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Abstract

How much of a loan should a lender dynamically retain and how does retention affect

loan performance? We address these questions in a model in which a lender originates

loans that it can sell to investors. The lender reduces default risk through screening at

origination and monitoring after origination, but is subject to moral hazard. We show

that the optimal lender-investor contract can be implemented by having the lender

sell its stake in the loan over time, rationalizing loan sales after origination, and use

the model to generate predictions linking loan characteristics to initial retention, sales

dynamics, and loan performance.
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Over the past 20 years, outstanding corporate debt in the U.S. has nearly tripled. This

increase has been fueled by the emergence of an active and liquid secondary market for

corporate loans (Saunders, Spina, Ste�en, and Streitz (2021)), in particular for syndicated

corporate loans,1 as well as by the growth of collateralized loan obligations (CLOs),2 in

which a broad array of nonbank �nancial institutions invest (Cordell, Roberts, and Schwert

(2021)).3 These developments have given loan originators the possibility to reduce their

exposure to borrowers' default risk by selling their stake over the loan's life (Blickle, Fleck-

enstein, Hillenbrand, and Saunders (2022)). As a result, concerns have been expressed that

problems in the corporate debt markets are building up in a similar way as they did in the

run-up to the subprime mortgage market crisis.

A key di�erence between mortgages and corporate loans is that in addition to the screen-

ing that takes place prior to origination, lenders (e.g. banks) reduce risk and add value to

corporate loans through frequent monitoring over the life of the loans. However, if a lender

sells (part of) the loans it has originated, it may not have su�cient incentives to screen and

monitor borrowers (Pennacchi (1988) or Gorton and Pennacchi (1995)). While loan sales and

their consequences for the mortgage market have been the subject of considerable research,

much less is known about the relation betweenskin in the game(i.e., the share retained by

originators) and screening, monitoring, and default risk in corporate loan markets.

In this paper, we develop a tractable, unifying framework to study optimal incentive

provision for screening and monitoring in credit markets. Our model applies to corporate

loans and, in particular, to syndicated lending, but is su�ciently general to apply to other

markets. We then derive implications for the dynamically optimal originator share and its

1Syndicated loans are loans issued to a borrower jointly by multiple �nancial institutions under one
contract. The syndicated loan market is one of the most important sources of private debt for corporations
with an annual primary market issuance volume in the U.S. that exceeded that of public debt and equity as
early as 2005 (see Su� (2007)).

2CLOs operate as special purpose vehicles that issue tranched asset-backed securities or notes to investors,
and use the proceeds to �nance the purchase of leveraged loans. See Kundu (2021) for an analysis of CLOs.

3As documented for instance in Benmelech, Dlugosz, and Ivashina (2012), the securitization of corporate
loans is fundamentally di�erent from the securitization of other asset classes. Corporate loans are signi�cantly
larger than mortgages and are typically syndicated. The bank that originated the loan generally retains a
fraction of the loan on its balance sheet. Fractions of the same underlying loan are simultaneously held by
CLOs as well as by other institutional investors and banks. In addition, each loan included in CLOs is rated.
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e�ects on credit risk. This allows us to (i ) shed light on existing empirical �ndings and

(ii ) generate new implications regarding the e�ects of loan and lender characteristics on

screening, monitoring, and default risk.

We start our analysis by formulating a dynamic agency model in which a lender (the

agent, e.g., the lead bank in a loan syndicate) originates a loan and sells this loan to com-

petitive investors (the principal; e.g., other �nancial institutions in the syndicate). The loan

generates coupon payments up to default or maturity. When originating the loan, the lender

may undertake costly screening e�ort that results in a lower expected default rate. It may

also monitor the loan at a cost afterward to further reduce default risk. The loan default

intensity is thus endogenous and decreases with the agent's screening and monitoring e�orts.

Because screening and monitoring are not observable, there is moral hazard and the lender's

screening and monitoring incentives pin down the respective e�ort levels. The lender has

a lower valuation for the loan than investors due to a higher discount rate arising from,

e.g., regulatory or capital constraints. There are therefore gains from selling the loan to in-

vestors. Loan sales however reduce the lender's exposure to loan performance and undermine

its incentives, thereby increasing credit risk and reducing the loan value.

We derive the optimal contract between the lender (loan originator) and outside investors

that implements costly screening and monitoring. We do not impose any restriction on the

form of the contract and include all possible payment schedules, so long as they provide

limited liability to both the lender and investors. Incentive provision for screening and

monitoring requires exposing the lender to loan performance. As the lender is protected by

limited liability, this is achieved by delaying its payouts so that it loses its expected future

payments upon default. Delaying payments, however, is costly due to the lender's higher

discount rate. Based on this trade-o�, the paper derives an incentive compatible contract

that maximizes total surplus. This contract takes a simple form: The lender retains a share

of the loan at origination that it gradually sells over time. In addition, under this optimal

contract, the sello� speed decreases over time, so most of the loan sales occur relatively

shortly after origination, in line with observed practice (Blickle et al., 2022).
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The structure of the optimal contract arises from positive spillovers between screening

and monitoring. Notably, the exposure to loan performance that is necessary to provide

monitoring incentives after origination generates additional screening incentives at origina-

tion by increasing the agent's skin in the game, leading to synergies between screening and

monitoring. These synergies also imply that the optimal contract provides high monitoring

incentives due to moral hazard over screening. As screening only occurs at origination, the

optimal contract front-loads incentives, so that the agent's incentives by means of delayed

payouts are especially strong at origination and decrease over time. Accordingly, monitoring

incentives decrease, and hence default risk increases over time. To achieve this reduction in

deferred compensation and monitoring incentives, the optimal contract mandates smooth,

time-decreasing payments to the agent. Therefore, the optimal contract can be implemented

by requiring the loan originator (the lead bank in the case of syndicated loans) to retain a

stake in the loan that it gradually sells to investors.

The model predicts that the loan originator initially retains a signi�cant fraction of

the loan, in line with the evidence in Benmelech et al. (2012) and Gustafson, Ivanov, and

Meisenzahl (2021). Initial retention is lower when intrinsic (pre-screening) credit risk is high

(due, e.g. to a risky collateral), when the cost of screening is high (due to, e.g., a higher

fraction of soft information), when loan maturity is short, or when the originator's cost of

capital is large. In addition, and also in line with the �ndings in Blickle et al. (2022), our

model predicts (i ) that the originator's share in the loan should decrease over time and the

originator may sell (nearly) all of its stake shortly after origination and that (ii ) the sello�

speed is greater when intrinsic credit risk or the lender's cost of capital are larger.

We also show that screening and monitoring are complements, in that an increase in the

cost of screening or monitoring leads to a decrease in the optimal levels of both screening

and monitoring. The reason is that when, for instance, monitoring is costly, it is optimal to

reduce monitoring incentives. As screening and monitoring incentives exhibit synergies, the

reduction in monitoring incentives reduces screening incentives. In addition, both screen-

ing and monitoring are negatively associated with credit risk, in line with the evidence on
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screening in Ivashina (2009) and on monitoring in Wang and Xia (2014) and Gustafson et al.

(2021). Interestingly, our results point to a two-way causality: Not only do screening and

monitoring reduce credit risk, but intrinsic credit risk (pre-screening) also dampens moni-

toring and screening e�orts. Through this mechanism, our model provides a rationale for

the segmentation observed in credit markets, whereby banks (lenders) that exert high (low)

screening and monitoring typically �nance high (low) quality borrowers.4

An important question is whether the share of the originator (the lead arranger's share

in a loan syndicate) can proxy for screening or monitoring incentives and therefore predict

loan performance. We show that while initial originator retention is monotonic in the cost

of screening and the level of screening e�ort, it is non-monotonic in the cost of monitoring

and the level of monitoring e�ort. This suggests that theinitial share of the originator can

serve as a proxy for screening e�ort, but not for monitoring e�ort because subsequent loan

sales imply that monitoring incentives decrease over time. We additionally show that while

sello� speed is monotonic in the cost of monitoring and the level of monitoring e�ort, it is

non-monotonic in the cost of screening and the level of screening e�ort. The non-monotonic

relationships between sello� speed and screening as well as between initial retention and

monitoring imply that neither initial retention nor a measure of sello� speed can (on their

own) proxy for both screening and monitoring, which helps explain the �nding of Blickle

et al. (2022) that initial retention or sello� speed need not predict loan performance.

Next, we study how debt maturity a�ects the incentives to screen and monitor. A

shorter loan maturity reduces the length of time over which the lender is exposed to loan

performance, which weakens its incentives to screen and raises credit risk. To counteract this

e�ect, the optimal contract front-loads and concentrates incentives in the early stages of the

contract, which implies higher monitoring incentives initially. Relative to long maturity debt,

short maturity debt thus features less screening but more monitoring early on in the lending

period, which is implemented by lowering initial retention and increasing the sello� speed.

However, because monitoring has less persistent e�ects than screening and the initially high-

4Relatedly, Ivashina and Vall�ee (2021) �nd in recent research that weakening clauses in loan contracts
(i.e., clauses that weaken covenants) are particularly common when banks retain a smaller share of the loan.

4



powered monitoring incentives taper o� over time as the lender sells o� her stake, we �nd

that loans with shorter maturity have (everything else equal) higher default risk in our model

with endogenous default intensity.

One way for loan originators to reduce their skin in the game is to use securitization,

for example by including CLOs in the loan syndicate. As discussed in Daley, Green, and

Vanasco (2020), the development of markets for securitized products has been facilitated in

part by credit rating agencies, \which allow issuers access to a large pool of investors who

would otherwise have perceived these securities as opaque and complex." Indeed, a feature

that CLOs share is that each loan included in the deal gets rated. By providing information

about initial credit quality, credit ratings at origination generate screening incentives, as lax

screening induces a low rating, but do not generate incentives for monitoring which occurs

after origination. This implies that screening incentives no longer need to be provided so

that loans that are rated are characterized both by lower initial retention by originators and

by weaker monitoring incentives. That is, the model predicts that monitoring should be less

intensive for syndicated loans with CLOs.

In some applications of credit securitization (e.g., for mortgages), screening and moni-

toring of loans are generally undertaken by separate entities: An originator responsible for

screening and a servicing company in charge of monitoring (Demiroglu and James (2012)).

In other settings (e.g., for corporate loans), they are typically undertaken by the same entity.

To understand whether bundling a�ects incentives and credit risk, we consider a model vari-

ant in which two otherwise identical agents, called screener and monitor, respectively screen

and monitor loans and are both subject to moral hazard. For the screener and monitor to

have adequate incentives, they must retain a stake in the securitized loan. However, raising

one agent's incentives and stake in the loan necessarily limits the other agent's stake and

incentives, leading to negative spillovers between the monitor's and the screener's incentives.

By contrast, when screening and monitoring are undertaken by the same agent, there are

positive spillovers between screening and monitoring incentives, making it optimal to bundle

the two tasks to exploit these incentive synergies and reduce credit risk.
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The model predicts relatively low levels of screening and monitoring in credit markets

where these two tasks are separated, as is common for mortgages. According to our model,

bundling is particularly bene�cial for high quality borrowers|providing a rationale for banks'

focus on this segment of credit markets|and when the bene�ts of screening and monitoring

are high relative to their cost, which is the case for corporate loans whose default risk strongly

depends on screening and monitoring.

Our paper relates to the large banking literature on screening and monitoring. Most

models in this literature are static; see e.g. Diamond (1984), Gorton and Pennacchi (1995),

Holmstrom (1989), or Parlour and Plantin (2008). As a result, they do not explicitly dis-

tinguish between monitoring after loan origination and screening of loans at origination and

cannot investigate the dynamics of incentives and loan sales and their e�ects on credit risk.

Following early contributions by Su� (2007) and Ivashina (2009), a growing empirical lit-

erature examines the e�ects of the loan stake of the lead arranger in syndicated loans on

screening and monitoring (see e.g. Benmelech et al. (2012), Wang and Xia (2014), Bord and

Santos (2015), or Gustafson et al. (2021)). Most of these studies proxy skin in the game

by the originator's initial stake in the loan. This literature has recently focused on loan

sales after origination and their e�ects on incentives and credit risk (see e.g. Lee, Liu, and

Stebunovs (2022) or Blickle et al. (2022)).

Our paper contributes to this literature mainly in two ways. First, it highlights the

key role of the lender's stake for screening and monitoring incentives, and rationalizes sales

after origination as part of an optimal contract between originators and outside investors.

Second, it sheds light on the complex relationship between screening and monitoring and

the originator's stake. In particular, it demonstrates that both initial retention and sello�

speed determine incentives. Notably, our results have direct implications for the empirical

measurement of screening and monitoring as well as their cost which are typically not ob-

served by empiricists. Our �ndings suggest that initial retention by the loan originator is a

good measure for screening at origination but not for monitoring after origination. Instead,

empirical measures for monitoring should take into account the sello� dynamics after origi-
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nation. Notably, monitoring should increase with the lead bank's incentives, as captured by

the contemporaneous lead share, in line with the evidence in Gustafson et al. (2021).

From a modeling perspective, our paper builds on the literature that studies dynamic con-

tracts in continuous time, starting with DeMarzo and Sannikov (2006) and Biais, Mariotti,

Plantin, and Rochet (2007). In this literature, Piskorski and Wester�eld (2016), Malenko

(2019), Orlov (2022), and Gryglewicz and Mayer (2022) analyze incentive provision with

optimal dynamic contracts and monitoring. Halac and Prat (2016), Varas, Marinovic, and

Skrzypacz (2020), and Hu and Varas (2021) characterize optimal monitoring in dynamic

settings but do not focus on optimal contracts. In a related paper, Hartman-Glaser, Pisko-

rski, and Tchistyi (2012) study optimal securitization and screening of mortgages under

moral hazard. In their model, the optimal contract features a single payout to the agent

when su�cient time has elapsed after origination. Malamud, Rui, and Whinston (2013) and

Ho�mann, Inderst, and Opp (2021) generalize Hartman-Glaser et al. (2012) by allowing for

more general preferences and sources of uncertainty, respectively. Ho�mann, Inderst, and

Opp (2022) study optimal regulation of compensation in a similar framework.

Our paper advances this literature mainly in two ways. First, unlike ours, these papers

do not model screening and monitoring and, as a result, cannot study optimal dynamic

incentive provision in corporate loans. Second, we show that the combination of screening

and monitoring moral hazard implies that the optimal contract can be implemented by

requiring the lender to retain a time decreasing stake in the loan, a result that does not

obtain in Hartman-Glaser et al. (2012) or Ho�mann et al. (2021, 2022). That is, with moral

hazard over both screening and monitoring, the optimal contract is both about when the

loan originator gets paid and what piece of the loans it retains. This implementation of

the optimal contract rationalizes recent empirical �ndings (such as those in Gustafson et al.

(2021) or Blickle et al. (2022)) and allows us to generate unique and novel predictions on

the e�ects of loan characteristics and moral hazard on the lender's initial retention level as

well as the sell-o� dynamics. Existing theories cannot generate such predictions.
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1 Model setup

Time t is continuous and de�ned over [0; 1 ). A lender (the agent or \she") originates a loan

that can be sold to competitive outside investors (the principal or \they"). In the baseline

model, we assume for simplicity that the loan has in�nite maturity. Section 4 extends the

baseline model by introducing loans with �nite maturity and shows that the model's key

implications are robust to the level of maturity. The loan promises a constant 
ow payo�

(coupon payments) normalized to 1 up to its default, which occurs at the random time� .

The default time � arrives according to a jump processdNt 2 f 0; 1g with (endogenous)

intensity � t > 0 at time t, where � := inf f t � 0 : dNt = 1g. That is, over a short period of

time [t; t + dt), the loan defaults with probability EdNt = � tdt.

The default rate � t depends on the agent'sscreeninge�ort q at time t = 0 and monitoring

e�ort at at time t � 0. Speci�cally, the default intensity at time t is given by

� t = � � at � q; (1)

where � > 0 captures the intrinsic quality (default intensity) of the loan. Screening and

monitoring e�orts are bounded, in that q 2 [0; �q] and at 2 [0; �a] with � > �a+ �q. The bounds

�a and �q are necessary to ensure that the instantaneous default probability� t is well-de�ned

and positive. Unless otherwise mentioned, we focus on parameter con�gurations that lead

to optimal interior e�orts at 2 (0; �a) and q 2 (0; �q), so that the upper bound does not bind.

The expected time to default at timet is given by

�� t =
Z 1

t
e�

Rs
t � u duds: (2)

A high (low) value of �� := �� 0 at time t = 0 corresponds to low (high) credit risk.

Screening entails a cost12 �q 2 at time zero. Monitoring entails a 
ow cost 1
2 �a 2

t at time t �

0. Screening and monitoring e�orts are unobservable to the principal and not contractible,

giving rise to moral hazard. We do not impose any restrictions on the relation between

screening and monitoring. Notably, we do not make any assumptions on whether screening
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and monitoring e�orts are substitutes or complements. According to equation (1) screening

and monitoring a�ect the instantaneous default rate� t in a symmetric and independent way.

If the lender decides to shirk on either task, the loan will have a higher default rate. Also

notice that while they both reduce default risk, monitoring and screening di�er in two ways.

First, screening occurs once when the loan is originated at timet = 0, whereas monitoring

occurs frequently, speci�cally at any point in timet � 0 up to default. Second, the e�ect of

screening is more persistent than that of monitoring, where we consider for tractability that

monitoring at has a purely transitory impact.

Both the principal (e.g., investors in the syndicate) and the agent (e.g., the lead bank) are

risk neutral.5 The principal discounts cash 
ows at rater � 0. The agent is more impatient

and discounts cash 
ows at rate
 > r . The di�erence in discount rates may re
ect the

credit constraints or regulatory capital requirements, as in DeMarzo and Du�e (1999), or

di�erences in �nancial constraints or risk-aversion, as in DeMarzo and Sannikov (2006).

Due to the discount rate di�erential 
 � r > 0, there are gains from selling the loan|or

a security whose payo� depends on loan performance|to outside investors, a process that

works as follows. At inception, the lender designs a �nancial contract or, equivalently, a

security C that is sold to competitive investors at priceP0. The contract C = f dCt ; ât ; q̂g

represents a claim on the loan originated by the lender and stipulates a pro�t-sharing rule

dCt of the overall loan payments 1dt, so that the lender receivesdCt and investors receive

1dt � dCt dollars over each time interval [t; t + dt]. The contract C also stipulates monitoring

e�orts ât (for all t � 0) and screening e�ort q̂. We focus on incentive compatible contracts

that induce actual monitoring (screening) e�ortat (q) to coincide with contracted monitoring

e�ort ât (q̂) and screening e�orts, that is, ât = at and q̂ = q. Unless necessary, we do not

explicitly distinguish between contracted and actual e�ort levels.

Both the principal and the agent are protected by limited liability. That is, the continu-

ation payo� of the principal and the agent from following the contractC must at any time

exceed their outside option, which we normalize to zero. Finally, while we do not impose

5Alternatively, one can interpret payo�s and probabilities as evaluated under the risk-neutral measure, in
which case the default probability � t can be seen is the risk-neutral or \risk-adjusted" default probability.
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any explicit constraints on the transfersdCt , we show later that optimal transfers satisfy

dCt � 0 for t > 0, so the agent, i.e., lender, receives positive payoutsdCt � 0 over each time

interval [t; t + dt] after time zero.

Contracting problem

In what follows, t = 0 � denotes the time just before screening e�ort is chosen, andt = 0 is

the time just after screening e�ort is chosen. At timet = 0 � , the principal and the agent

sign a contractC, after which the agent chooses her screening e�ortq. Given contract C, the

agent chooses screening e�ortq and monitoring e�ort f atg to maximize the expected present

value of private pro�ts

W0� = max
q;f at g

E
� Z 1

0
e� 
t

�
dCt �

�a 2
t

2
dt

��
�

�q 2

2
; (3)

where the subscript 0� denotes values before screening e�ort is chosen. When buying the

security from the lender (loan originator), outside investors have rational expectations re-

garding the lender's incentives to exert screening and monitoring e�orts.

It is natural to conjecture that the lender should not be rewarded for default in the

optimal contract because this outcome indicates either poor monitoring, poor screening, or

both. Hence, no positive payments should be made to the lender after time� ; that is, we

should havedCt � 0 for t � � . In addition, limited liability rules out penalties for default,

i.e., negative paymentsdCt < 0 for t � � . Altogether, we thus have thatdCt = 0 for t � � .

We additionally conjecture (and later verify) that after time t = 0 � , payouts to the lender

are smooth in that dCt = ctdt for a compensation streamct at time t > 0.

The price that outside investors pay for a contractC at time t = 0 � is given byP0� = P0

where the time-t price of the security is

Pt = Et

� Z �

t
e� r (s� t )(1 � cs)ds

�
=

Z 1

t
e� r (s� t )�

Rs
t � u du(1 � cs)ds: (4)

In equation (4), the second equality integrates the default intensity� s over the relevant time
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interval. The lender receivesP0 dollars at time t = 0 � from selling the security to investors, in

that dC0� = P0. As outside investors are competitive, the lender can extract all the surplus

and therefore chooses the security that maximizes total initial surplusF0� := W0� + P0 at

time t = 0 � . That is, the lender solves

max
C

F0� ; (5)

taking into account her own moral hazard problem and the limited liability constraints.

Under the contract C, the agent's continuation payo� at time t � 0 is

Wt := E
� Z �

t
e� 
 (s� t )

�
cs �

�a 2
s

2

�
ds

�
=

Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
cs �

�a 2
s

2

�
ds; (6)

where the second equality integrates the default intensity� s over the relevant time interval.

Wt is the present value of the future payments to the lender, adjusted for the cost of e�ort.

As such,Wt captures the value of the lender's deferred payouts. BecausePt in (4) and Wt

in (6) can be expressed as deterministic integrals after integrating out the random default

event and because the optimal contract dynamically maximizes total surplusFt = Wt + Pt ,

the dynamic optimization problem (5) can be formulated as a deterministic problem. Unless

otherwise mentioned, we adopt the deterministic formulation of problem (5).

2 Model solution

2.1 Incentives for screening and monitoring

We now turn to characterizing the lender's incentives for screening and monitoring and,

hence, the resulting e�ort levelsq and f atg. To begin with, let us �x screening e�ort at q

and analyze monitoring incentives givenq. Limited liability requires that Wt � 0 for all t � 0,

as otherwise, the lender would be better o� leaving the contractual relationship. Owing to

limited liability, outside investors do not receive payments from the agent in default. As a

consequence, the agent only loses her claim to future payments, i.e., her continuation payo�
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Wt , at the time of default. With her monitoring activity, the agent controls the probability of

default or, equivalently, the probability of losing future paymentsWt over the next instant,

which is given by� tdt = (� � at � q)dt. Thus, the agent's optimal monitoring e�ort is

at = arg max
a2 [0;�a]

�
� (� � a � q)Wt �

�a 2

2

�
= arg max

a2 [0;�a]

�
aWt �

�a 2

2

�
:

As we focus on monitoring e�ort satisfyingat 2 [0; �a) and Wt � 0 (limited liability), the

lender's optimal monitoring e�ort is

at =
Wt

�
: (7)

Equation (7) describes the incentive constraint for monitoring e�ort, in that incentive com-

patibility requires ât = at = Wt
� for all t � 0. According to equation (7), higher deferred

paymentsWt increase the agent's exposure to default risk and induce higher monitoring e�ort

at . Therefore, deferred payments o�er a trade-o�. On the one hand, they provide monitoring

incentives. On the other hand, they are costly due to the agent's relative impatience (
 > r ).

While monitoring at impacts the default intensity � t at a single point in time t, screening

q a�ects all future default intensities f � tgt � 0 and thus the entire sequence of expected pay-

ments, encapsulated inW0 = W0(q). Note that we now explicitly recognize the dependence

of W0 on screening e�ortq that is chosen \just before" time t = 0 at time t = 0 � . The agent

choosesq to maximize W0� which is the value of her claim after screening is chosen,W0(q),

net of the screening e�ort cost,�q 2

2 :

max
q

�
W0(q) �

�q 2

2

�
: (8)

Let Vt denote the agent's gain from a marginal increase inq measured from timet onward,

i.e.,

Vt =
@
@q

Wt (q): (9)

We can useV0 to write the �rst-order condition solving (8) for the optimal screening e�ort:

q =
V0

�
: (10)
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Vt captures the agent's screening incentives at timet and, because screening e�ort is chosen

at time t = 0 � , V0 determines the amount of screeningq exerted by the agent. Lemma 1

below derives a condition such that the �rst-order approach is valid. Under that condition,

equation (10) describes incentive compatibility for screening e�ort, in thatq = q̂ = V0
� .

While the initial value V0 determines screening e�ort, the optimal contract will depend

on the whole path of Vt beyond t = 0. To characterize Vt , we di�erentiate the integral

representation ofWt in equation (6) under the optimal controlat . When di�erentiating Wt ,

we can ignore the e�ect onat due to the envelope theorem. Note also that because screening

e�ort q is neither observable nor contractible, an unobserved change in screening e�ortq

cannot a�ect contracted 
ow payments ct . Accounting only for the direct e�ect of q on Wt ,

we get that6

Vt =
Z 1

t
(s � t)e� 
 (s� t )�

Rs
t � u du

�
cs �

�a 2
s

2

�
ds =

Z 1

t
e� 
 (s� t )�

Rs
t � u duWsds: (11)

Equation (11) reveals a simple interpretation ofVt and of screening incentives in our model.

Speci�cally, as a derivative of the lender's continuation value with respectq, which is a

persistent component of the discount rate,Vt is closely related to the notion ofduration. To

obtain the duration of the lender's exposure to the loan, one needs to scaleVt by the value of

the exposure, that is, the duration measured in units of time is equal toD t = Vt
Wt

. It follows

that screening incentivesVt are equal to the product of the duration and value of the lender's

exposure, i.e.,Vt = D tWt . The duration D t measures how long it takes on average for the

lender to receive payments from the loan (see the middle part of (11) in which dates are

6To see that the last part of the equation holds, note that
Z 1

t
e� 
 (s� t ) �

Rs
t � u du Wsds =

Z 1

t
e� 
 (s� t ) �

Rs
t � u du

Z 1

s
e� 
 (v � s) �

Rv
s � u du

�
cv �

�a 2
v

2

�
dvds

=
Z 1

t

Z 1

s
e� 
 (v � t ) �

Rv
t � u du

�
cv �

�a 2
v

2

�
dvds =

Z 1

t

Z v

t
e� 
 (v � t ) �

Rv
t � u du

�
cv �

�a 2
v

2

�
dsdv

=
Z 1

t
(v � t)e� 
 (v � t ) �

Rv
t � u du

�
cv �

�a 2
v

2

�
dv;

where the �rst line uses (6) and the second line changes the order of integration. An alternative derivation
of (11) is provided in the proof of Proposition 2 in Appendix C.
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weighed by payments). If the duration is high, payments accrue over a long period of time,

and the impact of permanent changes in default risk viaq is large. At the same time, the

timing of payments to the lender a�ectsWt . Due to discounting and relative impatience of

the lender, late payments generate less value and provide less screening incentives than early

payments. Thus the decomposition ofVt as a product ofWt and D t captures the intuition

that screening incentives are the strongest if the exposure to the loan is large and with high

duration. In general, late payments increase duration but decrease value. The maximization

of screening incentives must therefore resolve the tension between duration and value.

Equation (11) also shows that monitoring incentives by means of deferred payoutsWs

(for s � t) pin down screening incentivesVt . That is, screening and monitoring incentives

are closely linked and interact with each other. HigherWt exposes the agent's compensation

more strongly to loan performance and therefore motivates screening. In addition, higher

Wt boosts monitoringat , which delays default and strengthens screening incentives.

Next, we characterize the dynamics of the agent's monitoring and screening incentives

Wt and Vt . We can di�erentiate (6) with respect to time and obtain

_Wt :=
dWt

dt
= ( 
 + � t )Wt +

�a 2
t

2
� ct : (12)

Similarly, di�erentiating Vt in (11) with respect to time t, we obtain the dynamics ofVt :

_Vt :=
dVt

dt
= ( 
 + � t )Vt � Wt : (13)

We close this section by stating some regularity conditions that we impose on the problem.

Lemma 1. Suppose that the model parameters satisfy

� >
2

(r + � � �a � �q)( 
 + � � �a � �q)2
+

1
� (r + � � �a � �q)2(
 + � � �a � �q)3

: (14)

Incentive conditions (7) and (10) hold and uniquely pin down monitoring and screening

e�orts. Incentive conditions (7) and (10) are su�cient and the �rst-order approach is valid.
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Throughout the paper, we assume that condition (14) in Lemma 1 is met. In addition,

we assume that

� >
� �a

�q(
 + � � �a � �q)
; (15)

which is needed in the proof of Proposition 2.

2.2 Optimal contract

2.2.1 Benchmark: observable and contractible screening

To highlight the di�erences between monitoring and screening incentives more thoroughly, we

start by studying the \second-best" benchmark in which screening is not subject to moral

hazard, in that q is publicly observable and contractible. To solve the model under this

benchmark, we �rst �x the screening levelq. We conjecture (and verify) that the optimal

contract is stationary and features constant 
ow payments to the managerct = c = cB (q) > 0

until default, so that _Wt = 0 and Wt = W = W B (q) for all t. Inserting _Wt = 0 into equation

(12) yields

c = ( 
 + � � a � q)W +
�a 2

2
: (16)

Equation (16) implies a one-to-one mapping betweenc and W. As a result, controlling c

is equivalent to controlling W and we can treatW as a choice variable instead ofc. Given

screening e�ort q and constant monitoring e�ort a, the default rate is constant and equal to

� � a � q, and the price of the security becomes:

PB (q) =
1 � c

r + � � a � q
: (17)

PB (q) is the discounted stream of 
ow payouts to outside investors, 1� c, where the (constant)

default rate � � a � q augments the discount rater .

Next, note that given a screening levelq, the optimal monitoring e�ort a (and equivalently

optimal deferred compensationW = �a ) is chosen to maximize total surplus after screening

15



is chosen,F B (q) = PB (q) + W. Using equations (16) and (17), we get that the lender solves

F B (q) = max
W 2 [0;F B (q)]

�
1

r + � � a � q
| {z }

Market value

�
(
 � r )W

r + � � a � q
| {z }

Agency cost

�
�a 2

2

r + � � a � q
| {z }

Monitoring cost

�
; (18)

where the choice ofW determines monitoring e�ort a via equation (7), in that a = W=� .

Limited liability requires that both the agent's continuation payo� W and the principal's

continuation payo� F B (q) � W exceed zero, leading toW 2 [0; F B (q)]. Equation (18) shows

that the surplus F B (q) consists of the value of the loan repayments minus agency and direct

cost of monitoring. Because the lender is subject to moral hazard, it must retain a stake

W, which generates agency costs due to its relative impatience,
 > r . The maximization

problem in (18) yields optimal levels of monitoring e�ort and deferred compensation,aB (q)

and W B (q), given a �xed level of screeningq, wherebyW B (q) < F B (q) and the principal's

limited liability constraint never binds. Using (11), we can also calculate

V B (q) =
W B (q)


 + � � aB (q) � q
: (19)

Equation (19) characterizes the agent's screening incentives under the second-best solution

and plays an important role in the solution with non-contractible screening.

Finally, we can optimize F B (q) over q to determine the optimal screening level in this

second-best benchmark:qB = arg maxq2 [0; �q]

�
(F B (q) � �q 2

2

�
, determining second-best mon-

itoring e�ort aB (qB ) and deferred payoutsW B (qB ). We summarize our �ndings in the

following proposition.

Proposition 1 (Moral hazard over monitoring). Suppose that screening e�ortq is con-

tractible, so that there is no moral hazard with respect to screening. At the optimum, the

following holds. For any choice ofq, monitoring e�ort aB (q), payouts cB (q), and deferred

payoutsW B (q) are constant over time and are jointly characterized via(7), (16), and (18).

The continuation payo� satis�es W B (q) < F B (q). Optimal monitoring e�ort aB (q) increases

with q. The optimal choice of screening e�ort, denoted byqB , maximizesF B (q) � �q 2

2 .
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2.2.2 Moral hazard over screening and monitoring

We now assume thatq is unobservable to investors and consider the full contracting problem

with moral hazard over both screening and monitoring. We solve this problem in two steps.

As before, we �rst �x screening e�ort q and solve the continuation problem fort � 0. We

then determine the optimal level of screeningq = q� , taking into account the solution to the

continuation problem.

Given levels of monitoringa and screeningq, we can rewrite the total surplus at timet

as:7

Ft =
Z 1

t
e� r (s� t )�

Rs
t � u du(1 � cs)ds

| {z }
= Pt

+
Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
cs �

�a 2
s

2

�
ds

| {z }
= Wt

=
Z 1

t
e� r (s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws

�
ds: (20)

As Vt and Wt characterize the agent's incentives and there is no other source of uncertainty

than the arrival of the loan default time � , the variablesVt and Wt summarize all payo�-

relevant information. Thus, we can express the total surplus as a function ofVt and Wt , in

that Ft = F (Vt ; Wt ). In what follows, we omit time-subscripts, unless necessary.

The integral expression (20) implies that the total surplusF (V; W) solves:

rF (V; W) = max
a;c

�
1 �

�a 2

2
� (
 � r )W � �F (V; W) (21)

+ FV (V; W)(( 
 + � )V � W) + FW (V; W)
�

(
 + � )W +
�a 2

2
� c

� �
;

whereFV (V; W) = @F(V;W )
@V and FW (V; W) = @F(V;W )

@W .8 Equation (21) is solved subject to the

7For a derivation, take Ft = Pt + Wt in the �rst line of (20) and take the derivative with respect to time,
t, to get

_Ft = ( r + � t )Pt � 1 + ct + ( 
 + � t )Wt � ct +
�a 2

t

2
= ( r + � t )(Pt + Wt| {z }

= F t

) � 1 +
�a 2

t

2
� (
 � r )Wt :

The above expression can be integrated over time,t, to arrive at the second line of (20).
8For a derivation, conjecture that Ft = F (Vt ; Wt ), so _Ft = FV (Vt ; Wt ) _Vt + FW (Vt ; Wt ) _Wt . Di�erentiate

17



incentive condition (7), the limited liability constraints, and the conjecture that payouts to

the lender are smooth, in thatdC = cdt. Note that it is always possible to stipulate that the

lender receives an incremental payout of � dollars, which leavesV unchanged but changes

W by � � dollars. 9 That is, controlling payouts to the lender is equivalent to controlling

W. As a result, we can formulate the dynamic optimization problem of the lender such that

W instead ofc enters the HJB equation (21) as a control variable. Optimal payouts to the

lender are then de�ned as the residual that implements the optimalW; see Section 3.2.

The optimality of payouts c requires that

@F(V; W)
@c

= � FW (V; W) = 0 :

Substituting FW (V; W) = 0 back into (21), we can rewrite (21) as

rF (V) = max
a2 [0;�a];W

�
1 �

�a 2

2
� (
 � r )W � �F (V) + F 0(V)

�
(
 + � )V � W

�
�

; (22)

where (with a slight abuse of notation)F is a function ofV only andW is a control. Equation

(22) is solved subject to the incentive condition for monitoring e�ort (7), i.e.,W = �a , and

the principal's and the agent's limited liability conditions, i.e.,W 2 [0; F (V)].

Moral hazard over screening and the provision of screening incentives distort the opti-

mal choice of monitoring incentives away from the benchmark with contractible (observable)

screening. However, because the optimal contract must provide appropriate screening in-

centives only at inception at time t = 0 � and the provision of these incentives as well as

the distortion of monitoring incentives are costly due to
 > r , these distortions decrease

(20) with respect to time to get

_Ft = ( r + � t )Ft � 1 +
�a 2

t

2
� (
 � r )Wt ;

which becomes (21) after inserting _Ft = FV (Vt ; Wt ) _Vt + FW (Vt ; Wt ) _Wt and Ft = F (Vt ; Wt ).
9If payouts to the lender are not smooth, then it follows similar to (12) that

dWt = ( 
 + � t )Wt dt +
�a 2

t

2
dt � dCt ;

so a payout ofdC = � dollars reduces W by �, that is, dW = � �.
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over time. That is, optimal monitoring at and the total surplusFt derived under the optimal

contract from time t onward approach the respective levels of the benchmark with observable

screening ast tends to 1 , in that

lim
t !1

(at ; Wt ; Vt ; Ft ) = ( aB (q); WB (q); VB (q); F B (q)):

As time t tends to in�nity, the state variable V approachesV B (q) which is de�ned in (19).

Expressed in terms of the state variableV, equation (22) is solved subject to the boundary

condition

lim
V ! V B (q)

F (V) = F B (q): (23)

We show in the Appendix that �q = V0 > V B (q) in optimum. Over time, V drifts down

to V B (q), in that _Vt < 0 with lim t !1
_Vt = 0. Thus, the state space can be characterized

by the interval (V B (q); V0]. The value function is downward sloping, withF 0(V) < 0 for

V 2 (V B (q); V0]. We also show that the value function is strictly concave.

Having characterized the model solution fort � 0 and given screening e�ortq, we are now

in a position to endogenize screening e�ort. Optimal screening e�ortq = q� maximizes the

initial value of surplus net of the screening cost while satisfying the incentive compatibility

condition (10):

q� = arg max
q2 [0; �q]

�
F (V0) �

�q 2

2

�
s.t. V0 = �q: (24)

The following proposition summarizes the properties of the optimal contract.

Proposition 2 (Moral hazard over screening and monitoring). In optimum, the state vari-

ablesWt and Vt are characterized in(6) and (11) respectively, and follow the dynamics(12)

and (13) respectively. Furthermore, the following holds:

1. For any givenq, total surplus at time t is a function of V only, in that Ft = F (Vt ).

The value functionF (V) solves(22) subject to boundary condition(23).

2. Optimal monitoring is characterized by the maximization in(22) subject to (7). Opti-

mal screening e�ort q = q� is characterized in (24).
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Figure 1: The quantities characterizing the optimal contract . In the upper panels, the
vertical dashed red line denotes theV0. In the lower panels, the horizontal dotted red line denotes
the benchmark levels that are attained in the limit t ! 1 .

3. When q = q� > 0, it holds that �q = V0 > V B (q), and V drifts down (i.e., _Vt < 0) to

V B (q), but never reachesV B (q) (i.e., Vt > V B (q)).

4. The value functionF (V) strictly decreases inV on [V B (q); V0) with limV ! V B (q) F 0(V) �

0, so that F 0(V) < 0 for V > V B (q). The value function is strictly concave.

5. Payouts to the agent are smooth and positive.

Figure 1 provides a numerical example of the optimal contract. For the numerical anal-

ysis, we normalizer = 0 and � = 1 so that, without monitoring and screening, the ex-

pected time to default is 1=� = 1 year and the loan has a pre-e�ort (or intrinsic) value

1=(� + r ) = 1. 10 In addition, we set 
 = 0:1 and � = � = 9 to generate the desired trade-

o�s. Last, we pick �a = 0:125 and �q = 0:24 to satisfy conditions (14) and (15). Our parameter

choice implies that the constraintsat � �a and q � �q never bind. The model's qualitative

outcomes are robust to the choice of these parameters.

10� need not be interpreted as the actual rate of default (absent screening and monitoring), but can rather
be seen as risk-adjusted default intensity (i.e., the default intensity under the risk-neutral measure).
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The three upper panels of Figure 1 plot total surplusF (V), monitoring a(V), and the

agent's 
ow payouts c(V) as functions of the state variableV. The contract starts at V = V0

and V decreases with time. Observe that 
ow payoutsc(V) to the agent are always positive.

Likewise, asc(V) < 1 at any time V � V0, 
ow payouts to the principal 1 � c(V) are positive

too. As Vt is a deterministic function of time (before default), we can represent the evolution

of the contract quantities over time. This is done in the lower three panels depicting screening

incentivesVt , total surplus Ft , and monitoring e�ort at as functions of timet (for t < � ). As

Wt is proportional to at by Wt = �a t , it is not plotted separately. Observe thatVt , Wt , and at

decrease over time with a decreasing speed. In contrast, total surplusFt increases over time.

These dynamics of the value functionFt = F (Vt ) and monitoring e�ort at = a(Vt ) are shaped

by the optimal incentive provision for screening. As screening only occurs at timet = 0,

screening incentives and therefore the agent's exposure to loan performance are front-loaded,

thereby inducing a monitoring e�ort that exceeds the benchmark levelaB (q� ). Intuitively,

the provision of screening incentives distorts monitoring incentives upward, which is costly

and curbs total surplus. Over time, these distortions taper o�, improving total (continuation)

surplus Ft which approaches the second-best level in the long run.

3 Incentive provision and implementation

3.1 Dynamics of incentives

We start by analyzing optimal incentives. Optimal monitoring follows from the �rst-order

condition in (22):

a(V) =

Reduction of
default riskz }| {

F (V)

Screening
incentives( > 0)

z }| {
� F 0(V)(V + � ) �

Agency
costsz }| {

(
 � r )�
�

|{z}
Physical cost

^
F (V)

�
; (25)

where a(V) = F (V )
� when the limited liability constraint F (V) = W(V) binds and x ^ y =

minf x; yg. Optimal monitoring a(V) is determined by several factors. First, monitoring
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reduces default risk, but comes at physical costs. Second, monitoring incentives require

deferring the agent's payments, which implies thatW > 0 and is costly due to the discount

rate di�erential, generating agency costs. Third, monitoring incentives are linked to screening

incentives V0 via V0 =
R1

0 e� 
t �
Rt

0 � s dsWtdt, in that stronger monitoring incentives at any

time t > 0 increase screening incentives at timet = 0. This e�ect results from two separate

forces: (i ) more monitoring at reduces the default intensity� t , increasing the expected time

to default; (ii ) more monitoring incentives require exposing the agent to loan performance

by raising Wt , which also improves screening incentives. This e�ect is positive and, all else

equal, increases monitoring e�ort and incentives above the benchmark levelaB = aB (q� ); see

Figure 1. As screening is only performed att = 0, its bene�ts for the agent, as captured by

Vt in (11), decrease over time within the optimal contract, converging toV B = V B (q� ) (see

Figure 1). Because the strength of screening and monitoring incentives are linked, monitoring

incentives and, hence, monitoring e�ort also decrease over time, approachingaB (q� ) in the

limit. As a consequence, the instantaneous default rate� t increases over time. Formally,

because the value function is strictly concave, monitoring e�orta(V) decreases withV and

decreases over time due to_V < 0. The following corollary summarizes our �ndings:

Corollary 1. Suppose thatW(V) < F (V). Then, monitoring e�ort a(V) and the agent's

deferred compensationW(V) = �a (V) increase with the marginal bene�ts of screeningV, in

that a0(V) > 0. BecauseV decreases over time, monitoring e�ort and deferred compensation

decrease over time, withlimat !1 at = aB .

To aid in the intuition of the model solution, Figure 2 plots optimal screening and mon-

itoring e�orts against the cost parameters� and � and the baseline default intensity �, and

the lender's discount rate/cost of capital
 . As monitoring e�ort at changes over time, we

plot it at three di�erent times, i.e., t = 0, t = 5, and t ! 1 , to better capture its dynamics.

Panels A, B, E, and F of Figure 2 show that monitoring e�ort at and screening e�ort q

decrease with both the physical costs of monitoring and screening,� and � . That is, screen-

ing and monitoring e�orts are complements. The underlying mechanism is that screening

and monitoring incentives are determined and linked by the agent's deferred compensation.
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Figure 2: Comparative Statics. This �gure plots monitoring e�ort at at t = 0 (solid black
line), at t = 5 (dotted red line), and t ! 1 (dashed yellow line) and screening e�ortq� against the
parameters �; � , �, and 
 . We use our baseline parameters.

Thus, the provision of strong screening incentives implies and requires strong monitoring

incentives, while strong monitoring incentives boost the agent's screening incentives. As

a result, when the cost of screening� increases, it becomes optimal to reduce contracted

screening e�ort, leading to lower screening incentives and, as such, to lower monitoring (in-

centives). Likewise, when the cost of monitoring� increases, it becomes optimal to curb

contracted monitoring and monitoring incentives, leading to lower screening (incentives).

Panels C and G of Figure 2 illustrate that a decrease in the quality of the borrower (or

in the quality of the loan), as re
ected by the higher baseline default intensity �, leads to

a decrease in monitoring and screening, due to lower marginal bene�ts of monitoring and

screening. That is, our paper suggests a two-way relation between credit risk and lenders'

screening and monitoring. Notably, a worsening of credit quality leads to lax monitoring and

screening, which in turn exacerbates credit risk. Our model, therefore, provides a rationale

for the segmentation observed in credit markets. According to our analysis, banks that exert

high screening and high monitoring (e.g., via loan covenants) typically �nance high quality
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(low �) borrowers with high priority loans. By contrast, lenders who tend to screen or

monitor less (e.g., online lenders) �nance lower quality borrowers. Our analysis also suggests

that when screening is more lax, monitoring should also be more lax. It is therefore consistent

with the trend observed in the leveraged loan market, in which the incidence of including

covenants is decreasing and where more than 80% of outstanding loans in 2020 are covenant

light according to S&P Global Market Intelligence.11

Finally, Panels D and H of Figure 2 show that, as the lender's cost of capital (discount

rate) 
 increases, it becomes more costly to delay payouts to the lender and to provide

incentives, so that screening and monitoring e�orts decrease with
 .

3.2 Implementation

This section shows that the optimal contract can be implemented by having the lender retain

a time-decreasing share of the loan. At origination, the lender retains a fraction� 0 of the

loan and sells a fraction 1� � 0 to outside investors. After origination at timest � 0, the

lender smoothly sells o� its stake� t so that it decreases over time. That is, the agent owns

a fraction � t of the loan at time t, where� t is adjusted to provide appropriate incentivesWt .

A per-unit claim on the loan pays the loan rate 1 up to default at time� and therefore

has a competitive price

L t =
Z 1

t
e� r (s� t )�

Rs
t � u du1ds; (26)

at any time t � 0. L t is linked to credit risk via the instantaneous default intensitiesf � sgs� t .

Over a short period of time [t; t + dt], the agent receives� t1dt in interest payments from

the loan. In addition, she sells the loan at rate� _� tdt, which yields trading revenues� _� tL tdt.

Therefore, matching the payo�s of the optimal contract requires that:

� t � _� tL t = ct : (27)

11A similar trend can be observed in the corporate bond market in which we observe both a declining
quality of borrowers and a decrease in the usage of bond covenants. See e.g. Celik, Demirta�s, and Isaksson
(2019). Relatedly, Ivashina and Vall�ee (2021) �nd in recent research that weakening clauses in loan contracts
(i.e., clauses that weaken covenants) are particularly common when banks retain a smaller share of the loan.
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Figure 3: Implementation of the optimal contract and per unit value of the loan.

As the HJB equation (22) determines optimal monitoring incentives, and hence optimal

deferred compensationWt = W(Vt ), the agent's payouts are implicitly characterized in (12).

That is, we can solve (12) to get

ct = ( 
 + � t )Wt +
�a 2

t

2
� _Wt > 0: (28)

This equation, together with equation (27), implies that

� t � _� tL t = ( 
 + � t )Wt +
�a 2

t

2
� _Wt ; (29)

which pins down the rate _� t at which the agent sells o� her stake (see also Appendix D.2).

Figure 3 presents a numerical example of the implementation of the optimal contract and

plots the (per-unit) value of the loan and the issuer's stake against timet. As time passes,

the agent sells her stake� t and monitoring incentives decrease, which increases default risk

and decreases the (per unit) value of the loanL t . Also observe that the sello� speed, as,

for instance, captured by� _� t , decreases with timet since origination (i.e.,� t is convex and

decreasing int approaching some level� B ). The interpretation is that most of the loan

sales occur (relatively) shortly after origination, consistent with (Blickle et al., 2022). The

following proposition summarizes our results:

Proposition 3 (Implementation). The optimal contract can be implemented as follows. The

agent retains a fraction� t of the originated loan at timet, whereby a unit stake pays out a


ow payo� of 1 dollars until liquidation at time � and has a competitive time-t price given
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by (26). Over time, the agent sells its stake according to(29).

Finally, it is instructive to discuss the implementation of the optimal contract when there

is only one type of moral hazard, i.e., either over screening or monitoring but not both. First,

when there is only moral hazard over monitoring (i.e.,q is observable and contractible), the

solution is characterized in Section 2.2.1, and the optimal contract is time-stationary with

constant monitoring aB (q) = W B (q)=� and constant payoutscB (q) up to default which can

be implemented by having the agent retain a constant share of the loans� B (q) = cB (q).

Second, Appendix D.3 solves the model when there is no moral hazard over monitoring

(i.e., at is observable and contractible). As shown in Appendix D.3, the optimal contract can

then be implemented by requiring the agent to retain the entire loan until an (endogenous)

time � 0, at which point the lender sells its entire stake to investors. This implementation

maximizes the agent's exposure to loan performance before time� 0, while respecting the

principal's limited liability. Thus, quite surprisingly, less severe agency con
icts, i.e., remov-

ing moral hazard over monitoring, actually increase the lender's optimal initial retention, as

optimal initial retention in the baseline model with moral hazard over both tasks is smaller

than one. While the setting without monitoring moral hazard resembles that of Hartman-

Glaser et al. (2012), there is one important di�erence in that both the agent and the principal

have limited liability. By adding a limited liability constraint on the principal's side, we ob-

tain that the optimal contract is implementable using standard securities, a result that does

not obtain in Hartman-Glaser et al. (2012).

The following proposition summarizes these results.

Proposition 4. When there is no moral hazard over screening, the optimal contract can be

implemented by having the agent retain a constant fraction of the loan. When there is no

moral hazard over monitoring, the optimal contract can then be implemented by requiring the

agent to retain the entire loan until (endogenous) time� 0. At time � 0, the lender sells its

entire stake to the investors.

26



3.3 Optimal retention and retention dynamics

The optimal contract between the loan originator and outside investors can be implemented

by having the loan originator retain a time-decreasing stake in the loan. As a result, both

the initial retention level and the speed at which the lender sells its stake determine the

strength of dynamic screening and monitoring incentives. We now study how intrinsic credit

risk, the costs of monitoring and screening, and the originator's cost of capital a�ect initial

retention and sello� dynamics. To this end, the upper three panels of Figure 4 plot the

lender's retention level� T for T = 0 (solid black line), T = 3 (dotted red line), and T ! 1

(dashed yellow line) against� , � , �, and 
 . The lower three panels of Figure 4 plot a measure

of the sello� speed, 1� � T =� 0, against � , � , �, and 
 . Notice that 1 � � T =� 0 is the fraction

of its initial stake that the lender sells up to timeT; thus, if 1 � � T =� 0 is high (low), the

lender sells o� its initially stake quickly (slowly).

Figure 4 reveals that, as intrinsic credit risk � or the lender's discount rate
 increase,

retention decreases and sello� speed increases (see Panels C, D, G, and H), so that the lender's

incentives to screen and monitor decrease, in line with Figure 2. The model, therefore,

predicts that originator initially retains a lower fraction of the loan and sells its stake faster

when ex-ante credit risk (�) is high or when it is more capital-constrained. These results are

in line with the �ndings in Blickle et al. (2022) that lead share sales are positively correlated

with the ex-ante riskiness of the loan and the lead arranger's capital constraints, in Irani,

Iyer, Meisenzahl, and Peydro (2021) that less-capitalized banks reduce loan retention, and

in Adelino, Gerardi, and Hartman-Glaser (2019) that mortgage quality is positively related

to the time to sale for securitized mortgages.12 Figure 4 also shows that, when� or 
 is

large, the originator sells nearly its entire share (relatively) shortly after origination as part

of the optimal contract, rationalizing the �ndings of Blickle et al. (2022).

Panels A and E present the e�ects of the cost of screening� on retention and sello�

speed. Initial retention decreases with� , however, sello� speed is hump-shaped in� .13 As �

12Although the authors interpret their �nding in the context of an adverse selection model (see, e.g., Daley
and Green (2012)), our results show that moral hazard generates similar patterns.

13These results are robust for a larger range of� and across di�erent parameter values.
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Figure 4: Retention and dynamics . The �gure plots initial retention and sello� speed as
functions of the costs of screening and monitoring� and � , intrinsic credit quality �, and the
lender's cost of capital 
 .

increases, contracted screening and monitoring e�orts decrease, due to the complementarity

of screening and monitoring, leading to a decrease in incentives and initial retention. To get

some intuition for why sello� speed is the highest for intermediate� , note that when � is

su�ciently low, moral hazard over screening becomes negligible and the optimal contract only

needs to incentivize monitoring. Thus, the contract comes close to that in the benchmark

with only monitoring moral hazard and a constant level of retention, that is, a zero sello�

speed (see Proposition 4). When� is su�ciently large and screening is prohibitively costly,

there is e�ectively no moral hazard over screening either as the agent's choice of screening

e�ort tends to zero. Again, in this case, the contract comes close to that in the benchmark

with only monitoring moral hazard and a zero sello� speed. Consequently, screening e�ort,

which is monotonically decreasing in� , can be either increasing or decreasing in sello� speed.

Panels B and F of Figure 4 show the relation between the cost of monitoring� and

the levels of retention and sello� speed. Remarkably, in contrast to the e�ect of� , initial

retention is non-monotonic in � . The intuition for why initial retention is the lowest for
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intermediate � is related to the observation that when the cost of monitoring� is su�ciently

low or prohibitively high, moral hazard over monitoring becomes negligible and the optimal

contract only needs to incentivize screening. According to Proposition 4, absent moral hazard

over monitoring, initial retention equals one and sello� occurs only after su�cient time has

elapsed. As a consequence, monitoring e�ort, which is monotonically decreasing in� , can

be either increasing or decreasing in initial retention.

The above results have important implications for empirical research on incentives and

loan performance. First of all, our model implies that moral hazard in loan screening and

monitoring does not generate a simple relation between loan performance and initial retention

or sello� speed. As noted above, monitoring e�ort is non-monotonic in initial retention and

screening e�ort is non-monotonic in sello� speed. Because loan performance depends on

both screening and monitoring, these non-monotonic relations help rationalize the �nding of

Blickle et al. (2022) that initial retention or sello� speed may not predict loan performance.

Instead, the model suggests that screening and monitoring are distinct and that screening

and monitoring levels can be separately matched with observables. Notably, we show that

while initial retention proxies for screening incentives and e�ort (in that both initial reten-

tion � 0 and screening e�ort decrease with� ), it does not proxy monitoring incentives and

e�ort (as � 0 is non-monotonic in� but monitoring e�ort decreases with � ). The intuition

for this �nding is that initial retention is more relevant for screening than for monitoring

because screening occurs at origination, while monitoring occurs after origination and thus

potentially after the loan originator has sold some of its stake. High initial retention� 0

implies high future retention or high payo�s from loan sales after origination both of which,

ceteris paribus, raise screening incentives. In contrast, monitoring incentives after timet

depend only on the retention level� t at time t and sello� dynamics after time t, but not

directly on � 0 or the loan sales up to timet. Thus, high initial retention, while stimulating

screening, may come along with low monitoring incentives when the originator quickly sells

o� its share after origination.

According to our theory, proxies for monitoring should therefore take into account sello�
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dynamics. Indeed, sello� speed increases with� and thus proxies monitoring incentives,

whereas it is non-monotonic in� and so does not proxy screening incentives. Moreover,

Panel B of Figure 4 shows that, while initial retention� 0 is U-shaped in� , the lender's

retention level � T at later times T decreases with the cost of monitoring� . Interestingly,

and in line with our theory, Gustafson et al. (2021) �nd that monitoring in a given year is

positively related to the lead share in the same year.

3.4 The e�ects of credit ratings and CLOs

One way to alleviate moral hazard over screening is via a credit rating at origination of the

loans. Speci�cally, consider a setting in which the loan is rated once at origination, i.e., at

time t = 0 after screening e�ort has been chosen.14 For simplicity, we assume that the rating

agency perfectly observes the credit quality and reports it truthfully, in that the credit rating

is publicly observable and contractible. In our setting, the credit rating reveals the initial

credit quality and screening e�ort q that is chosen at origination.15 That is, with a credit

rating at time t = 0, screening e�ort becomes publicly observable and contractible (chosen

at time t = 0), which removes the moral hazard over screening at origination. Intuitively, the

credit rating at origination generates screening incentives, as lax screening would lead to a

low rating. Because the credit rating cannot condition on the actual levels of monitoring that

are chosen after the rating, it does not directly a�ect the originator's monitoring incentives

after the time of the rating. As a result, the benchmark model without moral hazard over

screening described in section 2.2.1 can be seen as a model with credit ratings. Proposition

1 characterizes optimal screening and monitoring in this model.

Figure 5 illustrates the e�ects of credit ratings on outcome variables by plotting the

percentage change in monitoring e�ort (�rst row), screening e�ort (second row), and initial

retention (third row) at t = 0 due to a credit rating. As shown by the �gure, the credit

14This assumption captures the feature of the market that ratings are issued relatively infrequently.
15Recall that the principal and the agent sign a contract at time t = 0 � , just before screening e�ort is

chosen. The credit rating makesq publicly observable and contractible, so one can think of screening and
credit rating occurring simultaneously. Another way to think about credit rating is as follows. The rating
could also happen after screening e�ort is chosen: then, investors get their money back (and the contract is
reneged) if the bank deviates from the promised screening e�ort, which makes screening e�ort contractible.
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Figure 5: The e�ects of credit ratings. � y denotes the percentage change in the initial value
of the outcome variabley caused by a credit rating, wherey 2 f a0; q� ; � 0g. Outcome variables are
plotted as functions of the cost of monitoring � , the cost of screening� , the raw default intensity
�, and the lender's discount rate 
 .

rating increases screening at origination but reduces monitoringa0. The reason is that the

credit rating increases the agent's incentives to screen loans at origination without requiring

increasing its skin in the game. The agent, therefore, requires lower screening incentives

through deferred payouts and hence retains a lower share in the loan, leading to lower

monitoring incentives. Intuitively, the credit rating at origination can be understood as a

complement to the lender's screening, and as a substitute to her monitoring. Notably, Figure

5 shows that under all parameters considered, a credit rating reduces initial retention� 0.

The intuition is that by removing moral hazard over screening, the credit rating allows the

bank to reduce its incentives-based exposure to the loan (and eliminate front-loading). In

addition, and as shown in Proposition 1, the credit rating a�ects the optimal retention level

and implies that the bank (loan originator) retains a constant stake in the loan. Thus, the

credit rating reduces both initial retention and the sello� speed.

A standard way for originators to reduce their share in the loans they originate is to use
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securitization, for example, by including CLOs in the syndicate. A salient feature of CLOs

is that each loan included in the deal gets rated. Our �ndings on the e�ects of credit ratings

imply that loans included in a CLO should feature more screening at origination and less

monitoring after origination. Moreover, our model predicts that the share retained by the

originator should be lower when the originator sells to CLOs.

4 The e�ects of loan maturity

In our baseline model, loans have in�nite maturity. As screening and monitoring e�orts have

e�ects of di�erent duration, loan maturity could have di�erent e�ects on these two tasks. In

fact, we do show in this section that loan maturity can have opposing e�ects on screening and

monitoring. To model �nite maturity, we follow Chen, Xu, and Yang (2021) and consider

that the loan randomly matures with Poisson intensity� > 0. That is, ignoring default, the

expected loan maturity is 1=� . Up to its maturity date, the loan makes coupon payments

at rate 1. When the loan matures att, the �rm pays back the face valueF �
t . That is, at

maturity, the game ends, the lender and outside investors exit, andF �
t represents their joint

terminal payo�. The baseline setting corresponds to the case� = 0.

With �nite maturity loans, the contracting problem is essentially the same as in the

baseline model, except that one needs to take into account the impact of �nite maturity

on the value function and the state variables. With �nite maturity, the total continuation

surplus satis�es

Ft =
Z 1

t
e� (r + � )( s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws + �F �

s

�
ds: (30)

This expression di�ers from that in the baseline model in (20) as the loan matures at rate

� , leading to the terminal payo� F �
s when the loan matures at times. With �nite maturity,

the agent's screening incentives at timet = 0 read

V0 =
Z 1

0
e� (
 + � )t �

Rt
0 � s dsWtdt: (31)
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Figure 6: The e�ects of debt maturity . We use our baseline parameters and setT = 3 for
sello� speed. The dotted red line depicts the outcomes with in�nite debt maturity.

At the time of maturity, the lender exits and is no longer exposed to default risk, so its

screening incentives fall to zero; thus, the di�erence between (11) (fort = 0) and (31) is that

� augments the discount rate, which reduces screening incentivesV0. This is also re
ected

in the law of motion of Vt which becomes

_Vt = ( 
 + � + � t )Vt � Wt : (32)

That is, shorter maturity reduces the duration of the lender's claim and thus the lender's

exposure to loan performance, thereby undermining screening incentives. In contrast, loan

maturity has no direct e�ect on monitoring incentives, as the impact of monitoring at timet is

instantaneous. According to (31), screening incentivesV0 decrease with� (i.e., increase with

loan maturity 1=� ). In other words, keeping monitoring e�ort at and the lender's valueWt

constant, shorter maturity reduces the duration of the lender's incentives and thus weakens

screening incentives. The detailed model description and the remainder of the solution to

the model with �nite maturity including HJB equation are contained in Appendix D.5.

We numerically solve the model for di�erent loan maturities under our baseline parame-
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ters. We �nd that the contract dynamics in the model with �nite maturity are qualitatively

similar to those in the baseline model. That is,V decreases over time while monitoring

incentives increase and the contract can be implemented by requiring the originator to hold

a time-decreasing share of the loan. Moreover, in Appendix D.5.2, we replicate Figures 2 and

4 for �nite loan maturity and show that the results remain qualitatively similar. As such,

our key �ndings on retention, sello� dynamics, and screening and monitoring incentives are

robust to changing the loan maturity.

Figure 6 plots initial monitoring e�ort a0 (which is proportional to the initial value of the

lender's exposureW0) (Panel A) and screening e�ortq� (Panel D) for varying loan maturities.

Recall that screening incentivesV0 are a product of the value and the duration of the lender's

exposure. As discussed above, short maturity undermines the lender's screening incentives

by shortening the duration of the lender's claim and its exposure to loan performance. To

counteract this adverse e�ect, the optimal contract stipulates a higher value of the lender's

initial exposure W0 for short maturity loans (Panel A). The duration e�ect dominates, and

so screening e�ort decreases for short maturity loans (Panel D). At the same time, highW0

generates high initial monitoring incentives and high monitoring e�orta0 for short maturity

loans. Therefore, our model predicts relatively low (high) screening but high (low) initial

monitoring for corporate loans with a short (long) maturity.

The e�ects of debt maturity on screening and monitoring feed back into default risk.

Notably, Panel E of Figure 6 shows that because monitoring has less persistent e�ects than

screening and the initially high-powered monitoring incentives taper o� over time as the

lender sells o� her stake, loans with shorter maturity have higher default risk (i.e. a lower

expected time to default �� ). Thus, in our model with endogenous default intensity, credit risk

decreases as maturity increases (i.e., �� increases with 1=� ).16 Panel B of Figure 6 shows that

total surplus increases with debt maturity due to lower agency costs. Our model, therefore,

16To compare credit risk across di�erent loan maturities on a fair basis, we calculate the expected time to
default (at time t = 0) conditional on the loans not maturing. That is we use the (inverse) measure of credit
risk

� :=
Z 1

0
e�

Rt
0 � u du dt

which eliminates the e�ect of maturity on the duration over which the loan is exposed to credit risk.
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provides a rationale for the use of long-term debt in the presence of agency frictions at the

loan originator level. Figure 6 also plots the initial share retained by the originator and the

sello� speed against loan maturity in Panels C and F.17 The optimal contract implements

high initial monitoring for short maturity loans by frontloading the agent's compensation.

Interestingly, this is achieved by increasing the sello� speed for shorter maturity loans (see

Panel F), while initial retention � 0 decreases (Panel C).

5 Is it optimal to bundle monitoring and screening?

We have so far assumed that the loan originator is responsible for both screening and moni-

toring. In practice, screening and monitoring may be undertaken by separate entities. Some

securitized loans are serviced by a third-party serving company and, depending on the spe-

ci�c arrangements, servicing can subsume monitoring activities. In these cases, the originator

is in charge of screening and the servicer in charge of monitoring. An important question is

therefore whether bundling screening and monitoring a�ects incentives and credit risk.

To address this question, we consider a setting in which monitoring and screening are

conducted by two di�erent agents (called the monitor and screener). To make the comparison

with the baseline model sensible, we assume that the monitor and the screener have identical

preferences; monitoring e�ort (screening e�ort) is only and privately observed by the monitor

(screener). Appendix D.6 provides the detailed description and solution to the model with

separated screening and monitoring tasks. Below, we describe the intuition for the optimal

contract, its dynamics, and present numerical results related to key outcome variables under

the baseline and this model variant.

Screening and monitoring incentives are provided by having the screener and monitor

retain a share of the loan. The screener's and monitor's shares add up to one until su�cient

time has elapsed and the screener sells o� its entire stake at once to investors; the monitor

continues to maintain (time-varying) exposure to the loans. Notably, monitoring incentives

17When calculating the retention level � t , one must also calculate the market value of debtL t , as _� t L t +
� t � = ct holds. We impose \value-matching" when calculating the market value of debt in that the value of
debt L t is the same \just before" and at maturity. This implies L t =

R1
t e� r (s� t ) �

Rs
t � u du ds.
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Figure 7: The e�ects of bundling screening and monitoring. � a0 denotes the percentage
change in monitoring e�ort at t = 0 due to bundling. � q� denotes the percentage change in screening e�ort
due to bundling. � F0� denotes the percentage change in total surplus att = 0 � caused by bundling. � �
denotes the percentage change in the expected time to default due to bundling. Outcome variables are
plotted as functions of the cost of monitoring � , the cost of screening� , the raw default intensity �, and
loan maturity 1 =� under the baseline parameters.

(provided to the monitor) have two opposing e�ects on screening incentives. On the one hand,

monitoring reduces the likelihood of default, leading to a longer lasting impact of screening

and therefore to stronger screening incentives. On the other hand, stronger monitoring

incentives require raising the monitor's stake, which, in turn, requires lowering the screener's

stake as their shares add up to one. This second e�ect leads to negative spillovers between

monitoring and screening incentives. In contrast, when one agent is responsible for both

monitoring and screening, monitoring unambiguously boosts screening incentives, leading to

positive spillovers between monitoring and screening incentives.

As a result, while bundling monitoring and screening leads to positive synergies, sepa-

rating these two tasks can lead to negative synergies. Accordingly, bundling screening and

monitoring leads to higher screening and monitoring e�orts, increases total surplus, and

reduces credit risk (i.e., increases the expected time to default). Figure 7 illustrates these

�ndings and shows that they are robust to changes in the� , � , �, and 1 =� . Under all param-
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eters considered, bundling increases (initial) monitoring (i.e., �a0 > 0), screening (� q� > 0),

and total surplus (� F0� > 0). Our model therefore predicts relatively low levels of monitor-

ing and screening in the mortgage market, where screening and monitoring tasks are often

separated (Demiroglu and James, 2012).

Also notice that according to Figure 7, bundling screening and monitoring increases total

surplus and reduces credit relatively less, the larger the cost of screening or monitoring, the

larger intrinsic credit �, or the longer the loan maturity. One interpretation of this result

is that when, for instance, monitoring borrowers is di�cult after origination in that � is

large, bundling of separating and monitoring is less likely to occur. According to our model,

bundling is more likely to occur in credit markets in which screening and monitoring are

important for credit risk (i.e., the e�ects of screening/monitoring are large relative to the

cost), such as the market for corporate loans.

6 Conclusion

We study a dynamic moral hazard problem in which a lender (e.g., the lead bank in a

syndicate) originates a loan to sell it to investors (e.g., other �nancial institutions in the

syndicate). The lender controls the loan's default risk through screening at origination

and monitoring after origination, both of which are subject to moral hazard. Screening

and monitoring incentives are provided by exposing the lender to loan performance. As

screening occurs only once at the origination of the loan, incentives are front-loaded and

stronger shortly after origination. The optimal contract can be implemented by requiring the

loan originator to retain a time-decreasing stake in the loan so that its incentives to monitor

decrease and credit default risk increases over time. The model implies that there are positive

synergies between screening and monitoring incentives, making screening and monitoring

complements. The optimal contract also implies that screening and monitoring decrease

with intrinsic (pre-screening) credit risk, suggesting that lenders specializing in �nancing

high-quality borrowers (such as banks) exert higher levels of screening and monitoring.

The unique and novel feature of our paper is that it allows us to analyze how loan and
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originator characteristics a�ect initial retention and subsequent loan sales, thereby ratio-

nalizing a number of empirical �ndings and providing new testable empirical hypotheses.

For instance, we show that initial retention decreases while the sello� speed increases with

borrowers' intrinsic credit risk, the lender's cost of capital, or loan maturity. Moreover, our

model implies that while initial retention increases with the cost of screening, which maps

one-to-one to hidden screening e�ort, it is non-monotonic in the cost of monitoring, which

maps one-to-one to hidden monitoring e�ort. In contrast, the speed at which the lender sells

o� its stake in the loan increases with the cost of screening, but is non-monotonic in the

cost of monitoring. Our model, therefore, suggests that the originator's initial retention can

serve as a proxy for screening but not for monitoring incentives, whereas the sello� speed

can serve as a proxy for monitoring but not screening incentives.

Our model is simple and general enough that it can be used to analyze a wide range

of credit markets. For example, we extend our model to analyze the provision of incentives

when screening and monitoring are performed by separate entities, which is often the case for

mortgages: An originator that selects loans initially and a servicer that monitors them later.

We show that such a separation of monitoring and screening tasks reduces both monitoring

and screening e�ort, thereby increasing credit risk.

Finally, the moral hazard problem we study also has applications in contexts other than

credit securitization and syndicated lending. In particular, screening before funding an

investment and monitoring afterward is also common in venture capital �nancing (see Bern-

stein, Giroud, and Townsend (2016) for evidence on monitoring and Abuzov (2022) for evi-

dence on screening). Our theory could be easily modi�ed to study venture capital �nancing

with moral hazard over screening and monitoring. We leave this for future research.
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Appendix

A Proof of Lemma 1

We �rst characterize the agent's monitoring incentives. By the dynamic programming principle
and the arguments presented in the main text, the agent chooses monitoring e�ortat to solve

max
at 2 [0;�a]

�
at Wt �

�a 2
t

2

�
; (A.1)

which yields

at = min
�

Wt

�
; �a

�
:

Observe that when optimal monitoring e�ort is interior and at < �a, the above condition simpli�es to
(7), i.e., at = Wt

� , which is the �rst order condition to (A.1). The second order condition to (A.1),

i.e., @2

@a2t

�
at Wt � �a 2

t
2

�
= � � < 0, is satis�ed. Thus, contracted e�ort level within an incentive

compatible contract satis�es ât = Wt =� .

Second, we characterize the agent's screening incentives. Note that the agent chooses her
screening e�ort to solve

max
q2 [0; �q]

�
W0(q) �

�q 2

2

�
; (A.2)

where we make the dependence ofW0 on q explicit. De�ne

V0(q) =
@
@q

W0(q):

The integral expression (11) and the fact that Wt � 0 (with strict inequality on a set with positive
measure) imply that V0(0) > 0. Thus, the solution q to (A.2) satis�es q > 0.

Now observe that

q = min
�

V0(q)
�

; �q
�

(A.3)

is the unique solution to (A.2) if

@2

@q2

�
W0(q) �

�q 2

2

�
=

@
@q

V0(q) � � < 0 (A.4)

holds for any q 2 [0; �q], in which case the objective in (A.2) is strictly concave over the entire interval
[0; �q] and the �rst order approach is valid. When optimal screening e�ort is interior, condition (A.3)
simpli�es to (10), i.e., q = V0=� , which is the �rst order condition to (A.2).

In what follows, we provide a su�cient condition for (A.4) to hold for all q 2 [0; �q], which
concludes the proof. De�ne

Yt (q) =
@
@q

Vt (q);
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and note that (A.4) can be rewritten as Y0(q) < � . Next, insert at = Wt (q)=� into (13) to obtain

_Vt =
dVt (q)

dt
=

�

 + � �

Wt (q)
�

� q
�

Vt (q) � Wt (q); (A.5)

bearing in mind � t = � � Wt (q)=� � q. We now di�erentiate (A.5) with respect to q to obtain

_Yt =
dYt (q)

dt
= ( 
 + � t )Yt (q) � 2Vt (q) �

(Vt (q))2

�
:

We can integrate the above ODE over time to obtain

Yt (q) =
Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
2Vs(q) +

(Vs(q))2

�

�
ds (A.6)

for all t � 0. In addition, (11) implies

Vt (q) =
Z 1

t
e� 
 (s� t )�

Rs
t � u duWs(q)ds (A.7)

for all t � 0. Note now that (owing to at � �a and q � �q)

� t = � � at � q � � � �a � �q: (A.8)

Next, observe that the agent's continuation value is bounded from above by

Wt � Ft =
Z 1

t
e� r (s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws

�
ds

<
Z 1

t
e� (r +� � �a� �q)( s� t )1ds =

1
r + � � �a � �q

=: W max (A.9)

where the �rst inequality follows from outside investors' limited liability, i.e., Pt = Ft � Wt � 0.

Using these two relations (A.8) and (A.9) as well as (A.7), we obtain that

Vt (q) <
Z 1

t
e� 
 (s� t )�

Rs
t � u duW max ds �

Z 1

t
e� (
 +� � �a� �q)( s� t )W max ds

�
W max


 + � � �a � �q
<

1
(r + � � �a � �q)( 
 + � � �a � �q)

(A.10)

Using this inequality (A.10) and the integral representation in (A.6), we obtain that

Yt (q) =
Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
2Vs(q) +

(Vs(q))2

�

�
ds

�
Z 1

t
e� (
 +� � �a� �q)( s� t )

�
2Vs(q) +

(Vs(q))2

�

�
ds

<
1

(
 + � � �a � �q)

�
2

(r + � � �a � �q)( 
 + � � �a � �q)
+

1
� (r + � � �a � �q)2(
 + � � �a � �q)2

�
:
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As a result, a su�cient condition for (A.4), i.e., for

Y0(q) < �;

to hold for any q 2 [0; �q] is given by

� >
2

(r + � � �a � �q)( 
 + � � �a � �q)2 +
1

� (r + � � �a � �q)2(
 + � � �a � �q)3 : (A.11)

That is, when (A.11) holds, the �rst order approach is valid and (A.3) or, equivalenty, (10) (due
to q < �q) pins down screening e�ort. Note that (A.11) is equivalent to condition (14) (Lemma 1).
Also notice that (14) but not per-se necessary.

B Proof of Proposition 1

To characterize the model solution when screeningq is observable and contractible, we proceed in
several steps. We �rst �x q and solve the continuation problem for timest > 0. We then determine
optimal screening e�ort, q = qB .

At any time t > 0, total surplus, Ft = Pt + Wt , can be written as

Ft =
Z 1

t
e� r (s� t )�

Rs
t � u du(1ds � dCs)

| {z }
= Pt

+
Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
dCs �

�a 2
s

2
ds

�

| {z }
= Wt

;

where

Pt =
Z 1

t
e� r (s� t )�

Rs
t � u du(1ds � dCs)

is the principal's continuation payo� and

Wt =
Z 1

t
e� 
 (s� t )�

Rs
t � u du

�
dCs �

�a 2
s

2
ds

�

is the agent's continuation payo� from time t onward. We can di�erentiate the expressions forWt

and Pt with respect to time, t, to get

dPt = ( r + � t )Pt dt � 1dt + dCt (B.12)

dWt = ( 
 + � t )Wt dt +
�a 2

t

2
dt � dCt : (B.13)

As a result, the dynamics of total surplus are given by

dFt = dPt + dWt (B.14)

= ( r + � t )Pt dt � 1dt + dCt + ( 
 + � t )Wt dt � dCt +
�a 2

t

2
dt

= ( r + � t )(Pt + Wt| {z }
= Ft

)dt � 1dt +
�a 2

t

2
dt � (
 � r )Wt dt: (B.15)
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We can integrate (B.14) over time, t, to get

Ft =
Z 1

t
e� r (s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws

�
ds; (B.16)

which is (20) from the main text.

Recall that the agent chooses the payout agreementC to maximize total surplus at time zero

F0 �
�q 2

2
; (B.17)

where F0 is characterized in (B.16). Note that it is always possible to stipulate payoutsdCt to
the agent, which decreasesWt by amount dCt . As such, controlling payouts to the agent dCt is
equivalent to controlling the agent's continuation payo� Wt . In the following, we take Wt rather
than dCt as control variable for the dynamic optimization, and we drop the control variable dCt .

By the dynamic programming principle, total surplus Ft must solve at any time t > 0 the HJB
equation

rF t = max
Wt 2 [0;F t ];at � 0

�
1 �

�a 2
t

2
� (
 � r )Wt + _Ft � � t Ft

�
;

which is solved subject to the monitoring incentive condition (7) and where _Ft = dFt
dt . As default

is the only source of uncertainty and as there are no relevant state variables for this dynamic
optimization problem, the solution is stationary, so that _Ft = 0 and we can omit time sub-scripts
(i.e., we write Ft = F B (q)). In turn, the HJB equation simpli�es to

rF B (q) = max
W 2 [0;F B (q)] ;a2 [0;�a]

�
1 �

�a 2

2
� (
 � r )W � �F B (q)

�
(B.18)

subject to the monitoring incentive constraint (7), which can be rewritten as (18).

The maximization in the above HJB equation yields that, if interior, optimal monitoring e�ort
reads

aB (q) =
F B (q) � � (
 � r )

�
; (B.19)

and the optimal lender continuation value is W B (q) = �a B (q), due to (7). With a slight abuse
of notation, if the above expression foraB (q) is negative, then optimal monitoring e�ort aB (q) is
zero. If the above expression foraB (q) exceeds �a, then optimal monitoring e�ort aB (q) is �a. Note
that the �rst order condition (B.19) implies �a B (q) = W B (q) < F B (q), so the principal's limited
liability constraint does not bind in optimum. Since, clearly, F B (q) increases withq, it follows that
aB (q) increases withq, i.e., @

@qa
B (q)

Optimal monitoring e�ort implies the instantaneous default probability � = � B (q) = � � q �
aB (q). The law of motion (B.12) and dWt = 0 imply then that payouts to the agent take the form
dCt = cB (q)dt with

cB (q) = ( 
 + � B (q))W B (q) +
� (aB (q)2

2
: (B.20)

That is, payouts to the agent are smooth and positive.
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The objective (B.17) can be rewritten as

max
q2 [0; �q]

�
F B (q) �

�q 2

2

�
: (B.21)

At time t = 0, the agent chooses screening e�ortq 2 [0; �q] to maximize (B.21), leading to optimal
screening e�ort qB .

C Proof of Proposition 2

C.1 Preliminaries

To begin with, we derive the dynamics ofWt , i.e., (12), the dynamics ofVt (de�ned in (9)), and the
integral expression (11). Now, recall the de�nition of Wt in (6) and di�erentiate (6) with respect
to time, t, to obtain

_Wt :=
dWt

dt
= ( 
 + � t )Wt +

�a 2
t

2
� ct ;

which is (12). Using (12), we can write the intermediary's optimization with respect to monitoring
e�ort at at time t as


W t = max
at 2 [0;�a]

�
� (� � at � q)

| {z }
= � t

Wt �
�a 2

t

2
+ ct + _Wt

�
; (C.22)

which yields optimal at = min
n

Wt
� ; a

o
(as in (7)) and, as we focus on interior levels,at = Wt =� .

Next, note that because screening e�ortq is neither observable nor contractible, an unobserved
change in screening e�ort q cannot a�ect contracted 
ow payments ct . We now use the envelope
theorem to di�erentiate both sides of (C.22) under optimal at with respect to q so that


V t = Wt � � t Vt + _Vt () _Vt = ( 
 + � t )Vt � Wt ;

which is (13) as desired. Note that we used@
@q

_Wt = @
@q

d
dt Wt = d

dt
@
@qWt = dVt

dt = _Vt as well as
@
@q

@Wt
@at

= 0 (envelope theorem) and @ct
@q = 0. 18 We can integrate _Vt = ( 
 + � t )Vt � Wt over time t

to obtain the integral expression (11), that is, Vt =
R1

t e� 
 (s� t )�
Rs

t � u duWsds.

The remainder of the proof is split in six parts. Part I characterizes total surplus as a function
of the agent's screening incentivesVt = V and shows that in optimum, total surplus (i.e., the value

18In more detail, note that

d
dq

Wt =
@Wt

@q
+

@Wt

@at

@at
@q

+
@Wt

@ct

@ct
@q

=
@
@q

Wt :

as @Wt
@at

= 0 and @ct
@q = 0. An alternative derivation (not relying explicitly on envelope theorem) simply

rewrites (12) by inserting monitoring incentive compatibility, at = Wt =� , to obtain

_Wt =
�


 + � �
Wt

�
� q

�
Wt +

W 2
t

2�
� ct :
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function F (V )) solves the HJB equation (22). Part II demonstrates that lim t !1 Vt = V B (q). Part
III characterizes the agent's initial choice of optimal screening e�ort q = q� . Part IV veri�es that
�q � = V0 > V B (q� ), and shows that _Vt < 0 at all times t � 0. Part V proves that total surplus
(i.e., the value function) decreases inV and is concave. Part VI shows that payouts to the agent
are smooth and positive. As stated in the main text, we focus (unless otherwise mentioned) on
optimal interior e�ort levels, at 2 (0; �a) and q 2 (0; �q). As in the main text, we characterize the
solution for t � 0 given screening e�ort q, and then determine the optimal screening e�ort q = q� ;
unless necessary we do not distinguish notation-wise betweenq and the optimally chosen screening
e�ort q� .

We make the following regularity assumption. Throughout, we assume that there exists a
unique solution F (V ) to the HJB equation (22) which is continuously di�erentiable. Further, we
assume that the second derivativeF 00(V ) exists almost everywhere in the state space (V B (q); V0)
(i.e., the set of points at which F 0(V ) is not di�erentiable is not dense).

C.2 Part I

Our aim is to characterize the model solution when screening e�ortq is neither observable nor
contractible. As in the proof of Proposition 1, we �rst �x the choice of q made at time t = 0 and
solve the continuation problem for times t > 0. Recall that according to Lemma 1, the incentive
condition (10) holds at time t = 0 so that V0 = �q .

The optimal contract maximizes total surplus characterized in (B.16):

Ft =
Z 1

t
e� r (s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws

�
ds:

Note that it is always possible to stipulate payouts dCt to the agent, which decreasesWt by
amount dCt and leavesVt unchanged. As such, controlling payouts to the agentdCt is equivalent
to controlling the agent's continuation payo� Wt . In the following, we take Wt rather than dCt

as control variable. Thus, the agent's optimization problem only depends on the state variableVt

summarizing the agent's screening incentives. As a consequence, we can express total surplus as
function of Vt , in that Ft = F (Vt ). In what follows, we omit time-subscripts whenever possible.

Recall that screening incentivesV evolve according to (13), i.e., _V = ( 
 + � )V � W: By the
dynamic programming principle, total surplus F (V ) solves in any stateV the HJB equation

rF (V ) = max
W 2 [0;F (V )] ;a2 [0;�a]

�
1 �

�a 2

2
� (
 � r )W

�
� �F (V ) + F 0(V )(( 
 + � )V � W );

which is solved subject to the monitoring incentive constraint (7). Recall that both the principal
and the agent are subject to limited liability, so that W 2 [0; F (V )] and the principal's payo�

Di�erentiating both sides with respect to q and using @ct
@q = 0, we obtain

_Vt = ( 
 + � t )Vt � Wt �
Vt Wt

�
+

Vt Wt

�
;

which simpli�es to (13), as desired.
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F (V ) � W satis�es F (V ) � W 2 [0; F (V )] too. The above HJB equation coincides with (22). The
maximization in the above HJB equation yields that, if interior, optimal monitoring e�ort is

a(V ) =
F (V ) � F 0(V )(V + � ) � (
 � r )�

�
^ W (C); (C.23)

which is (25).

Under the benchmark solution from Proposition 1 (for given q), all model quantities are con-
stant, monitoring is aB (q), and the agent's continuation value is W B (q) = �a B (q). As such,
screening incentives are constant at levelV B (q) and by inserting _V = 0 and the optimal levels of
e�ort aB (q) and continuation value W B (q) = �a B (q) into (13), we can solve for

V B (q) =
W B (q)


 + � � aB (q) � q
: (C.24)

It follows that when V = V B (q), the continuation surplus is F B (q). That is, the surplus function
F (V ) satis�es

F (V B (q)) = F B (q): (C.25)

Also note that optimal e�ort a(V ) satis�es a(V B (q)) = aB (q). In the next Part (i.e., Part II) of
the proof, we show that limt !1 Vt = V B (q), which then|together with (C.25)|implies

lim
V ! V B (q)

F (V ) = F B (q);

as well as limV ! V B (q) a(V ) = aB (q).

C.3 Part II

As a next step, we prove that limt !1 Vt = V B (q). To do so, we set up the Lagrangian for the total
surplus maximization at time t = 0

L =
Z 1

0
e� rt �

Rt
0 � u du

�
1 � (
 � r )Wt �

�a 2
t

2

�
dt

| {z }
= F0

+ `
�

�q �
Z 1

0
e� 
t �

Rt
0 � u duWt dt

| {z }
= V0

�

= F0 + `(�q � V0): (C.26)

where ` is the Lagrange multiplier with respect to the screening incentive constraint (10) and
Wt = �a t is the e�ort incentive constraint which we directly insert into the objective function.

Next, we rewrite (B.14) as

dFt = rF t dt � 1dt + ( 
 � r )Wt dt �
�a 2

t

2
dt + �F t dt;

which can be integrated over time to obtain

Ft =
Z 1

t
e� r (s� t )

�
1 �

�a 2
s

2
� (
 � r )Ws � � sFs

�
ds: (C.27)
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Likewise, we can rewrite (13) as

dVt = 
V t dt � Wt dt + � t Vt dt;

which can be integrated over time to get

Vt =
Z 1

t
e� 
 (s� t ) (Ws � � sVs) ds: (C.28)

Using (C.27) and (C.28), we can rewrite the Lagrangian (C.26) as

L =
Z 1

0
e� rt

�
1 � (
 � r )Wt �

�a 2
t

2
� � t Ft

�
dt + `

�
�q �

Z 1

0
e� 
t (Wt � � t Vt )dt

�
: (C.29)

We can maximize the Lagrangian point-wise (that is, for each timet) with respect to at , taking
into account the monitoring incentive constraint (7), i.e., at = Wt =� . If interior, optimal e�ort at

satis�es the �rst order condition:

e� rt (Ft � (
 � r )� � �a t ) � `e� 
t (� + Vt ) = 0 (C.30)

Multiplying both sides of (C.30) by ert , we obtain

Ft � (
 � r )� � �a t � `e� (
 � r )t (� + Vt ) = 0 : (C.31)

We can solve (C.31) for

at =
Ft � (
 � r )� � `e� (
 � r )t (Vt + � )

�
: (C.32)

Taking the limit t ! 1 in (C.32) leads to

lim
t !1

at = lim
t !1

�
Ft � (
 � r )�

�

�
; (C.33)

asVt is bounded (see inequality (A.10) in the proof of Lemma 1 and note that by de�nition, Vt � 0).

We conjecture (and verify) that, in the limit t ! 1 , the solution becomes stationary andFt

and at become constant, in that

lim
t !1

Ft = F̂ and lim
t !1

at = â

for (endogenous) constantsF̂ and â.19 Note that by (C.33),

â =
F̂ � (
 � r )�

�
: (C.34)

19Equivalently,
lim

t !1
_Ft = 0 and lim

t !1
_at = 0 :
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Using that Wt ! � â and � t ! � � â � q as t ! 1 , we can use (20) to calculate that

F̂ =
1 � (
 � r )� â � � â2

2

r + � � â � q
; (C.35)

which con�rms that lim t !1 Ft = F̂ . As

â = arg max
a2 [0;�a]

 
1 � (
 � r )�a � �a 2

2

r + � � a � q

!

; (C.36)

it follows that optimal e�ort satis�es lim t !1 at = â for an endogenous constant ^a.

Recall the de�nition of F B (q) from (B.18). Now note that (C.34) and (C.35) as well as (C.36)
jointly imply that F̂ = F B (q) and âA = aB (q), so that Ŵ = W B (q). As a result, it also follows
that

lim
t !1

Vt = lim
t !1

Z 1

t
e� 
 (s� t )�

Rs
t � u duWsds =

� â

 + � � â � q

= V B (q) and lim
t !1

_Vt = 0 : (C.37)

As Vt is the only relevant state variable for the dynamic optimization problem, it follows that Vt

cannot have a stationary point Vt 6= V B (q) with _Vt = 0, as otherwise (C.37) would not hold.

That is, when V0 = �q > V B (q), it follows that _Vt < 0, with convergence according to (C.37).
Likewise, whenV0 = �q < V B (q), it follows that _Vt > 0, with convergence according to (C.37). In
the knife-edge caseV0 = �q = V B (q), it holds that Vt = V B (q) and _Vt = 0.

Last, we characterize the limit limV ! V B (q) F 0(V ). Note that due to (C.25), that is, F (V B (q)) =
F B (q), and lim t !1 Vt = V B (q), it follows that lim V ! V B (q) F (V ) = F B (q) and limV ! V B (q) a(V ) =
aB (q). We know from Proposition 1 that W B (q) < F B (q), so that lim V ! V B (q) W (V) < limV ! V B (q) F (V ).
Thus, for V close toV B (q), the principal's limited liability constraint does not bind. Using (C.23),
limV ! V B (q) a(V ) = aB (q) becomes equivalent to

lim
V ! V B (q)

F 0(V ) = 0 ; (C.38)

when aB (q) > 0. In the case that aB (q) = V B (q) = 0, we have

lim
V ! V B (q)

F 0(V ) =
(F B (q) � (
 � r )� )

�
� 0; (C.39)

so that a(V ) from (C.23) converges toaB (q) = 0 as V ! V B (q) = 0.

C.4 Part III

At time t = 0, initial screening incentive V0 pins down screening e�ort q by means of the screening
incentive constraint (10). The agent picks the amount of initial screening incentivesV0 to maximize

max
q2 [0; �q]

�
F (V0) �

�q 2

2

�
s.t. V0 = �q: (C.40)
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Even if optimal screening is not interior and satis�es q� = �q, it would be optimal to set V0 = �q � ,
as F (V ) decreases inV > V B (q) and the screening incentive condition (10) is optimally tight.

The �rst order condition to (C.40) is

@F(V0)
@q

jq= q� + F 0(V0)� = �q � ; (C.41)

which holds if q = q� 2 (0; �q).

C.5 Part IV

We now explicitly distinguish between q� (optimal screening level) and q (potentially di�erent
screening). This part of the proof shows that in optimum (i.e., for q = q� ), we have �q � = V0 >
V B (q� ). Because limt !1 Vt = V B (q� ) and because there is no stationary point with _Vt = 0,
V0 > V B (q� ) implies _Vt < 0 at all times t � 0. It su�ces to consider q� > 0 and aB (q� ) > 0.

Suppose to the contrary that

�q � = V0 � V B (q� ) =
W B (q� )


 + � � aB (q� ) � q� ; (C.42)

where the last equality follows (C.24). Note that Wt � Ft at all times t � 0 and, in particular,
W B (q� ) � F B (q� ). We then obtain

�q � = V0 �
W B (q� )


 + � � aB (q� ) � q� <
F B (q� )

r + � � aB (q� ) � q� ; (C.43)

where the �rst inequality follows (C.42) and the second inequality uses
 > r and W B (q� ) � F B (q� ).

Next, de�ne the following (continuous) function (of q):

G(q) := F B (q) �
�q 2

2
:

For any screening e�ort q 2 (0; �q), recall the HJB equation for V = V B (q), that is, (B.18) or

rF B (q) = max
W 2 [0;F B (q)] ;a2 [0;�a]

�
1 �

�a 2

2
� (
 � r )W � �F B (q)

�
:

We can use the envelope theorem and di�erentiate both sides of (B.18) with respect toq to obtain
under the optimal controls (W B (q); aB (q)):

(r + � )
@FB (q)

@q
= F B (q) ()

@FB (q)
@q

=
F B (q)

r + � � aB (q) � q
> 0: (C.44)

As aB (q) increases withq (see Proposition 1), above relation implies that@2F B (q)
@q2 > 0 and @3F B (q)

@q3 >
0. Using (C.44), we obtain

G0(q) =
F B (q)

r + � � aB (q) � q
� �q: (C.45)
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We also calculate

G00(q) =
@2

@q2
F B (q) � � and G000(q) =

@3

@q3
F B (q) > 0:

Due to G000(q) > 0, the function G(q) is either concave on the entire interval [0; �q] or concave on an
interval [0; q0] and convex on the interval [q0; �q] for q0 < �q. This observation implies that G(q) has
at most one local maximum on [0; �q].

We focus on interior optimal levels ofq. Therefore, the maximum of G(q) on the interval [0; �q]
is denoted by

qB = arg max
q2 [0; �q]

G(q) = arg max
q2 [0; �q]

�
F B (q) �

�q 2

2

�
;

and satis�es G0(qB ) = 0 (�rst order condition) as well as G00(qB ) < 0 (second order condition).
Thus, qB < �q holds by assumption, andq = qB is the unique maximum of G(q) on [0; �q]. Hence, on
[0; qB ), G0(q) 6= 0, and G0(qB ) = 0. As G00(qB ) < 0 and G000(q) > 0, it follows that G00(q) < 0 on the
interval [0; qB ). Furthermore, G(q) must strictly increase on the interval [0; qB ), in that G0(q) > 0
and G00(q) < 0 for q 2 [0; qB ).

Next, de�ne the (continuous) function of q:

K (q) := V B (q) � �q; (C.46)

with V B (q) from (C.24), that is,

V B (q) =
W B (q)


 + � � aB (q) � q
=

�a B (q)

 + � � aB (q) � q

:

Recall that aB (q) and W B (q) = �a B (q) increase with q (see Proposition 1). Thus, the function
V B (q) is strictly convex, implying that K (q) is strictly convex too. Observe that

K (q) = V B (q) � �q =
W B (q)


 + � � aB (q) � q
� �q <

F B (q)
r + � � aB (q) � q

� �q = G0(q); (C.47)

where the �rst inequality uses that r < 
 and W B (q) � F B (q) and the last equality uses (C.45).
Because i)G0(q) has a unique root on [0; qB ], ii) becauseK (q) < G 0(q), iii) becauseK (q) is convex,
and iv) becauseK (0) � 0, K (q) has a unique root q̂ < qB on [0; qB ] so that K (q̂) = 0, K (q) > 0
for q < q̂, and K (q) < 0 for q 2 (q̂; qB ]. If K (q) had a second rootq2 with qB � q2 > q̂, then it
must be due to convexity that K 0(q) > 0 for q � q2 and thus K (qB ) � G0(qB ) = 0, a contradiction
to (C.47).

Next, note that for q = �q:

K (�q) =
W B (�q)


 + � � aB (�q) � �q
� � �q =

aB (�q)�

 + � � aB (�q) � �q

� � �q �
�a�


 + � � �a � �q
� � �q < 0;

where the second equality uses (7) and that the incentive constraint for monitoring e�ort binds, the
�rst inequality uses aB (�q) � �a, and the second inequality uses parameter condition (15). Because
K (q) is strictly convex on [0; �q], K (q) has precisely one root on [0; �q), which is denoted q̂ and
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satis�es q̂ < qB . Suppose now�q � = V0 < V B (q� ), which implies K (q� ) > 0. BecauseK (q) has a
unique root on [0; �q], denoted q̂, it follows that q� < q̂ < qB .

Total initial surplus can now be written as

F0� = F0 �
� (q� )2

2
� F B (q� ) �

� (q� )2

2
< F B (q̂) �

� (q̂)2

2
;

where the �rst inequality uses F0� � FB (q) (which holds for any q) and the second inequality uses
that G(q) = F B (q) � �q 2

2 strictly increases on [0; qB ) as well as 0< q � < q̂ < qB . As a result, total
surplus is higher under a stationary contract that implements screening ^q and Vt = V B (q̂) = � q̂ at
all times t � 0, which contradicts the optimality of q� . Thus, V0 < V B (q� ) cannot be optimal.

Now consider the caseV0 = V B (q� ) = �q � , so that q� = q̂ < qB . Take " > 0 and setq" = q� + "
so that q" < qB . Because ofq� < qB , it follows that

@
@q�

�
F B (q� ) �

� (q� )2

2

�
= G0(q� ) > 0; (C.48)

where G(q� ) = F B (q� ) � � (q� )2

2 is total surplus under the optimal choice of q, i.e., q = q� = q̂.

Under the screening levelq" = q� + ", it follows that �q " = V0 > V B (q" ). Denote the value
function under screening levelq" by F (V ). The total surplus under screening levelq" is

F (V0) �
� (q" )2

2
= F B (q" ) + F 0(V B (q" )) " + o("2) �

� (q" )2

2
= F B (q" ) + o("2) �

� (q" )2

2
;

=
�

F B (q� ) �
� (q� )2

2

�
+

@
@q�

�
F B (q� ) �

� (q� )2

2

�
" + o("2); (C.49)

which | by (C.48) | exceeds F B (q� ) � � (q� )2

2 for " > 0 su�ciently small. The second equality uses
that given screening levelq" , limV ! V B (q" ) F 0(V ) = 0 (see (C.38)) which holds because ofaB (q" ) > 0
which in turn follows from aB (q� ) > 0 by continuity for small " . However, this contradicts the
optimality of q = q� . Thus, V0 = �q � > V B (q� ) holds under the optimal choice ofq = q� .

C.6 Part V

In this part, we show F 0(V ) < 0 in all accessible states and, in particular, verify our conjecture
that F 0(V0) � 0.

First, consider F (V ) = W (V), in that the principal's limited liability constraint binds. The
expression for e�ort a(V ) = W (V)=� in (C.23) implies that F 0(V ) < 0, becauseF 0(V ) � 0 would
imply a(V ) < F (V )=� and W (V) < F (V ). Next, take F (V ) = W (V) = �a (V ) and insert this
relation into the HJB equation (22) to obtain


F (V ) = 1 �
F (V )2

2�
�

�
� � q �

F (V )
�

�
F (V ) + F 0(V )

��

 + � � q �

F (V )
�

�
V � F (V )

�
:

At points V at which F 0(V ) is di�erentiable, we can di�erentiate above ODE with respect to V to
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calculate

F 00(V ) =
(F 0(V ))2 � F 0(V )F (V )=� + ( F 0(V ))2V=�

(
 + � )V � F (V )
< 0;

as we have shown that _V = ( 
 + � )V � W < 0 as well asF 0(V ) < 0 for V > V B (q).

Second, suppose thatF (V ) > W (V) and the principal's limited liability constraint does not
bind, and consider V > V B (q). To start with, note that because the principal's limited liability
constraint does not bind, optimal e�ort a(V ) solves the �rst order condition @F(V )

@a = 0 provided
a 2 (0; �a). For any points V at which F 0(V ) is di�erentiable, we can then invoke the envelope
theorem and totally di�erentiate the HJB equation (22) under the optimal controls with respect to
V ,which yields

F 00(V ) =
� (
 � r )F 0(V )
(
 + � )V � W

: (C.50)

First, note that as shown in Part II of the proof, _V = ( 
 + � )V � W < 0 for V > V B (q). Thus, F 00(V )
has the same sign asF 0(V ). It follows by (C.50) that either F 0(V ); F 00(V ) < 0 or F 0(V ); F 00(V ) � 0
must hold for all V 2 (V B (q); V0].

Next, let us consider V = V B (q) (or the limit V ! V B (q)). When aB (q) = 0, then (C.39)
implies limV ! V B (q) F 0(V ) � 0. Otherwise, whenaB (q) > 0, theN (C.38) implies F 0(V B (q)) = 0
and | according to the expression for e�ort (C.23):

a(V B (q)) =
F (V B (q)) � (
 � r )�

�
) W (V B (q)) < F (V B (q)) ;

owing to 
 > r .

If it were F 0(V ); F 00(V ) � 0 in a right-neigbhourhood ofV B (q) (i.e., for V 2 (V B (q); V B (q)+ � ),
then F (V ) � F B (q) for V 2 (V B (q); V B (q) + � ) However, it must be that F (V ) < F B (q) for
V > V B (q), as providing higher screening incentiveV > V B (q) than under the benchmark without
screening moral hazard for a given level ofq necessarily reduces surplus. As a result, asF 0(V ) is
continuous, it follows that F 0(V ); F 00(V ) < 0 in a right-neighbourhood of V B (q).

Note that when F 0(V ) is di�erentiable, then

sign(F 00(V )) =

(
= � 1 if W (V ) = F (V )

= sign(F 0(V )) if W (V ) < F (V ):

Combined with the fact that F 0(V ); F 00(V ) < 0 in a right-neighbourhood of V B (q), it follows that
F 00(V ) < 0 at all V 2 (V B (q); V0) at which F 0(V ) is di�erentiable (and F 00(V ) exists). As such,
the value function is strictly concave on (V B (q); V0).

C.7 Part VI

In this part, we show that payouts to the agent are smooth and positive.

We can solve (12) to get the payout rate

ct = ( 
 + � t )Wt +
�a 2

t

2
� _Wt : (C.51)
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If Ft = Wt , note that according to (B.14), _Ft = ( 
 + � t )Ft � 1 + �a 2
t

2 . Inserting the law of motion
_Ft = _Wt into (C.51) yields ct = 1 > 0.

Next, consider V = Vt with Wt < F t . Then, according to (C.23):

a(V ) =
F (V ) � F 0(V )[V + � ] � (
 � r )�

�
;

and, provided a(V ) is di�erentiable, then a0(V ) = � F 00(V )[V + � ]
� > 0, asF 00(V ) < 0 whenW < F (V ).

Thus, _at = a0(Vt ) _Vt < 0 and, by (7), _Wt < 0. Inserting _Wt < 0 into (C.51) implies ct > 0.

D Additional results

D.1 Proof of Corollary 1

As the incentive constraint (7) implies W (V) = �a (V ), it su�ces to prove the claims for monitoring
e�ort a(V ) for any given q. Recall that by (C.23), optimal monitoring e�ort (if interior) satis�es

a(V ) =
F (V ) � F 0(V )[V + � ] � (
 � r )�

�
;

so that (provided that a(V ) is di�erentiable)

a0(V ) =
� F 00(V )[V + � ]

�
:

As F 00(V ) < 0 for V > V B (q), it follows that a0(V ) > 0 for V > V B (q).

Next, note that
lim

V ! V B (q)
F 0(V ) = 0 ;

which implies limV ! V B (q) a(V ) = aB (q).

D.2 Proof of Proposition 3 and details on the implementation

The proof of Proposition 3 follows from the arguments presented in the main text.

Next, we show how to calculate � t = � (Vt ), given the optimal contract from Proposition 2
which yields a(V ), W (V ) = �a (V ), c(V ), and _V as functions of V as well as optimal screeningq.
Recall that � t = � � at � q, where at = a(Vt ).

First, observe that

L t =
Z 1

t
e� r (s� t )�

Rs
t � u duds;

solves the ODE
(r + � � a(V ) � q)L (V ) = 1 + L 0(V ) _V
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subject to the boundary condition

lim
V ! V B (q)

L 0(V ) = 0 () lim
V ! V B (q)

L(V ) =
1

r + � � aB (q) � q
:

Second, calculate
_Wt = W 0(Vt ) _Vt and _� (V ) = � 0(Vt ) _Vt ;

where � (V ) is the agent's retention level in state V under the proposed implementation of the
optimal contract. Third, insert these relations into (29) to obtain the following ODE in state V

� (V ) � � 0(V ) _V L(V ) = ( 
 + � � a(V ) � q)W (V ) +
�a (V )2

2
� W 0(V ) _V ; (D.52)

which is solved subject to

lim
V ! V B (q)

� 0(V ) = 0 () lim
V ! V B (q)

� (V ) = cB (q) = ( 
 +� � aB (q)� q)W B (q)+
� (aB (q))2

2
: (D.53)

Noting there is a one-to-one mapping from timet to Vt = V , we thus obtain � t = � (Vt ) by solving
(D.52), as desired. Under standard regularity conditions, well-known results imply the existence of a
solution of the ODE (D.52) subject to (D.53); throughout, we assume the existence and uniqueness
of such a solution.

D.3 Model variant with only moral hazard over screening

D.3.1 Solution

We characterize the model solution when there is no moral hazard over monitoring (i.e., monitoring
e�ort at is contractible), so that the incentive constraint (7) does not apply. However, there is still
moral hazard over screening, i.e.,q is unobserved and not contractible. Analogous to the solution
of the baseline, we �rst provide the solution to the continuation problem for t � 0 and a given level
of q. Then, we determine the optimal screening levelq, taking into account the solution to the
continuation problem.

The agent's continuation payo� follows 20

dWt = ( 
 + � t )Wt dt +
�a 2

t

2
dt � dCt ; (D.54)

with payouts dCt . Noting that an unobserved change inq does not a�ect contracted monitoring
e�ort at (i.e., @at

@q = @dCt
@q = 0), we can di�erentiate this law of motion (D.54) with respect to

screening e�ort q to obtain (after simpli�cations) for Vt = @
@qWt :

_Vt = ( 
 + � t )Vt � Wt ;

20Since both dCt and at are contractible, one could de�ne dĈt := dCt � �a 2
t

2 dt and write dWt = ( 
 +
� t )Wt dt � dĈt , where dĈt is a (contracted) choice variable.
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which is dynamics of the agent's screening incentives. At timet = 0, the incentive constraint
V0 = �q pins down screening e�ort.

As in the baseline, the agent maximizes total surplus at timet = 0. The only relevant state
variable is V , while W is control variable. As such, total surplus (i.e., the value function) is a
function of V only and solves the HJB equation

rF (V ) = max
W 2 [0;F (V )] ;a2 [0;�a]

�
1 �

�a 2

2
� (
 � r )W � �F (V ) + F 0(V )(( 
 + � )V � W )

�
; (D.55)

which is analogous to the baseline HJB equation (22). The key di�erence to the baseline (where
the incentive condition W = �a links monitoring e�ort and continuation value) is that without
moral hazard over monitoring (i.e., with contractible a) the monitoring incentive constraint does
not apply and W and a can be chosen independently in the optimization in (D.55). In what follows,
we assume that a unique solution to (D.55) (subject to a boundary condition speci�ed later) exists.

The maximization with respect to monitoring e�ort, a, yields that, if interior, optimal moni-
toring e�ort is

a(V ) =
F (V ) � F 0(V )V

�
:

Note that (D.55) implies
@rF(V )

@W
= � (
 � r ) + F 0(V ):

As such, the maximization with respect to the agent's deferred compensation, i.e.,W , in (D.55)
yields that

W (V )

8
>><

>>:

= 0 if F 0(V ) > � (
 � r )

2 [0; F (V )] if F 0(V ) = � (
 � r )

= F (V ) if F 0(V ) < � (
 � r ):

(D.56)

Note now that when screening is observable and contractible (in addition to monitoring being
observable and contractible), then V B (q) = W B (q) = 0. As in the baseline, it follows that
lim t !1 Vt = V B (q) = 0, i.e., given q, the optimal contract approaches in the limit t ! 1 the
one with contractible screening. As a result, it must be that _Vt < 0 at all times t � 0, in that

_V = ( 
 + � )V � W (V ) < 0:

Owing to (D.56), this requires that W (V ) > 0 for V > 0 and soF 0(V ) � � (
 � r ) for V > 0.

Thus, it is (at least) weakly optimal to stipulate W (V) = F (V ), which we can insert into the
HJB equation (D.55) to obtain


F (V ) = max
a2 [0;�a]

�
1 �

�a 2

2
� �F (V ) + F 0(V )(( 
 + � )V � F (V ))

�
: (D.57)

Let us assume that F 00(V ) exists and is well-de�ned. Using the envelope theorem, we totally
di�erentiate the HJB equation (D.57) (under the optimal control a = a(V )) with respect to V ,
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which yields

F 00(V ) =
(F 0(V ))2

(
 + � )V � F (V )
:

Due to _V = ( 
 + � )V � F (V ) < 0, we haveF 00(V ) < 0, i.e., F (V ) is strictly concave. That is, F (V )
is strictly concave for V > 0. If there exists now V̂ > 0 with F 0(V̂ ) = � (
 � r ), then there exists
0 < V 0 < V̂ with F 0(V 0) > � (
 � r ), a contradiction. As a result, F 0(V ) < � (
 � r ) for all V > 0,
so that | indeed | W (V ) = F (V ) is optimal for V > 0.

When V equals zero, it must be that _V equals zero too, as | by de�nition | V cannot become
negative. As such, W (0) = 0, which requires by means of (D.56) that F 0(0) � � (
 � r ). As
F 0(V ) < � (
 � r ) and F 0(V ) is continuous for all V > 0, it follows that F 0(0) = � (
 � r ) which is
the boundary condition for the ODE (D.55). Notice that this boundary condition is equivalent to

lim
V ! 0

F (V ) = max
a2 [0;�a]

 
1 � �a 2

2

r + � � a � q

!

; (D.58)

which|given the level of q|is total surplus absent any moral hazard. Also observe that because
W (V) = F (V ) > W (0) for V > 0 with lim V #0 W (V) > 0, it follows that lim V #0 _V(V ) > 0 = _V(0);
thus, state V = 0 is reached in �nite � 0 = inf f t � 0 : Vt = 0g.

Finally, we can determine optimal q. As in the baseline, optimal screening e�ort q� maximizes
total initial surplus F0� = F (V0) � �q 2

2 subject to the incentive constraint V0 = �q .

D.3.2 Implementation of the optimal contract

We are now in the position to characterize the implementation of the optimal contract, described
above. For this sake, note that one unit claim in the pool of loans has a payout rate 1.

Next, we characterize the payouts to the agent and, doing so, we omit time subscripts unless
confusion is likely to arise. Recall from the previous section that

F (0) = lim
V #0

F (V ) = lim
V #0

W (V) > W (0) = 0 :

Using the law of motion for the agent's continuation payo�

dW = ( 
 + � )Wdt +
�a 2

2
dt � dC;

it follows that the agent receives a payoutdC = F (0) at the time V reaches zero, so as to induce
F (0) = lim V #0 W (V) > W (0) = 0. When V > 0, then F (V ) = W (V), and according to (B.14) for
W (V ) = F (V ):

dW = ( 
 + � )Wdt +
�a 2

2
dt � dC = ( 
 + � )Fdt +

�a (V )2

2
dt � 1dt = dF;

yielding
dC = 1dt;

which equals coupon payments over an instantdt.
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As a result, the contract is implemented by requiring the agent to fully retain the pool of loans
until time � 0 = inf f t � 0 : Vt = 0g and to sell them to outside investors at the time V reaches
zero. When V = 0 at time � 0, the agent sells her entire stake to the principal (outside investors),
and she receives the fair price ofF (0) dollars, implementing the desired payout dC = F (0) to the
agent.

D.4 Proof of Proposition 4

The �rst claim follows from Proposition 1: It readily follows that the optimal contract can be
implemented by having the agent retain constant share� t = cB (q) of the loan. The second claim
follows from the solution as well as the implementation of the optimal when there is no moral
hazard over monitoring, presented in Appendix D.3.

D.5 Model extension with �nite maturity

D.5.1 Solution

We now provide additional details, the solution, and derivations for the model variant with �nite
debt maturity where � > 0. The incentive constraints with respect to monitoring and screening
e�ort remain unchanged relative to the baseline, i.e., Wt = �a t and V0 = �q , pinning down
� t = � � at � q. To solve the model, one �rst takes q as given to characterize the solution after
time t = 0; then, taking into account the continuation solution, one maximizes initial surplus
F0� = F0 � �q 2

2 over q.

To begin with, we de�ne the agent's continuation value (before maturity) as

Wt =
Z 1

t
e� (
 + � )( s� t )�

Rs
t � u du

�
cs �

�a 2
s

2
+ �dC �

s

�
ds;

where dC�
s is the agent's payo� in the form of a lump-sum payment upon maturity (which occurs

randomly at rate � ) at time s and cs the payout rate before maturity (we conjecture and verify
that payments before maturity are smooth). Observe that over [t; t + dt), the loan matures with
proability �dt in which case the agent is paiddC�

t dollars (note that dC�
t is not of order dt).

Di�erentiating above expression with respect to time, t, we obtain:

_Wt = ( 
 + � + � )Wt +
�a 2

t

2
� ct � �dC �

t : (D.59)

According to the dynamic programming principle, the agent solves at any timet the optimization:

(
 + � )Wt = max
at 2 [0;�a]

�
ct � � t Wt �

�a 2
t

2
+ �dC �

t + _Wt

�
; (D.60)

yielding at = Wt =� (if monitoring e�ort is interior).

Note also that because screening e�ortq is neither observable nor contractible, an unobserved
change in screening e�ort q cannot a�ect contracted 
ow payments ct or the lump-sum payment
dC�

t upon maturity. Using the envelope theorem (i.e., @
@q

@Wt
@at

= 0) and @ct
@q = @dC�

t
@q = 0, we can
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di�erentiate both sides of above equation (D.60) with respect to q to obtain for Vt = @
@qWt :21

_Vt = ( 
 + � + � t )Vt � Wt ;

which is (32). Equivalently, we obtain the integral representation

Vt =
Z 1

t
e� (
 + � )( s� t )�

Rs
t � u duWsds;

which becomes (31) fort = 0.

Next, we denote the continuation surplus after maturity at a time s by F �
s . Thus, the continu-

ation surplus at time t before maturity is characterized in (30), i.e.,

Ft =
Z 1

t
e� (r + � )( s� t )�

Rs
t � u du

�
1 �

�a 2
s

2
� (
 � r )Ws + �F �

s

�
ds:

By the dynamic programming principle, the value function Ft = F (Vt ; Wt ) solves the HJB equation

(r + � )F (V; W) = max
a;c

�
1 �

�a 2

2
� (
 � r )W � �F (V; W) + �F �

+ FV (V; W)(( 
 + � + � )V � W ) + FW (V; W)
�

(
 + � + � )W +
�a 2

2
� c � �W �

� �
:

As in the baseline, the optimality of payouts requires

@F(V; W)
@c

= � FW (V; W) = 0 :

Recall that ex-ante, we do not restrict c to be positive, but afterward verify that c � 0.

With slight abuse of notation, we write Ft = F (Vt ) (i.e., Ft is a function of Vt only) and using
FW = 0, the HJB equation simpli�es to

(r + � )F (V ) = max
a;W

�
1 �

�a 2

2
� (
 � r )W � �F (V ) + �F � + F 0(V )

�
(
 + � + � )V � W

�
�

;

(D.61)

with W = �a and W � F (V ) (limited liability).

21An alternative derivation (not relying explicitly on envelope theorem) simply rewrites (D.59) by inserting
monitoring incentive compatibility, at = Wt =� , to obtain

_Wt =
�


 + � + � �
Wt

�
� q

�
Wt +

W 2
t

2�
� ct � �dC �

t :

Di�erentiating both sides with respect to q and using @ct
@q = @dC�

t
@q = 0, we obtain

_Vt = ( 
 + � + � t )Vt � Wt �
Vt Wt

�
+

Vt Wt

�
= ( 
 + � + � t )Vt � Wt :
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As in the baseline, the state variableVt converges to a limit V B (q), i.e., lim t !1 Vt = V B (q),
whereby limt !1 _Vt = 0. 22 Then, the HJB equation (D.61) is subject to the boundary condition

lim
V ! V B (q)

F (V ) = F B (q) =

max
W 2 [0;F B (q)]

�
1 + �F �

r + � � a � q + �
�

(
 � r )W
r + � � a � q + �

�
�a 2

2

r + � � a � q + �

�
; (D.62)

which is analogous to (23) in the baseline model. Here,

V B (q) =
W B (q)

r + � + � � aB � q
with W B (q) = W (V B (q)) and aB (q) =

W B (q)
�

: (D.63)

We assume that a unique solution to (D.61) (subject to above boundary condition) exists.

In addition, as in the baseline model, optimal screening e�ort q� = q maximizes total initial
surplus F0� = F (V0) � �q 2

2 subject to the incentive constraint V0 = �q . We numerically verify that
(under the chosen parameters) in optimum,V0 � V B (q), so that _Vt < 0 andVt drifts down over time
V B (q), as well as that the value function is strictly concave and decreases (i.e.,F 0(V ); F 00(V ) < 0).
A rigorous proof could be constructed using analogous arguments as those presented in the proof
of Proposition 2.

In what follows, we assume for simplicity that F �
s = Fs (or F � = F (V )), i.e., the stochastic

maturity event leaves the total loan value unchanged, in which case (20) and (30) coincide. At
maturity, the lender is paid Wt and outside investors are paidFt � Wt . Therefore, there is no
value e�ect associated with the maturity event.23 This assumption re
ects in reduced form the
fact that the value of the loan is the same just before maturity and at maturity; in a model with a
deterministic maturity date, this property would be called a value matching condition. 24

Thus, using F � = F (V ), the HJB equation (D.61) simpli�es to

rF (V ) = max
a;W

�
1 �

�a 2

2
� (
 � r )W � �F (V ) + F 0(V )

�
(
 + � + � )V � W

�
�

;

with W = �a and W � F (limited liability). The boundary condition (D.62) simpli�es to

lim
V ! V B (q)

F (V ) = F B (q) = max
W 2 [0;F B (q)]

�
1

r + � � a � q
�

(
 � r )W
r + � � a � q

�
�a 2

2

r + � � a � q

�
:

Optimal e�ort becomes

a(V ) =
F (V ) � F 0(V )(V + � ) � (
 � r )�

�
^ W (C):

22We numerically verify that, indeed, _Vt < 0. A formal proof could be constructed using arguments
analogous to those in the proof of Proposition 2.

23This assumption has no bearings on our key �ndings and is for mere simplicity; our results would remain
qualitatively unchanged had we assumed di�erentF �

t , for instance, F �
t = K for a constant K � 0.

24In reality, loans mature deterministically and this feature naturally holds, preventing arbitrage.
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It follows that a0(V ) � 0 as well as _a; _W < 0. The exact level ofdC�
t (or dC� ) is payo�-irrelevant

and does not a�ect key equilibrium quantities, such as total surplus, credit risk, and screening or
monitoring incentives. Thus, we can without loss of generality setdC� = W , i.e., we assume that
the maturity event does not change the agent's continuation value just as it does not change the
value of total surplus due to F � = F (V ).

Finally, we can calculate the retention level � t via

� t � _� t L t = ct () � (V ) � c(V ) = L(V )� 0(V ) _V ;

where the market value of debt,L t = L(Vt ), is de�ned as

L t =
Z 1

t
e� (r + � )( s� t )�

Rs
t � u du(1 + �L �

s)ds

and payouts to the agent, ct = c(Vt ), read (after using dC�
t = Wt in (D.59))

ct = ( 
 + � )W +
�a 2

2
� _W � 0:

Here, L �
s is the market value of debt at the maturity event (i.e., the \face value" repaid to lenders

at maturity). For simplicity, we assume | in line with F �
s = Fs and dC�

s = Ws | that L �
s = L s,

leading to L t =
R1

t e� r (s� t )�
Rs

t � u du1ds. That is, the maturity event is value neutral for total surplus
F (V ), agent continuation value W (V), and the value of debt.

D.5.2 Main results and �gures with �nite maturity

We now replicate Figures 2 and 4 for �nite maturity, where we choose� = 0 :1. Similar to Figure
2 in the baseline (in�nite maturity) case, Figure D.1 plots screening and monitoring e�ort against
� , � , �, and 
 . Indeed, as Figure D.1 illustrates, monitoring and screening e�orts decrease with� ,
� , �, and 
 , producing qualitatively similar patters as Figure 2 does.

Next, similar to Figure 4 in the baseline (in�nite maturity) case, Figure D.2 plots retention
levels and sello� speed against� , � , �, and 
 . Again, it can be seen that Figure D.2 produces
qualitatively similar results as Figure 4 does. As such, we conclude that our model's key results
(on e�ort incentives and retention dynamics) are robust to the level of loan maturity.

D.6 Model variant with separation of screening and monitoring

We now assume that screening and monitoring are undertaken by two separate agents, referred to
as the screener and monitor respectively. Both the screener and monitor have identicaly prefer-
ences, i.e., they are risk-neutral with discount rate
 . Both screeningq and monitoring at are not
observable nor contractible, and a�ect default rate � t = � � at � q. That is, only the screener
(monitor) observes screening (monitoring) e�ort q (at ). A contract to the screener Cs stipulates
recommended screening ^q and incremental payouts dCs

t ; a contract to the monitor Cm stipulates
recommended monitoringf ât g and incremental payouts dCm

t . The contracts are chosen to max-
imize total surplus. We focus on incentive compatible contracts, so that in optimum q = q̂ and
at = ât .
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Figure D.1: Comparative statics with �nite maturity. This figure plots monitoring effort
at at t = 0 (solid black line), at t = 5 (dotted red line), and t→∞ (dashed yellow line) and screening effort
q∗ against the parameters �; �, Λ, and 
. We use our baseline parameters and set � = 0:1.

10 20 30 40

0.2

0.4

0.6

0.8

10 20 30 40

0.2

0.4

0.6

50 100 150
0

0.2

0.4

0.6

50 100 150

0.2

0.4

0.6

0.8

1

0.95 1 1.05 1.1

0.2

0.4

0.6

0.8

0.95 1 1.05 1.1

0.4

0.6

0.8

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

0.05 0.1 0.15

0.2

0.4

0.6

0.8

1

Figure D.2: Retention and dynamics with �nite maturity. We use our baseline parameters
and � = 0:1.
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D.6.1 Optimals contract and solution with separation of screening and moni-

toring

Analogous to the solution of the baseline, we first provide the solution to the continuation problem

for t ≥ 0 and a given level of q. Then, we determine the optimal screening level q, taking into

account the solution to the continuation problem. We assume that monitoring effort (screening

effort) is only and privately observed by the monitor (screener).

Define the screener’s continuation value (from time t onward) as

W s
t =

Z 1
t

e�(
+�)(s�t)�
R s
t �udu(�dCs;�s ds+ dCss )

and the monitor’s continuation value (from time t onward) as

Wm
t =

Z 1
t

e�(
+�)(s�t)�
R s
t �udu

�
�dCm;�s ds+ dCms −

�a2
s

2
ds

�
;

where at is monitoring effort and q is screening effort, leading to �t = Λ−at− q. The loan matures

randomly at rate �, and dCs;�t and dCm;�t are the screener’s and monitor’s payoffs (lump-sum

payments) in the event of maturity respectively (note that dCs;�t and dCm;�t are not of order dt).

That is, over [t; t+ dt), the loan matures with proability �dt in which case the screener (monitor)

is paid dC�;st (dC�;mt ) dollars.

As such, we obtain the following dynamics for continuation values:

dW s
t = (
 + �t + �)W s

t dt− dCst − �dC
s;�
t dt (D.64)

dWm
t = (
 + �t + �)Wm

t dt− dCmt +
�a2

t

2
dt− �dCm;�t dt: (D.65)

As dCst and dCmt are not sign-restricted, we can treat W s
t and Wm

t as control variables in the

dynamic optimization problem, while dropping the controls dCst and dCmt . Moreover, as will

become clear later, the exact values of the payments �dCs;�t and �dCm;�t will turn out not to be

relevant for key equilibrium quantities, such as incentives, credit risk, or total surplus.

At any point in time, the monitor chooses effort at to maximize

(
 + �)Wm
t = max

at2[0;�a]

�
�tW

m
t + dCmt + �dCm;�t +

dWt

dt

�
:

Thus, optimal monitoring (if interior) is pinned down by the incentive condition

at =
Wm
t

�
;

provided that monitoring effort at is interior. Next, the screener maximizes at time t = 0:

max
q2[0;�q]

W0 −
�q2

2
;
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As in the baseline version of the model, optimal screening is pinned down by the incentive condition

V0 = �q;

where we define Vt := @
@qW

s
t as the screener’s “screening” incentives. The remainder of the solution,

similar to the baseline, features Vt as the main state variable, and W s
t and Wm

t are control variables

in the dynamic optimization.

Noting that an unobserved change in screening effort does not affect contracted payments, so

that
@dCst
@q =

@dCs;�t
@q = 0, or the monitor’s monitoring effort, so that @at

@q = 0, we can differentiate

the dynamics of W s
t in (D.64) with respect to q to obtain for the screener’s incentives Vt :=

@W s
t

@q :

dVt = (
 + �t + �)Vtdt−W s
t dt: (D.66)

Thus, the screener’s “screening” incentives in integral form read

Vt =

Z 1
t

e�(
+�)(s�t)�
R s
t �uduW s

s ds:

The optimal contracts to both the screener and monitor are designed to dynamically maximize

total surplus Ft. Total surplus Ft can be rewritten (using arguments analogous to the ones that

lead to (B.16)) as

Ft =

Z 1
t

e�(r+�)(s�t)�
R s
t �udu

�
1− �a2

s

2
− (
 − r)(W s

s +Wm
s ) + �F �s

�
ds;

where F �s is the (continuation) surplus “just after” maturity (which occurs at rate �). We will

specify the exact form of F �s below.

As in the baseline version of the model, screening incentives V is the only state variable for the

dynamic optimization problem, while Wm and W s can be treated as control variables. Accordingly,

by the dynamic programming principle, total surplus F (V ) solves the HJB equation

(r + �)F (V ) = max
a;Wm;W s

n
1− �a2

2
− (
 − r)(Wm +W s)− �F (V )

+ �F � + F 0(V )
�
(
 + �+ �)V −W s

�o
: (D.67)

Note that limited liability requires that Wm ∈ [0; F (V ) − W s] and W s ∈ [0; F (V ) − Wm] and

incentive compatibility with respect to monitoring requires that Wm = a�. Throughout, we assume

existence and uniqueness of a solution to (D.67) (subject to a boundary condition specified below).

The maximization with respect to the screener’s deferred compensation W s yields that

W s(V )

8>><>>:
= 0 if F 0(V ) > −(
 − r)
∈ [0; F (V )−Wm(V )] if F 0(V ) = −(
 − r)
= F (V )−Wm(V ) if F 0(V ) < −(
 − r):

(D.68)

As in the baseline, it follows that limt!1 Vt = V B(q), where V B(q) is the level of screening
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