parameters

otherwise. We numerically solve the model with repeated interactions as well as the implemen-

tation of the optimal contract for a wide range of parameters. Figure B.4 performs comparative

static analysis with respect to R (origination fees), 1/δ (maturity), and K (face value) and plots
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Figure B.4: Comparative Statics and Loan Portfolios. This figure plots min{W (V ) −
L(V )β(V )} := min{W (V )−L(V )β(V ) : V ∈ [V B(q), V0] against R, 1/δ, and K under our baseline
parameters as well as δ = 0.23, K = 0.75, and R = pλ = 0. Notice that (B.77), so that the
lender would not like to deviate from the stipulated retention path, holds if and only min{W (V )−
L(V )β(V )} ≥ 0

min{W (V ) − L(V )β(V )} := min{W (V ) − L(V )β(V ) : V ∈ [V B(q), V0]} against R (Panel A), 1/δ

(Panel B), and K (Panel C). Notice that (B.77) holds if and only if min{W (V )− L(V )β(V )} ≥ 0

in which case the lender does not benefit from deviating from the stipulated retention path. Notice

that the lender indeed does not benefit from deviating and (B.77) holds when expected future

payoffs from loan origination, as captured by δ(F0− +R− (1− βt)K) are large. Thus, (B.77) holds

when the loan maturity 1/δ is not too long (e.g., smaller than 10 years in our numerical example)

and the face value K is not too large. Notably, (B.77) holds in our baseline parameters, in addition

to 1/δ = 4.43, K = 0.75, and R = 0 and, as is observed, across a wide range of parameters even

when R = 0.

We emphasize that (B.77) should be interpreted as a sufficient condition for the implementation

to be robust to commitment problems. Both in practice as well as in theory, loan sales would have

a price impact rendering large discrete sales not attractive for the lender and leading the lender

to retain its stake in the loan, effectively allowing the lender to commit to some retention path.

Such price impact could arise for example because loan sales reduce lender incentives to monitor

and thus the loan’s value. Second, depending on the model interpretation and application, the

market for loans might be illiquid, especially shortly after origination, which allows the lender to

commit to retention during this period. Specifically, if we interpret time t = 0 as the beginning of

the primary market within syndicated lending (for details on the syndication process, see Bruche

et al. (2020)) while the secondary market opens at some time T > 0, then the lender cannot easily

sell its stake in the primary market over [0, T ], again giving the lender some commitment power.

Third, in practice within syndicated lending, loan sales (e.g., to institutional investors) are often

pre-committed at origination. That is, at origination, the lender commits to sell a certain share to

investors at a later time. As such, there is some form of commitment to loan sales in the market

for syndicated loans, supporting the plausibility and empirical relevance of our results.
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B.5 Model Variant with Separation of Screening and Monitoring

We now assume that screening and monitoring are undertaken by two separate agents, referred to as

the screener and monitor respectively. Both the screener and monitor have identical preferences, i.e.,

they are risk-neutral with discount rate γ. Both screening q and monitoring at are not observable

nor contractible, and affect default rate λt = Λ−at−q. That is, only the screener (monitor) observes

screening (monitoring) effort q (at). A contract to the screener Cs stipulates recommended screening

q̂ and incremental payouts dCst ; a contract to the monitor Cm stipulates recommended monitoring

{ât} and incremental payouts dCmt . The contracts are chosen to maximize total surplus. We focus

on incentive compatible contracts, so that in optimum q = q̂ and at = ât.

B.5.1 Model Solution with Separation of Screening and Monitoring

Analogous to the solution of the baseline, we first provide the solution to the continuation problem

for t ≥ 0 and a given level of q. Then, we determine the optimal screening level q, taking into

account the solution to the continuation problem. We assume that monitoring effort (screening

effort) is only and privately observed by the monitor (screener).

Define the screener’s continuation value (from time t onward) as

W s
t =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu(δdCs,δs ds+ dCss )

and the monitor’s continuation value (from time t onward) as

Wm
t =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu

(
δdCm,δs ds+ dCms −

φa2
s

2
ds

)
,

where at is monitoring effort and q is screening effort, leading to λt = Λ−at− q. The loan matures

randomly at rate δ, and dCs,δt and dCm,δt are the screener’s and monitor’s payoffs (lump-sum

payments) in the event of maturity respectively (note that dCs,δt and dCm,δt are not of order dt).

That is, over [t, t+ dt), the loan matures with probability δdt in which case the screener (monitor)

is paid dCδ,st (dCδ,mt ) dollars.

As such, we obtain the following dynamics for continuation values:

dW s
t = (γ + λt + δ)W s

t dt− dCst − δdC
s,δ
t dt (B.78)

dWm
t = (γ + λt + δ)Wm

t dt− dCmt +
φa2

t

2
dt− δdCm,δt dt. (B.79)

As dCst and dCmt are not sign-restricted, we can treat W s
t and Wm

t as control variables in the

dynamic optimization problem, while dropping the controls dCst and dCmt . Moreover, as will

become clear later, the exact values of the payments δdCs,δt and δdCm,δt will turn out not to be

relevant for key equilibrium quantities, such as incentives, credit risk, or total surplus.

At any point in time, the monitor chooses effort at to maximize

(γ + δ)Wm
t = max

at∈[0,ā]

(
λtW

m
t + dCmt + δdCm,δt +

dWt

dt

)
.
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Thus, optimal monitoring (if interior) is pinned down by the incentive condition

at =
Wm
t

φ
,

provided that monitoring effort at is interior. Next, the screener maximizes at time t = 0:

max
q∈[0,q̄]

W0 −
κq2

2
,

As in the baseline version of the model, optimal screening is pinned down by the incentive condition

V0 = κq,

where we define Vt := ∂
∂qW

s
t as the screener’s “screening” incentives. The remainder of the solution,

similar to the baseline, features Vt as the main state variable, and W s
t and Wm

t are control variables

in the dynamic optimization.

Noting that an unobserved change in screening effort does not affect contracted payments, so

that
∂dCst
∂q =

∂dCs,δt
∂q = 0, or the monitor’s monitoring effort, so that ∂at

∂q = 0, we can differentiate

the dynamics of W s
t in (B.78) with respect to q to obtain for the screener’s incentives Vt :=

∂W s
t

∂q :

dVt = (γ + λt + δ)Vtdt−W s
t dt. (B.80)

Thus, the screener’s “screening” incentives in integral form read

Vt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λuduW s

s ds.

The optimal contracts to both the screener and monitor are designed to dynamically maximize

total surplus Ft. Total surplus Ft can be rewritten (using arguments analogous to the ones that

lead to (A.16)) as

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)(W s

s +Wm
s ) + δF δs

)
ds,

where F δs is the (continuation) surplus “just after” maturity (which occurs at rate δ). We will

specify the exact form of F δs below.

As in the baseline version of the model, screening incentives V is the only state variable for the

dynamic optimization problem, while Wm and W s can be treated as control variables. Accordingly,

by the dynamic programming principle, total surplus F (V ) solves the HJB equation

(r + δ)F (V ) = max
a,Wm,W s

{
1− φa2

2
− (γ − r)(Wm +W s)− λF (V )

+ δF δ + F ′(V )
(
(γ + λ+ δ)V −W s

)}
. (B.81)

Note that limited liability requires that Wm ∈ [0, F (V ) − W s] and W s ∈ [0, F (V ) − Wm] and

incentive compatibility with respect to monitoring requires that Wm = aφ. Throughout, we assume
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existence and uniqueness of a solution to (B.81) (subject to a boundary condition specified below).

The maximization with respect to the screener’s deferred compensation W s yields that

W s(V )


= 0 if F ′(V ) > −(γ − r)
∈ [0, F (V )−Wm(V )] if F ′(V ) = −(γ − r)
= F (V )−Wm(V ) if F ′(V ) < −(γ − r).

(B.82)

As in the baseline, it follows that limt→∞ Vt = V B(q), where V B(q) is the level of screening

incentives in the benchmark without screening moral hazard (given q).39 It follows that V B(q) = 0,

as absent screening moral hazard it is optimal to set Vt = W s
t = 0 at all times t ≥ 0.

As a result, it must be that V̇t < 0 at all times t ≥ 0, in that

V̇ = (γ + λ+ δ)V −W s(V ) < 0.

Owing to (B.82), this requires that W s(V ) > 0 for V > 0 and therefore F ′(V ) ≤ −(γ − r) for

V > 0. Next, suppose that F ′(V ) < −(γ − r) for V > 0, so W s(V ) = F (V ) −Wm(V ). Inserting

this expression into (B.81) and simplifying leads to the ordinary differential equation

(γ + δ)F (V ) = max
a,Wm

{
1− φa2

2
− λF (V ) + δF δ + F ′(V )

(
(γ + λ+ δ)V − F (V ) +Wm

)}
, (B.83)

whereby a = Wm/φ.

As in the main text (compare Section 4.3), we consider F δ = F (V ), so (B.83) simplifies to

γF (V ) = max
a,Wm

{
1− φa2

2
− λF (V ) + F ′(V )

(
(γ + λ+ δ)V − F (V ) +Wm

)}
. (B.84)

Using the envelope theorem to totally differentiate the HJB equation (B.84) (under the optimal

control Wm = φa) with respect to V yields

F ′′(V ) =

(
F ′(V )

)2 − δF ′(V )

(γ + λ+ δ)V − F (V ) +Wm
=

(
F ′(V )

)2 − δF ′(V )

V̇
,

where the second equality uses W s(V ) = F (V ) −Wm(V ) and V̇ = (γ + λ + δ)V − F (V ) + Wm

(see (B.80)). It must be that F ′(V ) < 0 for V > 0, as otherwise there exists a point V ′ > 0 with

F (V ′) > FB(q) which cannot be. That is, F (V ) is strictly concave for V > 0. If there exists

now V̂ > 0 with F ′(V̂ ) = −(γ − r), then there exists 0 < V ′ < V̂ with F ′(V ′) > −(γ − r), a

contradiction. As a result, F ′(V ) < −(γ − r) for all V > 0.

The maximization in (B.83) with respect to monitoring effort yields

a(V ) =
F (V )− F ′(V )V + F ′(V )φ

φ
. (B.85)

39We omit the formal proof of this claim which could be constructed using arguments analogous to those
presented in Part II of Proposition 2.
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When V approaches zero, it must be that V̇ approaches zero too, as — by definition — V cannot

become negative. As such, W s(0) approaches zero, which requires by means of (B.82) that F ′(0) ≥
−(γ − r). As F ′(V ) < −(γ − r) for all V > 0, it follows — by continuity of F ′(V ) — that

limV→0 F
′(V ) = −(γ − r). An alternative way to derive this boundary condition is as follows.

Comparing (17) with (B.83), one can see that

lim
V→0

F (V ) = FB(q) = max
a∈[0,ā]

(
1− (γ − r)φa− 0.5φa2

r + Λ− a− q

)
is equivalent to

lim
V→0

F ′(V ) = −(γ − r),

which is then natural the boundary condition for the ODE (B.83) as V approaches zero. We assume

that a unique solution to (B.83) (subject to above boundary condition) exists.

Finally, notice that the exact values of the payoffs upon maturity, i.e., dCm,δt and dCs,δt , are

not payoff-relevant, in a sense that they do not affect monitoring or screening incentives, credit

risk, or total surplus. Thus, as in Appendix B.3, we can assume that the maturity event does not

change the agent payoff, i.e., we stipulate dCs,δt = W s
t and Wm,δ

t = Wm
t . Again, this assumption is

without loss of generality, since the exact values of dCs,δt and Wm,δ
t do not affect key equilibrium

quantities, such as total surplus, credit risk, and screening or monitoring incentives.

The screener’s continuation payoff follows then the dynamics

dW s
t = (γ + λt)W

s
t dt− dCst .

Because limV ↓0W
s(V ) ≥W s(0) = 0, the the screener receives a payout of

dCs = W s(0) = F (0)−Wm(0)

dollars at the time V reaches zero, which occurs in finite time owing to limV ↓0 V̇ (V ) > 0 = V̇ (0).

As in the baseline, optimal screening effort q∗ maximizes total initial surplus F0− = F (V0)− κq2

2

subject to the incentive constraint V0 = κq.

B.5.2 Contract dynamics with separation of screening and monitoring

We show that when screening and monitoring are separate and φ > κq̄, then monitoring effort

increases over time, i.e., a′(V ) < 0 and ȧt > 0, so that credit and default risk decrease over time,

as opposed to the baseline in which monitoring effort decreases and credit risk increases over time.

Recall the monitoring effort from (B.85), that is,

a(V ) =
F (V )− F ′(V )V + F ′(V )φ

φ
.

We can differentiate a(V ) with respect to V to obtain

a′(V ) =
−F ′′(V )V + F ′′(V )φ

φ
.
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As q < q̄ and V̇t ≤ 0, we have Vt < V0 ≤ κ̄q. Moreover, the value function is strictly concave, i.e.,

F ′′(V ) < 0, and — by assumption — φ > κq̄ holds, so that

a′(V ) ≤ −F
′′(V )(κq̄ − φ)

φ
< 0.

Thus, effort at increases over time, i.e., ȧt = a′(Vt)V̇t > 0.

B.5.3 Analysis

We now analyze how bundling screening and monitoring tasks (as opposed to separating them)

changes lender’s incentives and screening/monitoring efforts, total surplus, and credit risk. For

this sake, Figure B.5 plots the percentage change of initial monitoring a0 (first row), optimal

monitoring q = q∗ (second row), total initial surplus F0− (third row), and expected time to default

at t = 0 (fourth row) upon bundling against κ, φ, Λ, and 1/δ. Notice that bundling monitoring and

screening leads to positive synergies, while separating these two tasks can lead to negative synergies.

Accordingly, bundling screening and monitoring leads to higher screening and monitoring efforts,

increases total surplus, and reduces credit risk (i.e., increases the expected time to default). Figure

B.5 illustrates these findings and shows that they are robust to changes in the κ, φ, Λ, and 1/δ.

Under all parameters considered, bundling increases (initial) monitoring (i.e., ∆a0 > 0), screening

(∆q∗ > 0), and total surplus (∆F0− > 0). Our model therefore predicts relatively low levels of

monitoring and screening in the mortgage market, where screening and monitoring tasks are often

separated (Demiroglu and James, 2012).

Also notice that according to Figure B.5, bundling screening and monitoring increases total

surplus and reduces credit relatively less, the larger the cost of screening or monitoring, the larger

intrinsic credit Λ, or the longer the loan maturity. One interpretation of this result is that when, for

instance, monitoring borrowers is difficult after origination in that φ is large, bundling of separating

and monitoring is less likely to occur. According to our model, bundling is more likely to occur in

credit markets in which screening and monitoring are important for credit risk (i.e., the effects of

screening/monitoring are large relative to the cost), such as the market for corporate loans.

B.6 Micro-foundation of Baseline Assumptions

This section provides a detailed micro-foundation for our reduced form modeling of the lender’s

screening and its impact on the default rate λt. Unless otherwise stated, we maintain the assump-

tions of the baseline model. We consider an environment with two types x ∈ {G,B} of potential

borrowers, a good (G) borrower with low default risk and a bad borrower (B) with higher default

risk. There is a large mass of borrowers who would like to borrow from the lender at time 0. The

ex-ante proportion of good type borrowers is ω ∈ [0, 1]. Thus, if the lender encounters a randomly

drawn borrower, this borrower is good with probability ω and bad with probability 1 − ω. If the

lender extends a loan to the borrower of type x, this loan pays coupon at a rate normalized to one

up to default.
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Figure B.5: The effects of bundling screening and monitoring. ∆a0 denotes the percentage
change in monitoring effort at t = 0 due to bundling. ∆q∗ denotes the percentage change in screening effort
due to bundling. ∆F0− denotes the percentage change in total surplus at t = 0− caused by bundling. ∆τ
denotes the percentage change in the expected time to default due to bundling. Outcome variables are
plotted as functions of the cost of monitoring κ, the cost of screening φ, the raw default intensity Λ, and
loan maturity 1/δ under the baseline parameters.
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Time t Time t+ dt

ρdt pxt Default

1− pxt

No default

Effort: at

τ ρ > t+ dt and continuation

τ ρ = t+ dt and Lt+dt = LPostt+dt

τ ρ = t+ dt and Lt+dt = 0

1− ρdt

No credit shock

Figure B.6: Heuristic timing over [t, t+dt). The branches of the tree contain the probabilities
of the respective random event over [t, t+ dt).

B.6.1 Default Risk

For tractability, we model uncertainty as in, e.g., Board and Meyer-ter Vehn (2013), Hoffmann and

Pfeil (2021), Gryglewicz, Mayer, and Morellec (2021), Mayer (2022), and Hu and Varas (2021a,b).

Specifically, default only occurs upon an exogenous and publicly observable “credit shock” which

arrives at constant, exogenous intensity ρ > 0. For simplicity, there is maximally one credit shock

which arrives at random time τρ; after time τρ, there is no more uncertainty.40 If this credit shock

hits at time t, a type-x borrower defaults with probability px. The credit shock can be interpreted as

an aggregate negative shock to the economy (such as a financial crisis), an aggregate earnings shock

(such as Covid-19), or an aggregate cost of financing shock (such as an increase in interest rates as

loans are generally floating rate instruments). Good firms are more likely able to withstand this

shock than bad firms, in that the probability of default for a type-x borrower over any [t, t+ dt) is

pxt ρdt with pGt < pBt . If the borrower defaults upon credit shock, the recovery value is for simplicity

zero and the game ends. If the borrower survives the credit shock (with probability 1 − pxt ), the

market value of the loan becomes LPostt (characterized below). Figure B.6 depicts the heuristic

timing over a short time period [t, t+ dt).

In the following, we assume that

pGt = p− χGat and pBt = 1− χBat

for some constant χx ≥ 0 and p < 1. That is, we assume as in the baseline that the lender’s

monitoring effort at (chosen before the realization of the credit shock) reduces the probability of

default upon credit shock. Depending on the exact values of χg and χb, monitoring can have different

impact in reducing default risk for good and bad borrowers. We assume that p − χgā < 1 − χbā,

i.e., even if monitoring effort at is at its maximum ā, the bad type borrower has higher default risk.

40The expected time to τρ then equals 1/ρ.
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Last, if the lender believes that the borrower is good, i.e., x = G, with probability ω̂t, then the

expected probability of default over [t, t+ dt) from the lender’s point of view is λtdt with

λt = ρ
[
ω̂tp

G
t + (1− ω̂t)pBt

]
.

As we show next, ω̂t depends on the lender’s screening effort q and takes the form ω̂t = ω̂(q).

B.6.2 Loan Origination and Screening

The sequence of events at time t = 0− (i.e., just before screening) is as follows. First, the lender and

investors sign a contract C = {dCt, ât, q̂}, stipulating incremental payouts to the lender dCt as well

as recommended screening effort q̂ and monitoring efforts (ât)t≥0. Second, the lender is randomly

matched with a borrower and receives a signal S about borrower type; the signal’s precision depends

on the lender’s screening effort. Third, the lender either accepts the borrower, in which case the

loan to the borrower is originated, or rejects the borrower, in which case the lender is randomly

matched with another borrower and we are back in the second step.

The signal S about borrower’s type x can take two values g and b, where Pr(S = b|x = B) =

1 − f(q) and Pr(S = b|x = G) = 0. That is, the signal S may only yield false positives, i.e.,

it may yield g for a bad borrower. On the other hand, if the signal takes value b, a bad type

borrower is identified (i.e., Pr(s = b|x = G) = 0). The probability of a false-positive signal reads

Pr(s = g|x = B) = f(q), where f(q) decreases with q (subject to standard regularity requirements,

such as f(q) ∈ [0, 1] for q ∈ [0, q̄]). In other words, the precision of the signal, that is, 1 − f(q),

increases with the lender’s screening effort, so that higher screening effort q allows the lender to

better differentiate good from bad borrowers. By Bayes’ rule, observing S = g, the lender believes

that the borrower is good with probability

ω̂(q) := Pr(x = G|S = g) =
Pr(x = G ∧ S = g)

Pr(S = g)
=

ω

ω + (1− ω)f(q)
, (B.86)

so that ω̂′(q) > 0.

We assume that the lender rejects the borrower if it observes S = b in which case a bad type

borrower is identified and the lender moves on and screens the next borrower. As such, the lender

searches for a borrower until a good signal S = g is observed. Then, the lender originates the loan

to the borrower, so the lender and investors receive coupon payments at rate one from time t = 0

onwards whereby the lender is paid dCt per dt.

Importantly, after time t = 0, there is no more learning about borrower type unless there is a

credit shock (which, as we recall, is publicly observable). The only reason behind the modeling of

default only occurring at publicly observable credit shocks is to preclude dynamic learning about

borrower type over time.41 In Section B.6.10, we extend the analysis to multiple credit shocks in

which case there is learning and belief updating if the loan survives a credit shock. In this extension,

the lender’s belief about borrower type moves over time and becomes an additional state variable,

thereby significantly complicating the analysis without delivering new economic insights.

41Analogously, Hu and Varas (2021b) also add tractability to their setting by employing similar modeling
of default/failure.

A49



B.6.3 Screening and Monitoring: Substitutes vs. Complements

Recall that at any point in time t, the (expected) default intensity from the lender’s and investors’

point of view is:

λt = ρ
[
ω̂(q)pGt + (1− ω̂(q))pBt

]
.

We assume the following tractable functional form of f(q):

f(q) =
ω(1− ζq)
(1− ω)ζq

⇐⇒ ω̂(q) = ζq,

where we assume the parameters ζ, q̄, and ω are such that ω̂(q) and f(q) are well-behaved and lie

between zero and one. We can generally write using ω̂(q) = ζq:

λt = ρ− ρζ(1− p)q − atχB − atqζ(χG − χB)

=: ρ− αqq − αaat − αaqqat

with αq = ρζ(1 − p), αa = χB, and αaq = ζ(χG − χB). Notably, our baseline specification with

default intensity (1) is obtained upon setting ρ = Λ, αa = αq = 1, and αaq = 0 (i.e., χG = χB).

Depending on χG and χB, screening and monitoring can be complements or substitutes in

reducing default risk. When χG > χB, monitoring has a larger effect on reducing default risk

for good types than for bad types. We then have ∂2λt
∂at∂q

= −ζ(χG − χB) < 0 and screening

and monitoring are complements in reducing default risk. When χG < χB, monitoring has a

smaller effect on reducing default risk for good types than for bad types. In this case, we have
∂2λt
∂at∂q

= −ζ(χG − χB) > 0 and screening and monitoring are substitutes in reducing default risk.

When χG = χB, they are neither complements nor substitutes, as we assume in the baseline.

It is ex-ante unclear whether χG > χB or χG < χB prevails in credit markets and this might

depend on the specific market one is analyzing. For instance, when good borrowers are perfectly safe

regardless of monitoring, we would expect χG < χB, and screening and monitoring are substitutes.

On the other hand, when bad borrowers are very risky and default with a very high probability

regardless of monitoring, we get χG > χB and screening and monitoring would be complements.

Crucially, and as we show, the model’s main results obtain regardless of whether we assume that

screening and monitoring are substitutes or complements (see Section 2.2.4 in the main text).

In our baseline model, we assume that screening and monitoring are neither substitutes nor

complements for several reasons. First, we think it is unclear whether χG > χB or χG < χB
prevails in practice, so we do not want to take a stance. Second, by not making assumptions on

substitutability or complementarity, we afford maximum theoretical clarity, tractability, and reduce

the number of model parameters to focus on the paper’s implications on lender incentives and loan

sale and retention dynamics. Third, we show that for pure incentive provision, screening and

monitoring have the tendency to behave like complements and we rather focus on the endogenous

than the assumed relationship.
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B.6.4 Dynamic Optimization and Contracting

We now provide the heuristic solution to the dynamic contracting problem and show that, under

certain assumptions, it becomes isomorphic to that in the baseline model. As in the baseline model,

we start our analysis by taking the level of screening q as given.

Recall that, after the loan is originated, the lender faces a good borrower with probability ω̂(q),

pinning down the expected rate of default as well as the expected probability of default

pt :=
[
ω̂(q)pGt + (1− ω̂(q))pBt

]
= 1− αq

ρ
q − αa

ρ
at −

αaq
ρ
qat. (B.87)

We normalize αq = αa = 1, set ρ = Λ, and set α = αaq so that λt = ρpt = Λ − at − q − αatq,
yielding a similar “default intensity” λt as in Section 2.2.4 and our baseline when α = 0.

Given screening and monitoring efforts, the lender’s continuation payoff at any time t, before

the credit shock, reads

Wt =

∫ ∞
t

e−(γ+ρ)(s−t)
(
cs −

φa2
t

2
+ ρ(1− ps)WPost

s

)
, (B.88)

where WPost
s is the lender’s continuation payoff if a credit shock hits at time s and the loan does not

default (characterized below). We again may conjecture and verify that for t ∈ (0, τρ) payments

are smooth, i.e., dCt = ctdt. Upon default, the lender loses its entire continuation payoff (stake).

Differentiation with respect to time t yields

Ẇt = (γ + ρ)Wt +
φa2

t

2
− ct − ρ(1− pt)WPost

t

= (γ + ρ)Wt +
φa2

t

2
− ct − (at + q + αatq)W

Post
t . (B.89)

By the dynamic programming principle, the lender chooses monitoring effort at according to:

max
at∈[0,ā]

{
(at + q + αatq)W

Post
t − φa2

t

2

}
,

so that (provided at ∈ [0, ā]):

at =
(1 + αq)WPost

t

φ
. (B.90)

The investors’ payoff is given by

Pt =

∫ ∞
t

e−(r+ρ)(s−t)
(
cs −

φa2
t

2
+ ρ(1− ps)PPosts

)
, (B.91)

where PPosts is investor payoff upon surviving credit shock at s.

Next, we characterize screening incentives. As in the baseline analysis, we calculate the law of

motion of Vt := ∂Wt
∂q by totally differentiating (B.89) with respect to q:

V̇t = (γ + ρ)Vt − (1 + αat)W
Post
t − (at + q + αatq)V

Post
t ,
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with V Post
t :=

∂WPost
t
∂q . That is,

Vt =

∫ ∞
t

e−(γ+ρ)(s−t)
(

(1 + αas)W
Post
s + (as + q + αasq)V

Post
s

)
ds.

As there is only one credit shock, the impact of screening effort only lasts until the credit shock

(which occurs at time τρ), so that V Post
t = 0.

Next, and again as in the baseline model, total surplus–split between the lender and investors–

from time t (before the credit shock) reads

Ft =

∫ ∞
t

e−(r+ρ)(s−t)
(

1− φa2
s

2
− (γ − r)Ws + ρ(1− ps)FPosts

)
ds, (B.92)

where FPosts is the continuation surplus at s if the loan survives a credit shock at s.

Total surplus is split between the lender and investors. So, before the credit shock, investors’

stake/value is Pt = Ft −Wt (that is, Ft = Pt + Wt) and, upon surviving the credit shock at t,

investors’ value is PPostt = FPostt −WPost
t .

Surviving the credit shock is good news, so naturally the loan value as well as total surplus

should go up in this event. Therefore, we generally consider FPostt ≥ Ft; we specify FPostt later

and show how specific assumptions on FPostt make the model analogous to the baseline. It is

then also natural to consider that both investors and lender benefit from this positive outcome.

Specifically, we impose a monotonicity requirement on the lender-investor contract, in that neither

lender nor investor can be worse off following the credit shock if the firm survives. That is, we

impose WPost
t ≥Wt as well as

PPostt ≥ Pt ⇐⇒ WPost
t ≤ FPostt − Ft +Wt. (B.93)

Again, the monotonicity assumption is natural. In practice and in our baseline implementation of

the contract, investors and lender both hold shares of the loan. As such, they should both (at least

weakly) benefit when loan value increases.

B.6.5 HJB Equation

Next, as in the baseline model, Wt and WPost
t become control variables while Vt is the state variable

in the dynamic optimization problem. We omit time subscripts, unless necessary. As such, total

surplus is a function of Vt only, i.e., Ft = F (Vt). In state Vt = V , the HJB equation characterizing

F (V ) reads (applying standard arguments and using the integral expression for total continuation

surplus in (B.92):

(r + ρ)F (V ) = max
at∈[0,ā],W,WPost

{
1− φa2

2
− (γ − r)W + (a+ q + αaq)FPost

+ F ′(V )
(

(γ + ρ)V − (1 + αa)WPost − (a+ q + αaq)V Post
)}

,

which is solved subject to (B.90)–i.e., a = WPost/φ–(B.93)–i.e., W ≥ F (V ) + WPost − FPost–

WPost ≥W , and W ≥ 0. Notice that the right-hand side decreases with W and a does not depend
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on W . Thus, holding other controls equal, it is optimal to minimize W subject to the constraint

(B.93), i.e., W ≥ F (V ) + WPost − FPost, and W ≥ 0. As a result, W = max{F (V ) + WPost −
FPost, 0}. Also, recall that V Post = ∂WPost

∂q = 0, because the impact of screening lasts only until

the first and only credit shock in that WPost does not depend on q.

We use (B.90) and W = max{F (V ) + WPost − FPost, 0} =: (F (V ) + WPost − FPost)+, where

(y)+ = max{y, 0}, to rewrite above HJB equation as

(r + ρ)F (V ) = max
WPost∈[0,āφ]

{
1− (WPost)2

2φ
− (γ − r)(F (V ) +WPost − FPost)+

+

(
WPost

φ
+ q +

αqWPost

φ

)
FPost + F ′(V )

[
(γ + ρ)V −

(
1 +

αWPost

φ

)
WPost

]}
, (B.94)

with WPost = W + FPost − F (V ).

Boundary conditions. As in the baseline model, we expect limt→∞ Vt = V B and limt→∞ V̇t =

0. That is,

V B =
WB,Post(1 + αaB)

γ + ρ
.

Notice that aB = WB,Post/φ and WB,Post are determined according to the optimization

FB = max
WPost∈[0,āφ]

{1− (WPost)2

2φ − (γ − r)(FB +WPost − FPost)+ +
(
WPost

φ + q + αqWPost

φ

)
FPost

r + ρ

}
,

FB = max
WPost∈[0,āφ]

{1− (WPost)2

2φ − (γ − r)(FB +WPost − FPost)+ +
(
WPost

φ + q + αqWPost

φ

)
FPost

r + ρ

}
,

which follows from (B.94) evaluated at V = V B and F (V B) = FB after setting V̇ = 0.

B.6.6 Characterizing F Post and Connection to the Baseline Model

We have so far not specified the continuation surplus upon credit shock and no default, i.e., FPost.

The exact value of FPost does not affect the model’s key qualitative implications. The model greatly

simplifies upon assuming FPost = F (V ) in which case W = WPost using (B.93) and we can rewrite

the HJB equation as

rF (V ) = max
a∈[0,ā],W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + λ)V −W

)}
,

with λ = Λ−a−q−αaq. This HJB equation is analogous and similar to the baseline HJB equation

(23). It in fact becomes identical upon setting α = 0, i.e., upon assuming λt = Λ− at− q from (1).

The assumption FPost = F (V ) can be interpreted as follows: Upon the credit shock, the loan

either defaults or matures. In case of no default and maturity, the loan pays back the face value. As

in Section 4.3, we assume value matching, i.e., upon maturity the lender-investor surplus remains
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unchanged as is captured by F (V ) = FPost. Alternatively, we can assume that the loan is simply

sold at price L at time τρ where we expect the exact value of L not to affect the model’s qualitative

implications. That is, FPost = L.42

B.6.7 Optimal Choice of Screening Effort

We now characterize the optimal choice of screening effort as well as the corresponding incentive

condition. Recall that t = 0− denotes the time just before screening effort is chosen while t = 0

denotes the time just after screening effort is chosen. At time t = 0−, the lender maximizes:

max
q∈[0,q̄]

(
ω + (1− ω)f(q)

)(
P0 +W0 −K

)
+
[
1−

(
ω + (1− ω)f(q)

)]
FB −

κq2

2
,

where FB is the surplus upon receiving a bad signal and K is the amount borrowed by the borrower

(i.e., the loan size) which is assumed not to depend on hidden (non-contractible) screening effort q.

To understand the above objective, note that when the lender exerts screening effort q, the signal

is good with probability ω + (1 − ω)f(q) in which case the lender originates a loan and extracts

(post-screening) surplus F0 − K = P0 + W0 − K from origination (after the lent amount K is

paid to the borrower at t = 0, the continuation surplus becomes F0). Otherwise, with probability

1−ω−(1−ω)f(q), the lender receives a bad signal and rejects the borrower, and the payoff becomes

FB.43

Note that P0 does not depend on actual q, while W0 does. Likewise, FB and K do not depend

on the screening effort q. Provided that the first order approach is valid, the incentive condition

regarding screening becomes with Vt = ∂Wt
∂q :(

ω + (1− ω)f(q)
)
V0 − (1− ω)f ′(q)

[
F0 − FB −K

]
= κq.

At time t = 0−, respecting the incentive condition for screening, total surplus reads

F−0 =
(
ω + (1− ω)f(q)

)
(F0 −K) +

[
1−

(
ω + (1− ω)f(q)

)]
FB −

κq2

2
,

with F0 −K being the post screening surplus from origination. After the lent amount K is paid

to the borrower at t = 0, the continuation surplus becomes F0. Because the borrower is rejected

upon bad signal S, we have FB = F0− and we obtain

F−0 =
(
ω + (1− ω)f(q)

)
(F0 −K) +

[
1−

(
ω + (1− ω)f(q)

)]
F0− −

κq2

2

so that

F−0 = F0 −
κq2

2
(
ω + (1− ω)f(q)

) −K,
42For instance, we could assume that the value after the credit shock equals the riskfree value L = 1/r
43In principle, rejection of a borrower as well as acceptance of a borrower is contractible. If the agent

were to receive some positive payments to rejection, it would just easily collect them by rejecting. Thus,
there cannot be positive payments for rejection. A punishment for rejection would dis-incentivize the agent
to screen and thus is likely not optimal either. We do not formally consider this case.
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i.e., F−0 = F0 − κ(q) with a cost function κ(q).

Using F−0 = FB, the incentive condition then becomes

V0 =
1

ω + (1− ω)f(q)

(
κq +

(1− ω)f ′(q)κq2

2
(
ω + (1− ω)f(q)

))

As such, the incentive condition for screening becomes significantly more complicated relative to

the baseline, but the key economic implications are the same: The state variable Vt encapsulates

screening incentives and screening incentives at t = 0 translate into higher screening effort, while

incentivizing high screening q becomes harder when κ is larger.

B.6.8 Loan Size and Yield

The above analysis goes through for any loan size K as long as the lender’s participation constraint

F−0 ≥ 0 is satisfied. More specifically, as we argue in what follows, the exact value of K does not

change the contract dynamics qualitatively, and merely affects the initial surplus.

We now endogenize the loan size K. To this end, we fix the coupon payments at one dollar, so

that the yield on the loan becomes R∗ = 1/K. Assume the borrower has a project that pays 1 up

to default, but it only derives utility from immediate consumption at time t = 0−; the project can

be sold for B dollars which constitutes the agent’s outside option.

Consider that at time t = 0− (i.e., just before screening), the borrower and the lender are

matched and bargain over the loan’s size K (given the coupon payments of one dollar per unit of

time), in case the loan is eventually originated. When bargaining, the lender and the borrower take

as given that the borrower is accepted and the loan is originated at t = 0 if and only if the signal

during the screening process is good. The borrower has bargaining power measured by α ∈ [0, 1]

and outside option B and the lender has bargaining power 1 − α and (exogenous) outside option

F .

The additional surplus generated from the lender-borrower interaction at t = 0− is then:

F0− −B − F .

We assume that the lender extracts its outside option plus fraction a α of this surplus, so that44

K = B + α(F0− −B − F )

and

R∗ =
1

B + α(F0− −B − F )
.

Notice that the yield depends on the expected borrower and lender fundamentals (e.g., the cost of

monitoring and screening), which in turn affect optimal screening, via F0− . Generally, we expect

that
∂F0−
∂κ < 0 and ∂q∗

∂κ < 0, so that ∂R∗

∂q > 0 and lower screening is associated with a higher yield

on the loan.

44One could micro-found this assumption by considering Nash bargaining between the lender and the
borrower.

A55



The lender’s payoff at t = 0− is

F0− −K = F + (1− α)(F0− −B − F ) = αF + (1− α)(F0− −B).

We assume that B is not prohibitively large so that loan origination is optimal, i.e., F0− > B.

Importantly, the optimal lender-investor contract is chosen to maximize F0− . The shape of this

contract as well as its dynamics do not depend on the exact value of K (or its determinants, e.g.,

α or B).

B.6.9 Credit Ratings

We can also examine the effects of ratings on outcome variables in this model variant. The credit

rating will be a publicly observable signal R informative about borrower type, taking two values

g and b. In line with the screening signal structure, assume there are only false positives, i.e.,

Pr(R = b|G) = 0 while Pr(R = g|B) = 1 − σ, where σ ∈ [0, 1] is the precision of the rating. For

simplicity, consider limit case σ = 1 of a perfectly informative rating.

The timing of events at origination is as follows. First, at time t = 0−, the lender-investor

contract C is signed. Second, also at time t = 0−, the lender chooses screening effort q, observes a

signal S ∈ {b, g} about borrower type x ∈ {B,G}, and accepts the borrower if and only if S = g.

Third, immediately after the loan is originated and at time t = 0 (after screening), the credit

rating R ∈ {b, g} is publicly observed. Fourth, the initial transfer dC0(R) takes place and can be

contingent on R. Further, the contract C and in particular the continuation contract from time

t = 0 onward can also be contingent on credit rating R, i.e., the rating R is contractible.

As such, continuation surplus and continuation payoff for the agent at time t = 0 can be

contingent on R and, because the rating is perfectly informative, contingent on borrower type x, so

that we can write F0 = F0(x) and W0 = W0(x). Limited liability for lender and investors requires

at t = 0 and just after the rating that:

dC(x) +W0(x) ≥ 0

dC(x) ≤ F0(x)−W0(x).

That is, continuation payoffs for lender and investors (including the lump sum transfer dC(x)) must

be positive. We note W0(x) and dC(x) do not depend on hidden and non-contractible screening

effort q, but solely on the type x.

As before, we assume that the lender rejects the borrower and does not originate a loan if the

signal is S = b and identifies a bad type borrower in which case continuation surplus becomes FB.

Then, at time t = 0−, the lender’s private choice of effort is characterized by:

max
q∈[0,q̄]

{(
ω + (1− ω)f(q)

)[
ω̂(q)(dC(g) +W0(g)) + (1− ω̂(q))(dC(b) +W0(b))

]
+
[
1−

(
ω + (1− ω)f(q)

)]
FB −

κq2

2

}
. (B.95)

To understand this objective, notice that — given the screening level q — ω + (1 − ω)f(q) is the
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probability that the lender receives a positive signal S = g and originates a loan. Conditional on

origination, the borrower is good with probability ω̂(q) — in which case the rating reveals R = g

— and bad with probability 1− ω̂ — in which case R = b. We would like to stress that the rating

reveals borrower type after the loan has been originated and the borrower has been accepted. That

is, the lender cannot reject the borrower anymore at the time of the rating, in line with common

practice in the syndicated lending market that the rating is solicited after the lead arranger and

other participating banks have committed credit to the borrower.

Next, we note that F0(x) = dC(x) +W0(x) — that is, the continuation surplus after the rating

reveals type x — does not depend on q. We can thus rewrite (B.95) as

max
q∈[0,q̄]

F0− = max
q∈[0,q̄]

(
F0 −

κq2

2

)

with F0− = F0 − κq2

2 and

F0 =
(
ω + (1− ω)f(q)

)[
ω̂(q)F0(g) + (1− ω̂(q))F0(b)

]
+
[
1−

(
ω + (1− ω)f(q)

)]
FB.

Thus, it becomes now apparent that the agent chooses screening effort q to maximize total surplus.

That is, there is no more moral hazard over screening when the credit rating is perfectly informative.

As a result, assuming a perfectly informative credit rating is akin to assuming that there is no moral

hazard over screening (i.e., screening is contractible), as we do in the baseline in Section 4.2.

Continuation contract after rating. Finally, we characterize the continuation contract,

following the perfectly informative credit rating that reveals borrower type x. As shown above,

with this perfectly informative rating, there is no more screening moral hazard. Therefore, similar to

the baseline solution in Section 2.2.1 without screening moral hazard, the solution — conditional on

borrower type x being known — is stationary, featuring time-constant monitoring a(x), continuation

value W (x), and continuation surplus Ft = F (x) (with a slight abuse of notation F (x) is not a

function of screening incentives but of borrower type).

Using the integral representation of total surplus in (B.92) (which remains valid) and the dy-

namic programming principle, total surplus F0(x) is characterized by the following HJB equation:

F (x) = max
W (x),a(x),WPost(x)

{
1− φa(x)2

2 − (γ − r)W (x) + ρpxFPost(x)

r + ρ

}
,

with pB = 1 − χBa(B) and pG = p − χGa(B), the monitoring incentive conditions, a(B) =
ρχBW

Post(B)
φ and a(G) = ρχGW

Post(G)
φ , as well as the monotonicity constraints WPost(x) ≥ W (x)

and WPost(x) ≤ FPost(x)− F (x) +W (x) (analogous to (B.93)) Here, WPost(x) and FPost(x) are

continuation value for the lender as well as continuation surplus after the credit shock is survived,

conditional on borrower type x.

Holding other controls equal, it is optimal to minimize W (x) subject to the constraint (B.93),

i.e., W (x) ≥ F (x) + WPost(x) − FPost(x), and W (x) ≥ 0. As a result, W (x) = max{F (x) +
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WPost(x)− FPost(x), 0} = (F (x) +WPost(x)− FPost(x))+. Thus,

F (x) = max
a(x),WPost(x)

{
1− φa(x)2

2 − (γ − r)(F (x) +WPost(x)− FPost(x))+ + ρpxFPost(x)

r + ρ

}
,

with pB = 1 − χBa(B) and pG = p − χGa(B), and the monitoring incentive conditions, a(B) =
ρχBW

Post(B)
φ and a(G) = ρχGW

Post(G)
φ . To conclude the characterization of the optimal contract

with credit ratings, one can solve this optimization for W (x) and a(x).

To conclude, we first have micro-founded the reduced-form assumption of Section 4.2 that

credit rating removes moral hazard over screening and, second and as in Section 4.2, that the

optimal contract features time-stationary monitoring, continuation value (i.e., the agent’s stake),

and continuation surplus. The interpretation of this time-constant lender stake is that there are no

more loan sales after origination.

B.6.10 Multiple Credit Shocks

This section shows that it is possible to extend the model to incorporate multiple credit shocks,

at the expense of losing tractability and greatly complicating the analysis without adding new

economic insights. Below, we sketch the solution with infinitely many credit shocks, each occurring

at some intensity ρ > 0.

Upon credit shock at t, the loan defaults with probability pxt , with the default probability

depending on the borrower type x. Suppose now a credit shock hits at time t and “just before” the

credit shock at time t−, the lender believes the borrower is type x = G with probability ω̂t− . Then,

if the loan survives this credit shock at t, the lender updates its belief according to Bayes’ rule:

ω̂t = Pr(x = G|survive at t, ω̂t−) =
Pr(survive at t ∧ x = G|ω̂t−)

Pr(survive at t|ω̂t−)
=

ω̂t−p
G
t

ω̂t−p
G
t + (1− ω̂t−)pBt

.

We can more compactly write ω̂t as a function Ω(·) of at, q, and ω̂t− :

ω̂t = Ω(at, q, ω̂t−).

The belief ω̂t now emerges as an additional state variable that is governed by a piece-wise constant

process that only changes when a new shock hits and the firm survives.

From the lender’s point of view, the expected probability of default is

pt = ω̂tp
G
t + (1− ω̂t)pBt ,

which we can write as a function pt = p(at, q, ω̂t). Using (B.88), which still applies in this context,

the law of motion for Wt becomes

Ẇt = (γ + ρ)Wt +
φa2

t

2
− ct − ρ(1− pt)WPost

t ,

where WPost
t is the continuation payoff after the next credit shock survival. Again, we assume that

absent credit shocks and after time t = 0, payouts to the lender are smooth, that is, dCt = ctdt.
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Monitoring incentives are, as before, at = WPost
t /φ.

Next, we differentiate Ẇt with respect to q to obtain the law of motion of Vt = ∂
∂qWt which as

a state variable characterizes screening incentives. The law of motion for Vt then becomes

V̇t = (γ + ρ)Vt − ρ(1− pt)V Post
t + ρpt,qW

Post
t

where we define pt,q = pq(at, q, ω̂t) = ∂
∂qpt = ∂

∂qp(at, q, ω̂t) and V Post
t =

∂WPost
t
∂q .

The two state variables for the dynamic optimization are Vt = V and ω̂t = ω̂; we omit time

subscripts unless necessary. As in the model above and the baseline model, W and WPost become

control variables. As such, total surplus is a function of V and ω̂ only, i.e., Ft = F (Vt, ω̂t). Using

(B.92) and the dynamic programming principle, the HJB equation in state (V, ω̂) is:

(r+ ρ)F (V, ω̂) = max
a∈[0,ā],W,WPost,V Post

{
1− φa2

2
− (γ − r)W + ρ(1− p(a, q, ω̂))F

(
V Post,Ω(a, q, ω̂)

)
+ FV (V, ω̂)

(
(γ + ρ)V − ρpq(a, q, ω̂)WPost − ρ(1− p(a, q, ω̂))V Post

)}
,

where the optimization is subject to (B.90), (B.93), WPost ≥ Wt, and W ≥ 0 and Fy(V, ω̂) =
∂
∂yF (V, ω̂). Because there are infinitely many credit shocks and after the credit shock survival in

state (V, ω̂) the new state becomes V Post,Ω(a, q, ω̂), we obtain that FPost = F
(
V Post,Ω(a, qω̂)

)
.

The initial choice of screening as well as the incentive condition for screening is as in Section B.6.7.

Overall, the dynamic optimization becomes involved and complicated. As such, we do not proceed

from here, in that a complete analysis of this extension is beyond the scope of the paper.

B.7 Upper Bounds on Effort

Throughout the paper, we have assumed (and implicitly focused on parameterizations ensuring)

that the exogenous upper bounds on effort ā and q̄ do not bind. Moreover, we have imposed

parameter conditions such that the first order approach is valid and the agent’s objective function

is strictly concave in its choice of efforts (see Lemma 1).

With these assumptions, incentive conditions regarding screening and monitoring efforts are

simply the agent’s first order condition, creating a one-to-one link between incentives and effort

levels.

It is straightforward to extend the analysis to the case that the inequalities at ≤ ā or q ≤ q̄ may

bind, notably, without changing the model’s qualitative implications. Allowing for this possibility,

it is clear that the incentive condition for monitoring (see (6)) would change to

Wt ≥ atφ,

where the inequality is tight for at < ā. Likewise, the incentive condition for screening (see (9))

would change to

V0 ≥ κq,

where the inequality is tight for at < ā.
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Analogous to the baseline treatment in the main text, the maximization of total surplus is then

characterized by the HJB equation

rF (V ) = max
a∈[0,ā],W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + λ)V −W

)}
, (B.96)

while the HJB equation is solved subject to the constraints W ≥ aφ (with the inequality being

tight for a < ā) and W ∈ [0, F (V )].

When a ∈ (0, ā), we have W = φa and the first order condition with respect to a and W ∈
[0, F (V )] pin down

F (V )− F ′(V )[V + φ]− (γ − r)φ
φ

∧ F (V )

φ
.

Otherwise, when a = ā, we have W ≥ φā and

W s(V )


= āφ if F ′(V ) > −(γ − r)
∈ [āφ, F (V )] if F ′(V ) = −(γ − r)
= F (V ) if F ′(V ) < −(γ − r).

The initial optimization with respect to q then becomes

max
q∈[0,q̄]

F (V0)− κq

2
s.t. V0 ≥ κq

with the inequality being strict if q < q̄. As in the baseline model, when F ′(V ) ≤ 0, then V0 = κq

is optimal.

Thus, when at ≤ ā and q ≤ q̄ may bind, the dynamic optimization has to distinguish between

different cases, i.e., a < ā and a = ā, making the analysis more complicated but not changing the

economic forces at work. To reduce the number of different cases to consider and to streamline the

exposition, we therefore assume throughout the paper that the upper bounds on effort do not bind.

B.8 Model Variant with only Moral Hazard over Screening

B.8.1 Solution

We characterize the model solution when there is no moral hazard over monitoring (i.e., monitoring

effort at is contractible), so that the incentive constraint (6) does not apply. However, there is still

moral hazard over screening, i.e., q is unobserved and not contractible. Analogous to the solution

of the baseline, we first provide the solution to the continuation problem for t ≥ 0 and a given level

of q. Then, we determine the optimal screening level q, taking into account the solution to the

continuation problem.
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The agent’s continuation payoff follows45

dWt = (γ + λt)Wtdt+
φa2

t

2
dt− dCt, (B.97)

with payouts dCt. Noting that an unobserved change in q does not affect contracted monitoring

effort at (i.e., ∂at
∂q = ∂dCt

∂q = 0), we can differentiate this law of motion (B.97) with respect to

screening effort q to obtain (after simplifications) for Vt = ∂
∂qWt:

V̇t = (γ + λt)Vt −Wt,

which is dynamics of the agent’s screening incentives. At time t = 0, the incentive constraint

V0 = κq pins down screening effort.

As in the baseline, the agent maximizes total surplus at time t = 0. The only relevant state

variable is V , while W is control variable. As such, total surplus (i.e., the value function) is a

function of V only and solves the HJB equation

rF (V ) = max
W∈[0,F (V )],a∈[0,ā]

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )((γ + λ)V −W )

}
, (B.98)

which is analogous to the baseline HJB equation (23). The key difference to the baseline (where

the incentive condition W = φa links monitoring effort and continuation value) is that without

moral hazard over monitoring (i.e., with contractible a) the monitoring incentive constraint does

not apply and W and a can be chosen independently in the optimization in (B.98). In what follows,

we assume that a unique solution to (B.98) (subject to a boundary condition specified later) exists.

The maximization with respect to monitoring effort, a, yields that, if interior, optimal moni-

toring effort is

a(V ) =
F (V )− F ′(V )V

φ
.

Note that (B.98) implies
∂rF (V )

∂W
= −(γ − r) + F ′(V ).

As such, the maximization with respect to the agent’s deferred compensation, i.e., W , in (B.98)

yields that

W (V )


= 0 if F ′(V ) > −(γ − r)
∈ [0, F (V )] if F ′(V ) = −(γ − r)
= F (V ) if F ′(V ) < −(γ − r).

(B.99)

Note now that when screening is observable and contractible (in addition to monitoring being

observable and contractible), then V B(q) = WB(q) = 0. As in the baseline, it follows that

limt→∞ Vt = V B(q) = 0, i.e., given q, the optimal contract approaches in the limit t → ∞ the

45Since both dCt and at are contractible, one could define dĈt := dCt − φa2t
2 dt and write dWt = (γ +

λt)Wtdt− dĈt, where dĈt is a (contracted) choice variable.
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one with contractible screening. As a result, it must be that V̇t < 0 at all times t ≥ 0, in that

V̇ = (γ + λ)V −W (V ) < 0.

Owing to (B.99), this requires that W (V ) > 0 for V > 0 and so F ′(V ) ≤ −(γ − r) for V > 0.

Thus, it is (at least) weakly optimal to stipulate W (V ) = F (V ), which we can insert into the

HJB equation (B.98) to obtain

γF (V ) = max
a∈[0,ā]

{
1− φa2

2
− λF (V ) + F ′(V )((γ + λ)V − F (V ))

}
. (B.100)

Let us assume that F ′′(V ) exists and is well-defined. Using the envelope theorem, we totally

differentiate the HJB equation (B.100) (under the optimal control a = a(V )) with respect to V ,

which yields

F ′′(V ) =
(F ′(V ))2

(γ + λ)V − F (V )
.

Due to V̇ = (γ+λ)V −F (V ) < 0, we have F ′′(V ) < 0, i.e., F (V ) is strictly concave. That is, F (V )

is strictly concave for V > 0. If there exists now V̂ > 0 with F ′(V̂ ) = −(γ − r), then there exists

0 < V ′ < V̂ with F ′(V ′) > −(γ − r), a contradiction. As a result, F ′(V ) < −(γ − r) for all V > 0,

so that — indeed — W (V ) = F (V ) is optimal for V > 0.

When V equals zero, it must be that V̇ equals zero too, as — by definition — V cannot become

negative. As such, W (0) = 0, which requires by means of (B.99) that F ′(0) ≥ −(γ − r). As

F ′(V ) < −(γ − r) and F ′(V ) is continuous for all V > 0, it follows that F ′(0) = −(γ − r) which is

the boundary condition for the ODE (B.98). Notice that this boundary condition is equivalent to

F (0) := lim
V→0

F (V ) = max
a∈[0,ā]

(
1− φa2

2

r + Λ− a− q

)
, (B.101)

which—given the level of q—is total surplus absent any moral hazard. Also observe that because

W (V ) = F (V ) > W (0) for V > 0 with limV ↓0W (V ) > 0, it follows that limV ↓0 V̇ (V ) > 0 = V̇ (0);

thus, state V = 0 is reached in finite τ0 = inf{t ≥ 0 : Vt = 0}. Once V has reached zero, the

contract remain stationary and implements constant effort a(0), while total surplus reads F (0)

(defined above) and the agent’s stake remains constant.

Finally, we can determine optimal q. As in the baseline, optimal screening effort q∗ maximizes

total initial surplus F0− = F (V0)− κq2

2 subject to the incentive constraint V0 = κq.

B.8.2 Implementation of the Optimal Contract

We are now in the position to characterize the implementation of the optimal contract, described

above. For this sake, note that one unit claim of the loan has a payout rate 1.

Next, we characterize the payouts to the agent and, doing so, we omit time subscripts unless

confusion is likely to arise. Recall from the previous section that

F (0) = lim
V ↓0

F (V ) = lim
V ↓0

W (V ) > W (0) = 0.
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Using the law of motion for the agent’s continuation payoff

dW = (γ + λ)Wdt+
φa2

2
dt− dC,

it follows that the agent receives a payout dC(c) = F (0) at the time V reaches zero (i.e., at time

τ0), so as to induce F (0) = limV ↓0W (V ) > W (0) = 0. After time τ0 (i.e., for t > τ0 once Vt has

reached zero), Wt remains constant at zero so that dCt =
φa2t

2 dt.

When V > 0, then F (V ) = W (V ), and according to (A.14) for W (V ) = F (V ):

dW = (γ + λ)Wdt+
φa2

2
dt− dC = (γ + λ)Fdt+

φa2

2
dt− 1dt = dF,

yielding

dC = 1dt,

which equals coupon payments over an instant dt.

We implement the optimal contract by having the agent retain a share βt of the loan for t ≥ 0.

After time τ0, i.e., for times t > τ0, we have dCt = φa(0)2

2 dt and the agent retains a constant share

of the loan

β(0) := βt =
φa2

t

2
=
φa(0)2

2
.

That is, after time τ0, the agent retains stake β(0) which implements payouts such that the agent

is compensated for its cost of monitoring effort.

Next, for times t ∈ (0, τ0), we have dCt = 1dt and the agent’s share βt satisfies

βt + (−β̇t)Lt = 1, (B.102)

where Lt =
∫∞
t e−r(s−t)−

∫ s
t λudu1ds is the fair market price of the loan and subject to β0 given.Notice

that with starting value β0 = 1, the ODE (B.102) implies β̇t = 0 so that βt = 1 for t ∈ [0, τ0). As

a result, the contract is implemented by requiring the agent to fully retain the pool of loans until

time τ0 = inf{t ≥ 0 : Vt = 0} <∞.

When V reaches zero at time τ0, the agent sells fraction 1 − β(0) of the loan to the principal

(outside investors), and it receives the fair (per-unit) price of L(0) = 1
r+Λ−a(0)−q dollars, i.e., in

total (1− β(0))L(0). This lumpy loan sale implements the agent’s contracted lump-sum payout

dC(0) = F (0) =
1− 0.5φa(0)2

r + Λ− a(0)− q
=

1− β(0)

r + Λ− a(0)− q
= (1− β(0))L(0)

at time τ0 (i.e., in state V = 0). Notice that the agent sells its entire stake at τ0 when a(0) =

0 ⇐⇒ β(0) = 0, i.e., when φ = 0, φ =∞, or ā = 0. By construction, these retention dynamics

implement the contracted payments to the agent and as such the optimal contract.
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