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Abstract

We develop a model in which a startup firm issues tokens to finance a digital platform, which

creates agency conflicts between platform developers and outsiders. We show that token financ-

ing is preferred to equity financing, unless the platform expects strong cash flows or faces severe

financing needs and large agency conflicts. Tokens are characterized by their utility features,

facilitating transactions, and security features, granting cash flow rights. While security features

trigger endogenous network effects and spur platform adoption, they also dilute developers’ eq-

uity stake and incentives so that the optimal level of security features decreases with agency

conflicts and financing needs.
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1 Introduction

Initial coin offerings (ICOs) have become an important source of financing for firms that develop

digital platforms (Howell, Niessner, and Yermack, 2019). By the end of 2018, over 5500 firms

had attempted to raise funds using an ICO, raising over 30 billion dollars (Lyandres, Palazzo, and

Rabetti, 2019) and with at least 20 ICOs taking in more than 100 million dollars (Howell et al.,

2019). In an ICO, a firm raises funds by issuing cryptographically secured tokens. Because these

tokens serve as the means of payment on a platform or offer access to the firm’s services, they

possess utility features and are therefore often called utility tokens. Despite the popularity of ICOs

and the considerable growth of the academic literature on this new form of financing, a number of

key questions remain open. Chief among these is whether an ICO should be preferred to alternative

ways of financing, such as financing with equity or with tokens other than utility tokens.

Tokens indeed come in many different forms. Many tokens only possess utility features and

do not have any security features, such as cash flow or dividend rights. This is the case for

example for the tokens issued in the ICOs of Filecoin or Golem. Symmetrically, several tokens—

such as the LDC Crypto token or the BCAP token—do not possess utility features and resemble

traditional securities, except that they are recorded and exchanged on a blockchain. Tokens with

security features are classified by the so-called Howey Test as securities.1 These tokens are called

security tokens and sold in security token offerings (STOs). Remarkably, many tokens exhibit both

utility and security features. For instance, multiple crypto-exchanges—such as Binance, BitMax,

or KuCoin—feature tokens that are used to trade on the exchange and additionally allow token

holders to earn income related to the overall transaction volume.2 Digital banking platforms—such

as Nexo or Bankera—have issued tokens of a similar type. Likewise, cryptocurrencies with proof-of-

stake consensus algorithms—such as NEO, Cardano, or Ethereum after its Casper Protocol—both

facilitate transactions and generate income to token holders.3

This paper develops a unifying model that nests these different types of tokens and studies the

optimal token design in the presence of frictions that generally prevail in firms developing digital

platforms, such as the need to raise outside funds to finance platform development and the ensuing

1According to the Howey test, an investment contract is a security if the following four conditions hold: 1) it is
an investment of money, 2) in a common enterprise, 3) with an expectation of profit, 4) with profit generated by a
third party. Conditions 1 and 2 are typically satisfied for any type of token offering. Conditions 3 and 4 are satisfied
for example if the token distributes dividends.

2While Binance distributes profits to token holders through buybacks (i.e., token burning), KuCoin and BitMax
explicitly pay dividends to token holders. In addition, transacting with the native exchange token offers fee discounts.

3Token holders are rewarded for staking (i.e., holding) tokens. Ethereum will switch to a proof-of-stake consensus
algorithm after the so-called Casper Protocol (Buterin and Griffith, 2017) is implemented.
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agency conflicts between insiders (platform developers) and outsiders. Specifically, we develop a

model in which a startup firm, owned by penniless developers, builds a platform that facilitates

P2P transactions among users. As in Cong, Li, and Wang (2020b,c), the platform features network

effects that imply complementarities in users’ endogenous adoption and transaction decisions. In

addition, the platform generates cash flows that increase in the level of platform adoption (i.e., the

platform transaction volume) and arise, e.g., from transaction fees, advertisement proceeds, and/or

from utilizing transaction data.

Entities conducting token offerings tend to have unproven business models and are most often

in the pre-product stage (Howell et al., 2019). To capture these key features, we consider that

the platform is initially not fully developed and that the startup firm has financing needs in that

developers lack the funds to finance platform development. To raise the necessary funds, the startup

can issue equity and/or tokens that may serve as the transaction medium on the platform and thus

may exhibit utility features. These tokens may also exhibit security features, in that they may pay

dividends in relation to platform cash flows. In addition to financing needs, platform development

is subject to moral hazard. Specifically, platform success depends on developers’ hidden effort,

which comes at a cost to developers.

In the model, developers’ revenues stem from selling tokens to platform users and from the

ownership of the startup equity, which is a claim on the cash flows that the platform generates.

Users’ motive to hold tokens and the pricing of tokens reflect both the token utility and security

features, with an equilibrium token price that increases with the level of platform adoption. Token

security features affect users’ platform adoption decisions and, therefore, the value of the platform

and of its native tokens. Because they grant cash flow rights to token holders, security features also

reduce the value of developers’ equity in the startup firm and undermine their incentives, which are

determined by their equity ownership and by the tokens they retain. Crucially, equity and token

incentives not only differ in their strength but also in their relationship with the token design. The

paper solves for the optimal token design in this environment characterized by financing needs and

moral hazard and derives the following main findings.

First, considering the financing problem of a platform that uses tokens as transaction medium,

we demonstrate that issuing tokens to finance the startup generally maximizes both developers’

payoff and the value of the platform. We also show that while token security features trigger

endogenous network effects and spur platform adoption, their provision is affected by moral hazard

and financing needs. Specifically, granting cash flow rights to token holders improves the return

to holding tokens and therefore boosts the platform transaction volume. This, in turn, raises
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the platform’s cash flows, which implies even more transactions and dividends. However, token

security features dilute developers’ equity ownership in the startup firm. Because the incentives

generated by each dollar of equity ownership are stronger than the incentives from a dollar of

token ownership, token security features undermine incentives. As a result, the optimal level

of cash flow rights granted to token holders decreases in the extent of moral hazard. Since the

under-provision of security features reduces platform adoption and value, moral hazard intensifies

financing constraints. Symmetrically, larger financing needs imply that developers retain fewer

tokens, thereby exacerbating the moral hazard problem. Financing needs and moral hazard thus

reinforce each other, leading to low levels of token security features and token retention. We also

show that moral hazard is more severe when network effects are low or the platform development

phase is long, which induces low levels of security features and token retention.

Second, we analyze when issuing a utility token without security features is optimal. That is,

we analyze when developers prefer an initial coin offering over a security token offering. An ICO

is the optimal funding model if the platform value derives from facilitating transactions rather

than from generating cash flows. An ICO is also preferable to a security token offering if financing

needs, agency frictions, or the platform development phase are large. Thus, while the ICO funding

model is often criticized on the basis that many firms have not yet delivered on their product,

our analysis suggests to the contrary that projects with a long development phase are particularly

suitable for conducting an ICO. Moreover, our model implies that startups with innovative business

models, which are particularly prone to moral hazard, optimally raise funds via ICOs, consistent

with Fahlenbrach and Frattaroli (2019) or Howell et al. (2019).

Third, we examine when using fiat money as the platform transaction medium and issuing

equity to finance platform development is optimal. Ceteris paribus, the ability to transact with

fiat money reduces the cost of transacting for users and increases both the transaction volume and

platform earnings. Intuitively, users are more willing to transact with fiat money as they do not

bear crypto-related transaction costs. However, issuing tokens without utility features (or security

tokens that resemble conventional equity) may constrain developers’ ability to raise funds and harm

platform success, notably, when platform value mostly comes from facilitating transactions among

users. Financing platform development with equity is therefore only optimal if platform cash flows

are expected to be large or if network effects are strong. For firms without very high cash flows (or

very strong network effects), the platform is generally optimally financed with tokens, unless moral

hazard is severe or financing needs are large.

Fourth, we study the asset pricing implications of token utility and security features. We show
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that while token security features spur platform adoption, they also amplify token price volatility.

The reason is that security features generate endogenous network effects that increase the sensitivity

of platform adoption to productivity shocks. This boosts the token price volatility because the token

derives its value from the level of platform adoption. The effects of security features on the token

price volatility are larger when the token possesses more utility features or when network effects

are stronger. Thus, according to our model, the combination of token utility and security features

should cause particularly volatile token prices.

Finally, we study various extensions of the model, in particular the relation between optimal

platform financing and adverse selection. We demonstrate that adverse selection has ambiguous

effects on the provision of token security features, depending on whether a separating or pooling

equilibrium prevails. In a separating equilibrium, in which different types of platforms are financed

with different types of tokens and ICOs and STOs coexist, adverse selection increases the provision

of token security features by high-quality platforms, implying a positive relation between the pro-

vision of security features and the ex post value of platforms or the likelihood of platform success.

In a pooling equilibrium in which all platforms are financed with the same tokens, adverse selection

decreases the provision of token security features.

Our work is related to the literature on blockchain economics, tokenomics, and cryptocurren-

cies. Notable contributions include Athey, Parashkevov, Sarukkai, and Xia (2016), Abadi and

Brunnermeier (2018), Makarov and Schoar (2020), Liu and Tsyvinski (2019), Cong and He (2019),

Cao, Cong, and Yang (2019), Huberman, Leshno, and Moallemi (2019), Biais, Bisiere, Bouvard,

and Casamatta (2019), Cong, He, and Li (2020a), Prat and Walter (2019), Saleh (2019), Pagnotta

(2018), Easley, O’Hara, and Basu (2019), and Hinzen, John, and Saleh (2019). A review of this

rapidly evolving research area is provided by Chen, Cong, and Xiao (2019).

A large subset of this literature focuses on ICOs with many empirical papers studying determi-

nants of ICO success or documenting post-ICO patterns. Important contributions include Howell

et al. (2019), Fahlenbrach and Frattaroli (2019), and Lyandres et al. (2019). Many firms issuing

tokens develop a decentralized platform that promises network effects. Much of the theoretical

literature on ICOs highlights the coordination benefits inherent to utility tokens; see e.g. Li and

Mann (2018), Sockin and Xiong (2018), and Catalini and Gans (2018). Further theories on ICOs

include Chod and Lyandres (2019), Chod, Trichakis, and Yang (2019), Goldstein, Gupta, and Sver-

chkov (2019), Holden and Malani (2019), Lee and Parlour (2018), Lyandres (2019), Malinova and

Park (2017), and Mayer (2020). In contrast to these papers, our model is not limited to utility

tokens but encompasses a richer class of tokens. In addition, we study the effects of financing needs
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and moral hazard on token design, while most research to date takes the token and platform design

as exogenously given. Li and Mann (2019) provide a review of the early literature on ICOs.

Our paper also advances the literature on the economics of platforms. Early contributions in

this literature, such as Rochet and Tirole (2003), do not consider tokens. More recently, important

progress has been made on platform finance with tokens. Notably, Cong et al. (2020c) analyze

the pricing implications of users’ inter-temporal adoption decisions. Cong et al. (2020b) connect

tokenomics to corporate finance, with a focus on optimal token-supply policy to finance investment

in platform quality. While we employ similar modeling of users’ platform adoption decisions, our

paper differs from Cong et al. (2020b,c) in several important dimensions. First, Cong et al. (2020b,c)

do not consider tokens with dividend rights and security features. Second, while Cong et al. (2020b)

features conflicts of interest between users and developers, they abstract from moral hazard and

platform financing needs which are the key frictions we model in this paper.

Finally, our paper also relates to the literature on the optimal design of securities. Seminal

contributions include Townsend (1979), Gale and Hellwig (1985), and Bolton, Scharfstein, et al.

(1990), or, in dynamic settings, DeMarzo and Sannikov (2006) and DeMarzo and Fishman (2007).

Our focus is on the design of tokens and the comparison of tokens with equity financing. A

distinguishing feature of our framework is that platform financing (i.e., the design of tokens) affects

endogenous platform adoption, cash-flows, and firm value, even if there are no frictions. By contrast,

in standard models of security design, such a link between firm value and financing requires frictions

(such as adverse selection, moral hazard, or taxes).

Section 2 presents the model. Section 3 solves for the optimal token design when the platform

uses tokens as transaction medium. Sections 4 analyze the model implications. Section 5 derives

conditions under which equity financing with fiat money as transaction medium is optimal. Section

6 examines the asset pricing implications of token utility and security features. Section 7 investigates

the robustness of our findings to various model extensions. Section 8 summarizes our main testable

predictions. Section 9 concludes. All proofs are gathered in the Appendix.

2 Baseline model

Time is continuous and defined over [0,∞). There are two types of agents: developers and a unit

mass of platform users indexed by i ∈ [0, 1]. All individuals are risk neutral and discount future

payoffs at rate r > 0. Developers run a startup firm that launches a digital platform but lack

the capital to develop it. They obtain funds at time zero by issuing tokens. Tokens serve as the
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transaction medium on the platform. They are in fixed unit supply and possess equilibrium price

Pt. In addition, they are perfectly divisible, reflecting the fact that crypto tokens can generally be

traded in fractional amounts. We conjecture and verify that token-based financing always dominates

equity financing when tokens serve as transaction medium. In particular, developers (optimally)

do not issue outside equity and always own 100% of the startup’s equity.

Platform transactions. The platform allows users to conduct peer-to-peer transactions. As in

Cong et al. (2020b,c), any user i has transaction needs and derives a utility flow

AtN
χ
t

xηit
η

(1)

from a transaction of xit dollars on the platform where η ∈ (0, 1).4 The coefficient At is the platform

productivity, which characterizes the usefulness of the platform. The specification in (1) captures

network effects in that any user’s utility from transacting increases in the volume of platform

transactions Nt. That is, the higher the transaction volume, the easier it is to find a transaction

counter-party and the more valuable it becomes to join the platform. The parameter χ ∈ [0, 1− η)

characterizes the strength of these network effects.

Transacting on the platform is costly. First, any user has to hold xit dollars in tokens (or xit/Pt

tokens) for vdt units of time in order to transact.5 Holding tokens is therefore costly because it

implies a foregone opportunity to invest and earn interest for vdt units of time. The parameter

v > 0 captures potential delays in settlements, in acquiring tokens, or in finding an appropriate

counter-party.6 Second, in addition to these holdings costs, users incur direct costs φxitdt for

a transaction of size xit on the platform, where φ > 0. This direct cost captures for instance

transaction fees charged by miners or crypto-exchanges or a physical cost of platform operation

that is charged to users. This direct cost may also be related to the effort and attention required

for transacting on the platform, as in Cong et al. (2020c).

Cash flows. Once developed, the platform generates cash flows

dDt = µ(At)Ntdt, (2)

4This utility flow can be micro-founded by a random search and matching protocol; see Cong et al. (2020b,c).
5Appendix D provides a micro-foundation for this holding period. Cong et al. (2020b,c) assume that v = 1. When

v = 0, security tokens have no transaction value and resemble conventional equity.
6Because, in practice, blockchain protocol and settlement latency (Easley et al., 2019; Hautsch, Scheuch, and

Voigt, 2019) limit the influence that developers have on v, we treat it as an exogenous parameter. For example,
transactions on the Bitcoin blockchain cannot occur instantaneously since a new block has to be created for the
transaction settlement which takes, on average, 10 minutes.
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where µ(At) with ∂µ(A)
∂A ≥ 0 is the platform cash flow rate. In practice, platforms may generate cash

flows with advertisement proceeds, transaction fees, and/or by selling/using user data. Naturally,

cash flows increase with the transaction volume Nt and platform productivity At as a more useful

platform implies a higher user activity on both the extensive and intensive margins, which in turn

raises the profits that platform operators extract, e.g., by setting (per-transaction) fees or selling

user data. For analytical tractability, we assume that cash flows are linear in the transaction volume

Nt and that there is no direct link between µ(At) and φ in that ∂µ(A)
∂φ = 0. Under this assumption,

the cost φ is a dead-weight loss as in, e.g., Cong et al. (2020c). Section 7 incorporates endogenous

transaction fees charged by platform developers to users and analyzes their effects on token design

and platform adoption and value.

Platform development: Moral hazard and financing. Firms conducting token offerings are

young and most often in the pre-product stage (Howell et al., 2019). To capture this feature, we

consider that the platform is developed over some time period [0, τ) and launched at time τ once a

milestone has been reached. The arrival time of the milestone τ is governed by a Poisson process

Mt with constant intensity Λ, so that over each time interval of length dt there is a probability Λdt

that the platform development is complete and the expected time to development is 1
Λ .

Platform development is subject to moral hazard and financing needs. Moral hazard arises

because platform success depends on developers’ hidden effort at ∈ {0, 1} which comes against a

flow cost κat to developers, with κ ≥ 0.7 Specifically, in case the milestone is reached over the time

interval [t, t+ dt), the platform is successful only if developers exert effort over [t, t+ dt). Formally,

we have that As = 0 for s < τ and

As = AL + (AH −AL)1{aτ=1} (3)

for s ≥ τ , where developers have to choose effort at before the random event dMt ∈ {0, 1} realizes

over [t, t+dt). This modelling of productivity shocks is also employed in, e.g., Board and Meyer-ter

Vehn (2013) and Hoffmann and Pfeil (2019). It follows that moral hazard is severe when the cost of

effort κ or the expected time to development 1/Λ is large. Define µj = µ(Aj) for j ∈ {H,L}. Fig.

1 shows the timing of events over a time interval [t, t + dt). For simplicity, platform productivity

is constant after time τ . We study the implications of productivity shocks arising after time τ in

Section 6 and show that this assumption has no bearing on our key findings.

7Section 7 shows that this setup is isomorphic to a model with cash diversion. We thank the referee for encouraging
us to generalize the model in this direction.
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Time t Time t+ dt

Λdt at Success

1− at

Failure

Effort: at

τ > t+ dt

τ = t+ dt and A = AL

τ = t+ dt and A = AH

1− Λdt

Continuation

Figure 1: Heuristic Timing over [t, t+dt). With probability Λdt platform development is complete.
Platform success depends on developers’ hidden effort at ∈ {0, 1}.

In addition to moral hazard, the startup firm faces financing needs in that platform development

requires investing I > 0 and developers do not have the capital to cover these needs. At inception,

developers thus sell 1−β0 tokens to the market and raise (1−β0)P0 dollars. Funds raised by issuing

tokens must be sufficient to cover the financing needs of the firm, leading to the constraint:

(1− β0)P0 ≥ I. (4)

Funds raised at time zero are optimally invested in platform development or paid out as dividends.

Developers have incentives to exert effort because they hold tokens and own the firm’s equity.

While providing the funds to finance platform development, token issuance also leads to a potential

dilution of developers’ stake in the firm, triggering moral hazard. Notably, developers initially

retain β0 ∈ [0, 1] tokens that are only optimally sold when the milestone is reached at time τ .8

That is, developers sell 1− β0 tokens at time zero and β0 tokens at time τ . We emphasize that we

do not restrict developers to this particular token trading behavior. Because the only productivity

shock realizes at time τ and developers and users discount at the same rate r, there is simply no

reason to trade at any other time t 6∈ {0, τ}. We therefore denote the developers’ token holdings

βt over [0, τ) by β.

Security features. Besides having utility features by serving as the platform transaction medium,

tokens may also have security features in that they may pay a fraction α ∈ [0, 1] of total cash flows

8Section 7 introduces speculators in the model and convex effort costs and shows that, in this alternative setup,
developers may continuously trade between inception and the milestone. It also shows that this extension has no
other bearings on our results. We thank the referee for encouraging us to generalize the model in this direction.
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dDt to token holders, with the balance (1 − α)dDt being paid out as a dividend to the startup

equity holders. Therefore, even though developers own 100% of the startup’s equity, a token with

α > 0 dilutes their cash flow rights and the value of their equity ownership in the startup.

In summary, token utility features are represented by the convenience yield in (1). Token

security features are captured by the token dividends αdDt. In practice, the Howey test would

classify any token with cash-flow rights as security, so that we refer to tokens with α > 0 as security

tokens. Conversely, when α = 0, the token is a utility token and does not possess security features.

That is, our model encompasses initial coin offerings as a special case in which α = 0. There is

an ongoing debate on whether utility tokens are securities. In classifying tokens as securities, our

paper follows recent practice. In particular, tokens without cash flow rights (i.e., with α = 0) are

typically not classified as securities and, therefore, referred to as utility tokens.

Users’ adoption decisions. Before the platform is developed at time τ , tokens do not offer

transaction benefits. Consequently, tokens are fairly priced by ordinary risk-neutral investors/users

implying that expected capital gains, E[dPt], and dividends, E[αdDt], alone offer investors the

required return, rPt dt:

E[dPt + αdDt] = rPt dt for t < τ. (5)

After time τ , the platform is developed and holding xit/Pt tokens over a time period of length

v dt generates additional transaction benefits and costs:

dRit := AtN
χ
t

xηit
η
dt︸ ︷︷ ︸

Convenience
yield

− xitφdt︸ ︷︷ ︸
Transaction

cost

+vxit

(
dPt
Pt︸︷︷︸

Capital
gains

+
αdDt

Pt︸ ︷︷ ︸
Dividend

yield

− r dt︸︷︷︸
Funding

cost

)
. (6)

Eq. (6) shows that by holding tokens and transacting on the platform, users realize both a conve-

nience yield and capital gains. A transaction of size xit comes at an effective cost (vr + φ)xit that

consists of the (funding) costs of holding tokens and the direct transaction costs.

The optimal transaction volume xit for user i maximizes the expected utility flow at each point

in time:

max
xit≥0

E[dRit].

This yields an optimal transaction volume given by

x1−η
it =

AtPtN
χ
t dt

φPtdt+ v
(
rPtdt− E[dPt + αdDt]

) . (7)
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All users i ∈ [0, 1] face the same trade-off when determining their optimal transaction volume. We

thus have Nt =
∫ 1

0 xitdi = xit so that the transaction volume at time t ≥ τ satisfies

Nt =

(
At

vr − vE[dPt + αdDt]/(Ptdt) + φ

) 1
1−ξ

, (8)

where we define for convenience ξ := χ+ η as the transformed network effects parameter. A higher

value of Nt means that each user is more active on the platform. As a result, the transaction

volume Nt captures the degree of platform adoption at time t.

Developers’ problem. Developers choose effort at, their token holdings βt, and the cash flow

rights α attached to tokens. When tokens possess cash flow rights, developers receive 1− α+ βtα

dollars for each dollar of cash flows produced by the firm. Developers can sell their initial allocation

of tokens at the prevailing market price. Accordingly, their optimization problem can be written

as

V0 = max
α,{βt},{at}

E
[∫ ∞

0
e−rt(−Pt dβt + (1− α+ αβt)dDt − κatdt)

]
− I, (9)

subject to the financing constraint (4).

3 Equilibrium and model solution

We study a Markov Perfect Equilibrium.

Definition 1. In a Markov Perfect Equilibrium, the following conditions must be satisfied:

1. All individuals act optimally: Users maximize

wi := max
{xit}

E
[∫ ∞

0
e−rtdRit

]
(10)

and developers solve (9).

2. The token market clears before the milestone in that (5) is satisfied for all t < τ .

3. The token market clears after the milestone in that:

v

Pt

(∫ 1

0
xitdi

)
=
vNt

Pt
≤ 1− βt, (11)

for all t ≥ τ . If and only if the inequality (11) is strict, (5) holds for t ≥ τ .
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The left-hand side in the market clearing condition (11) represents the token demand for trans-

action reasons. The right hand side represents the token supply. The token demand for transaction

reasons is the product of the transaction volume Nt/Pt measured in units of tokens and the duration

of the token holding period v. Intuitively, if v is large, users from previous transaction periods need

to hold tokens in the current period, thereby increasing demand. (Appendix D discusses market

clearing in more detail.) Lastly, if the token demand for transaction reasons is below the token

supply, tokens must be held solely for their dividend rights and their price is determined by (5).

In the following, we solve the model before and after the milestone separately for any choice

of α ∈ [0, 1] and β ∈ [0, 1]. Based on the model solution, we then determine the optimal level of

security features α and the optimal level of token retention β.

3.1 Model solution after the milestone

We solve the model for any outcome j ∈ {H,L}. Since all uncertainty is resolved after time τ , it

follows that all quantities remain constant at levels Xj = Xt for all t ≥ τ for X ∈ {P,N} in that

dPt = 0 for all t ≥ τ . We incorporate uncertainty after time τ in Section 6, where we discuss the

asset pricing implications of token utility and security features.

Because of their utility benefits, tokens are more valuable for users than for developers after

time τ . In addition, there is no moral hazard problem once the platform has been launched. As

a result, there is no value for developers in retaining tokens after time τ . Thus, developers sell all

retained tokens at time τ so that βt = 0 for all t ≥ τ . This implies that the value of developers’

stake in the startup firm at time τ is equal to the value
(1−α)µjNj

r of the startup’s equity, where the

price and transaction levels remain constant at levels Pj and Nj respectively.

Next, we derive the token price. Users may hold tokens for transaction purposes and/or because

of their dividends. If dividends αµNj exceed the funding cost rPj , users hold tokens purely for

investment motives and the token price is given by the present value of its dividend rights:

Pj =
αµjNj

r
.

In this case, the token is priced according to its security features. Otherwise, the token is held for

transaction purposes and priced according to its utility features. In this case, Nj/Pj tokens are held

over a period of length vdt and the effective token demand over a short period of time [t, t+ dt) is

then given by vNτ/Pτ . Token supply for t ≥ τ is given by 1 − βt = 1. Market clearing therefore
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implies that:

Pj = vNj .

Combining the two cases, we obtain that the user base in Eq. (8) simplifies to

Nt = Nj(α) = Nj =

(
Aj

max{0, vr − αµj}+ φ

) 1
1−ξ

(12)

and the token price is given by

Pt = Pj =

v
(

Aj
vr−αµj+φ

) 1
1−ξ

if vr > αµj

αµj
r

(
Aj
φ

) 1
1−ξ

if vr ≤ αµj .
(13)

Equations (12) and (13) reveal that utility features determine the token price if and only if the

opportunity cost vr of holding tokens exceed the token dividend yield αµj . Thus, in our framework,

v and α determine the users’ underlying motive to hold tokens. When v is relatively large compared

to α, users hold tokens over an extended time period mainly for transaction purposes and, therefore,

because of their utility features. By contrast, if v is low compared to α—for instance, when fiat

money can be used as transaction medium on the platform and v = 0—tokens are only held for

their cash flow rights and their price increases with α.

Last, the token price and platform adoption are closely related to the token velocity, defined

as the ratio of the platform’s real transaction value over the token market capitalization. In our

model, it is given by:

velocity :=
Nt

Pt
= min

{
1

v
,

r

αµ(At)

}
.

This equation shows that if the token is priced according to its utility features, token velocity equals

the inverse of the holding period v. Remarkably, security features α > 0 bound the token velocity

from above and so can be useful to address problems associated with high token velocity.9

3.2 Model solution before the milestone

3.2.1 Incentive compatibility

Consider first developers’ incentives to maximize the platform’s transaction value through their

effort choice at. Suppose developers exert effort, so that at = 1. With probability Λdt the milestone

9The token velocity problem is widely discussed among crypto-practicioners (see e.g. https://www.coindesk.

com/blockchain-token-velocity-problem).
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arrives over the next time interval and future platform productivity equals AH so that developers’

payoff at time τ equals:

βPH +
(1− α)µHNH

r
,

which is the sum of the value of the tokens they retain and the present value of future cash flows.

By contrast, if developers shirk and choose at = 0, future platform productivity becomes AL and

their payoff at time τ equals:

βPL +
(1− α)µLNL

r
.

Hence, developers exert effort at any time t < τ (i.e., at = 1) if and only if:

IC(α) := Λ

(
βPH +

(1− α)µHNH

r

)
− κ︸ ︷︷ ︸

Payoff under at=1

−Λ

(
βPL +

(1− α)µLNL

r

)
︸ ︷︷ ︸

Payoff under at=0

≥ 0. (14)

Developers’ incentives to exert effort are driven by the tokens they retain and their equity stake in

the startup firm. Token-based incentives are captured by the retention level β. Equity incentives

are captured by the fraction of the platform cash flows 1− α accruing to the startup’s owners.

3.2.2 Developers’ problem and initial token issuance

Consider next the platform development phase [0, τ). Unless otherwise mentioned, we assume that

platform development costs I are not prohibitively large and that full effort is optimal. In addition,

we set µL = 0 for analytical convenience, so that the platform produces cash flows if and only if

developers exert effort. These assumptions are gathered in the following:

Assumption 1. Exerting effort is efficient in that the project produces cash flows and has positive

net present value (NPV) if and only if at = 1 for all t < τ . Formally, (A.1), (A.2), and (A.3) in

Appendix A have to be met.

When Assumption 1 is satisfied and developers exert effort, we have Pt = PH after the milestone

has been reached. The fair price of the token for risk-neutral users over [0, τ) is then given by:

Pt = P0 =
ΛPH
r + Λ

. (15)

Notably, absent further constraints, developers and users value tokens equally before time τ as they

both apply the same discount rate. However, because a higher retention level β relaxes condition

(14), developers issue the minimal amount of tokens needed to finance platform development. We
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thus have for β = β0:

(1− β)P0 = I ⇐⇒ β = 1− I

P0
. (16)

Developers optimally do not sell tokens over (0, τ) as there are simply no gains from trade, so that

βt = β for t ∈ [0, τ).

Upon reaching the milestone, developers sell all retained tokens β at price PH and further enjoy

the perpetual dividend stream (1−α)NHµH . Hence, their continuation value over (0, τ) conditional

on full effort is:

V (α) =
1

r + Λ

[
Λ

(
βPH +

(1− α)µHNH

r

)
− κ
]

(17)

with β = 1− I
P0

. We can rewrite the value function as:

V (α) =
ΛS(α)− κ
r + Λ

− I, (18)

where

S(α) = PH +
(1− α)µHNH

r
. (19)

Eq. (18) is the net present value of the project to developers, which is given by the value of the

platform net of the investment cost. In this equation, S(α) is the sum of the value of all tokens

in circulation and the value of the startup equity after τ . Therefore, S(α) captures the monetary

platform value after time τ , i.e., the overall surplus in dollar terms. In Eq. (19), PH is the value of

all tokens (i.e., the token market capitalization) while (1− α)µHNH is the dividend flow.

At time zero, developers design the token and choose the optimal level of dividend rights α to

maximize the value they extract from the platform. That is, developers solve

max
α∈[0,1]

V (α) s.t. (14) and (4). (20)

Using Eq. (18), we thus have that developers maximize S(α) subject to the incentive constraint

(14) and the financing constraint (4). We conclude the section by establishing the existence of an

equilibrium with positive adoption.10

Proposition 1 (Equilibrium existence). There exists a Markov-Perfect Equilibrium with positive,

maximal adoption after the milestone in that Nt = NH , ∀t ≥ τ . In this equilibrium:

1. Developers’ value function is given by (18) for t < τ and equals zero for t ≥ τ .

10Note that there are other degenerate equilibria in which no user adopts the platform and the platform and tokens
are worthlesss. Throughout the paper, we do not direct our attention to these degenerate, less interesting equilibria.
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2. Developers sell tokens only at times 0 and τ and the retention level is given by (16) and

βt = 0, ∀t ≥ τ . The optimal level of security features α is characterized by (9).

3. The token price is characterized by (13) for t ≥ τ and by (15) for t < τ .

4 Analysis

4.1 The frictionless benchmark

We start by studying the model without moral hazard. In this frictionless benchmark, the incentive

compatibility constraint (14) becomes irrelevant, and developers choose α to maximize the platform

value S(α). This holds true even if I > 0. The following Proposition demonstrates that, absent

agency conflicts and transaction costs (i.e., for low φ), full dividend rights α = 1 are optimal when

token are priced according to utility features (i.e., when vr ≥ µH). It also shows that an increase

in transaction costs generally reduces the optimal amount of security features.

Proposition 2 (Frictionless benchmark). Define α̂ = min
{

1, vrµH

}
. When there is no moral hazard

(κ = 0), developers maximize S(α) and choose α = ᾱ with ᾱ = arg maxα S(α) satisfying:

ᾱ =


x ∈ [α̂, 1] if max {vr − µH , 0} ≥ (1−ξ)φ−µH

ξ

0 if vr ≤ (1−ξ)φ−µH
ξ

vr
µH

+ 1
ξ −

φ(1−ξ)
ξµH

otherwise.

When ᾱ ≥ α̂, it holds that S′(α) ≥ 0 for α ∈ [0, α̂).

Because developers and users discount at the same rate r, they also value dividends—ceteris

paribus—the same. However, dividends paid to users rather than to developers increase the returns

to holding tokens and spur transaction volume and adoption. This in turn boosts cash flows and,

as a result, dividends to token holders and adoption. That is, security features induce endogenous

network effects via the cash flow channel. Therefore, absent frictions it is optimal to allocate

full cash flow rights to users when token are priced according to utility features and the cost of

transacting on the platform is small and does not represent an impediment to platform development.

Unlike α, the parameter v has ambiguous effects on platform adoption and token prices. An increase

in v raises the cost of transacting for users, hampering platform adoption in that ∂NH
∂v < 0. At

the same time, an increase in v may boost the token price due to the market clearing condition

PH = vNH , which holds when tokens are priced according to utility features (i.e., when vr ≥ µH).
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Throughout, we focus on environments in which the cost of transacting φ is low and the token

is priced according to its utility features. That is, unless otherwise mentioned, we assume that:

Assumption 2. Parameters satisfy

1. vr > µH .

2. vr > (1−ξ)(φ−µH)
ξ .

The first condition ensures that the token is priced according to its utility features (i.e., PH =

vNH). The second condition implies that ᾱ = 1 (see Proposition 2). As we show below, all frictions

drive the level of security features below ᾱ = 1, so this choice can be viewed as a normalization.

4.2 Moral hazard and financing needs

As shown by (20), developers maximize S(α) subject to the incentive constraint (14) and the

financing constraint (4). Since ᾱ = 1, S′(α) ≥ 0 for all α ∈ [0, 1] (see Proposition 2 with ᾱ = α̂ = 1),

and (4) is optimally tight as in (16), developers choose the maximal value α that satisfies the

incentive constraint (14). Therefore, the optimal level of security features α in the tokens issued

by the startup firm is given by:

max
α∈[0,1]

α s.t. IC(α) ≥ 0.

We can now examine how the optimal level of security features α and the token retention level

β depend on moral hazard and financing needs. In the absence of financing needs, i.e., when

I = 0, developers retain all tokens and are therefore able to capture all the monetary proceeds

that the platform generates. As a result, even if κ > 0, there are no agency conflicts in that

developers maximize S(α) and choose α = ᾱ = 1. Conversely, financing needs I > 0 lead to a lower

token retention level β < 1 and give rise to agency conflicts between developers (insiders) and users

(outsiders). These agency conflicts affect the optimal design of tokens and therefore platform value,

which in turn determines the severity of the financing frictions. In the following, we analyze how

moral hazard and financing needs jointly shape the design of tokens and the provision of incentives.

When α < 1 and β > 0, developers have both equity-based incentives and token-based in-

centives. Equity-based incentives primarily relate to platform cash flows. Token-based incentives

primarily relate to platform adoption. Because a higher platform adoption also leads to higher cash

flows, equity-based incentives de facto generate payoff sensitivity to both platform adoption and

cash flows. More formally, observe that for any given α, the value of developers’ equity before time
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τ satisfies

E(A) =
Λ

r + Λ

(1− α)N(A)µ(A)

r

where the second term on the right hand side of this equation represents the value of equity at time

τ . Here, N(A) is the level of platform adoption as a function of A and µ(A)N(A) is the platform’s

cash-flow (also written as function of A). This implies that the incentives (i.e., the sensitivity with

respect to productivity A) generated by a dollar of equity ownership are equal to

dE/dA

E
=

dµ/dA

µ︸ ︷︷ ︸
Cash flow
sensitivity

+
dN/dA

N︸ ︷︷ ︸
Sensitivity
to platform

adoption

, (21)

whereas the incentives from a dollar token ownership — owing to P = vN — are equal to

dP/dA

P
=
dN/dA

N
. (22)

Equations (21) and (22) show that, as long as cash flows increase with platform productivity,

equity incentives are stronger than token-based incentives. Because of their greater strength, equity

incentives are particularly important in firms characterized by severe moral hazard. Therefore,

incentives optimally become more equity-based and less token-based if the cost of effort (i.e., κ),

the expected time to platform development (i.e., 1/Λ), or financing needs (i.e., I) increase. That

is, financing and agency frictions or a long platform development phase lead to an under-provision

of token security features. The provision of equity incentives reduces the token price PH and thus

requires developers to sell more tokens at inception to cover financing costs I, thereby reducing the

token retention level β.

Fig. 2 illustrates these findings by plotting the optimal level of token security features α and

developers’ retention level β as functions of financing needs I, the expected time to platform

development 1/Λ, and agency frictions κ. Input parameter values for this figure are described in

Appendix A. They follow from prior contributions in the literature and imply an optimal retention

level of β = 39% in our base case environment, in line with the average retention level reported in

Fahlenbrach and Frattaroli (2019). The right panels of Fig. 2 demonstrate the effects of agency

and financing frictions on platform adoption when the token is optimally designed; as discussed

above a decrease in security features leads to a decrease in platform adoption.

Remarkably, network effects ξ relax the incentive condition (14). The intuition is that strong
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Figure 2: The effects of financing needs I, moral hazard κ, expected time to platform development
1/Λ, and network effects ξ on token design and platform adoption.
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network effects make developers’ revenues more contingent on platform adoption, thereby aligning

users’ and developers’ incentives. In addition, stronger network effects make it more valuable to

grant dividend rights to token holders as security features lead to higher cash flows to token holders

and boost adoption, which triggers even higher cash flows and adoption. These endogenous network

effects arising from the cash flow channel are amplified by the exogenous network effects ξ. As a

result, stronger network effects imply more token-based incentives, i.e., a higher retention level β,

and less equity incentives 1− α to developers as illustrated by Fig. 2.

Finally, we also demonstrate that it is strictly sub-optimal for developers to raise funds by issuing

equity next to (transaction) tokens. This is for two reasons. First, because equity incentives are

stronger than token incentives, selling equity to outside investors exacerbates moral hazard, which

is costly when either κ, 1/Λ, or I is sufficiently large. Second, while the high cash-flow rights α

attached to tokens spur platform adoption, they also reduce the startup firm’s equity value and

preclude a financing via equity. These two mechanisms make it optimal to bundle transaction

benefits and cash-flow rights in (i.e., attach utility and security features to) one security rather

than offering two securities that deliver dividends and transaction benefits separately.

The following proposition gathers our analytical results.

Proposition 3 (Optimal token financing). The following holds:

1. Optimal token security features are given by α = ᾱ if either κ, 1/Λ, or I is sufficiently small.

2. The optimal level of security features satisfies dα
dI ≤ 0, dα

d(1/Λ) ≤ 0 and dα
dκ ≤ 0, where the

inequalities are strict only if the incentive condition (14) is tight.

3. The optimal token retention level satisfies dβ
dI < 0, dβ

d(1/Λ) > 0 and dβ
dκ ≤ 0, where the latter

inequality is strict only if the incentive condition (14) is tight.

4. If AH > vr+φ, then ∂IC(α)
∂ξ > 0 for any α ∈ [0, 1], dα

dξ ≥ 0, and dβ
dξ > 0. The former inequality

is strictly only if the incentive condition (14) is tight.

5. Raising funds by issuing equity next to tokens is strictly sub-optimal.

4.3 ICO vs. STO: When to include token security features?

In our framework, the token does not exhibit security features when α = 0. In this case, the token

derives its value only from its transaction benefits. Such tokens are generally referred to as utility

tokens and issued in a lightly regulated way by means of an initial coin offering (see Howell et al.,
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2019; Fahlenbrach and Frattaroli, 2019). The following proposition establishes that whether an

ICO is preferred to a security token offering (STO) depends on platform characteristics.

Proposition 4 (ICOs vs. STOs). An initial coin offering (i.e., α = 0) is optimal if µH ≤

(1− ξ)φ− ξvr. A security token offering (i.e., α > 0) is optimal if

1. µH > (1− ξ)φ− ξvr,

2. either κ, 1/Λ, or I is sufficiently small.

The comparison between an ICO and STO can be conducted for a fixed platform value since the

statements in Proposition 4 do not explicitly involve AH . The inequality conditions in Proposition

4 imply that when the platform is expected to generate low (or even negative) cash flows (i.e., for

low µH), the ICO financing model is optimal. In this case, the platform essentially derives its value

from facilitating transactions among users. By contrast, the platform’s ability to generate cash

flows adds value to security token offerings even though the issuance of a security token dilutes

developers’ cash-flow rights. The economic mechanism behind this result is that granting cash-flow

rights to users spurs platform adoption, which is particularly valuable for large µH . Proposition 4

also implies that stronger network effects (i.e., high ξ) favor STOs. This is because cash-flow rights

embedded in security tokens magnify network effects and spur platform adoption even more.

Proposition 4 also demonstrates that financing and agency frictions make STOs less attractive.

This is because an increase in frictions renders equity incentives more valuable, thereby reducing

the value of security tokens relative to utility tokens. Likewise, projects with long expected times

to development are subject to more severe moral hazard and, therefore, are more suitable for ICO

financing. Interestingly, several empirical studies (see, e.g., Howell et al., 2019; Fahlenbrach and

Frattaroli, 2019) report that many ICO financed projects have not yet delivered their promised

product. While this fact is often interpreted as evidence for the failure of the ICO financing

model, our analysis suggests the opposite in that projects with longer expected times to completion

especially benefit from ICO financing.

Fig. 3 illustrates these results. Our baseline parameter values are such that STOs dominate

ICOs. Under severe financing and agency frictions, it may become optimal to issue a pure utility

token via an ICO to avoid diluting developers’ equity stake.
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Figure 3: ICO versus STO. V0 and V ICO
0 represent the developers value under the optimal security

token (α > 0) and utility token (α = 0), respectively.

5 Equity vs. tokens: When to include token utility features?

We have worked so far under the assumption that tokens serve as the platform transaction medium.

Instead, platform developers can decide to use fiat money as transaction medium. Doing so removes

utility features from tokens. It also eliminates the token holding period vdt, thereby reducing users’

effective transaction costs. When v = 0, the adoption level and token price satisfy

NH =

(
AH
φ

) 1
1−ξ

and PH =
αµHNH

r
,

which shows that using fiat money as transaction medium potentially spurs adoption and that this

effect is stronger when platform network effects are stronger.

Without token utility features, the token price is the present value of the dividend stream to

token holders and the token essentially represents an equity claim. This implies that token and

equity incentives are equivalent so that the choice of α becomes irrelevant. The overall surplus is

then given by:

S(α) = PH +
(1− α)µHNH

r
=
µHNH

r
,

which is just the platform expected dividend stream and is independent of the choice of α. In the

analysis below, we examine when equity financing (in combination with fiat money as transaction

medium) dominates token financing (in combination with tokens as transaction medium).

In general, platform developers can choose between attaching utility features to tokens, i.e.,

setting v∗ = v, or omitting them, i.e., setting v∗ = 0, where the parameter v is given and exogenously
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fixed, e.g., due to technological constraints. As a result, developers’ optimization problem reads

V0 = max
α,v∗∈{0,v},{βt},{at}

E
[∫ ∞

0
e−rt(−Pt dβt + (1− α+ αβt)dDt − κatdt)

]
− I. (23)

Proposition 5 derives conditions under which equity financing is optimal.

Proposition 5 (Optimality of equity financing). Issuing equity to finance platform development

and using fiat money instead of tokens as platform transaction medium is optimal if and only if

µH
vr
≥
(

φ

vr − µH + φ

) 1
1−ξ

, (24)

and always leads to a higher level of adoption. Otherwise, a token-based platform is optimal.

Condition (24) is satisfied if v or ξ are sufficiently large or if µH ∈ [φ(1 − ξ), vr) is sufficiently

large. A token-based platform is optimal if

1. Condition (24) is not satisfied,

2. either κ, 1/Λ, or I is sufficiently small.

Proposition 5 shows that token financing is optimal if network effects or platform cash flows

are not very high. In these instances, the issuance of a token that serves as a platform transaction

medium allows developers to raise more funds, which mitigates financing frictions and contributes

to platform success. Conversely, a token without utility features is optimal only if the platform cash

flows are high. In this case, the startup uses fiat money as a transaction medium and is financed

with equity. If, in addition, network effects are strong, reducing transaction costs by allowing

users to transact with fiat money boosts adoption. As expected, using fiat money as a transaction

medium becomes also optimal if the cost v of transacting with tokens is large.11

Issuing equity to finance platform development and using fiat money as a transaction medium

rather than tokens with utility features can be optimal for firms with lower cash flows if financing

needs are large and agency frictions are severe. To understand this finding, note that a fiat-based

platform implies that developers’ value fully stems from their equity ownership in the startup firm.

Hence, developers’ incentives are equity-based and therefore stronger, which is particularly valuable

if financing needs are large and moral hazard is severe. In line with this reasoning, equity financing

(or a token without utility features) is preferred for large values of κ, 1/Λ, or I.

11Blockchain-based tokens may offer some transaction benefits over fiat money. These could be related to security,
privacy, or reliability. Remarkably, in our model, tokens can become optimal even under the assumption that cash
carries strictly lower transaction costs.
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Figure 4: Token-financing versus equity financing. The figure plots the optimal financing strategy
for platform developers for different combinations of cash flows µH and agency frictions κ (left
panel) or financing needs I (right panel).

Fig. 4 illustrates these findings by plotting the optimal financing choice of the platform for

different levels of cash flows and frictions. In both panels, the platform has negative NPV for

combinations of parameter values below the solid black line, so that it cannot be financed. In both

panels equity financing is always preferred when cash flows are very high (area above the dashed

red line). For firms without high cash flows, the platform is generally financed with tokens unless

frictions (moral hazard κ or financing needs I) are very high, in which case it is financed with

equity (top right corner). As frictions decrease, financing with tokens becomes optimal. Financing

with tokens can even be optimal for platforms that do not generate cash flows (or very low cash

flows) if the value of the transactions conducted by users is sufficiently large (bottom left corner).

Finally, according to Proposition 3, it is not optimal to raise funds by issuing equity next to

tokens when the latter are used as transaction medium. According to Proposition 5, it can be

optimal to issue equity instead of tokens to finance platform development and use fiat money as

platform transaction medium. As a result, financing with a mix of equity and tokens is not optimal,

in that the startup firm optimally finances platform development by issuing either tokens or equity.

6 Productivity shocks and token price volatility

We now allow for uncertainty after the milestone by introducing persistent productivity shocks

that are not affected by developers’ actions. Importantly, the introduction of productivity shocks

after time τ does not qualitatively affect developers’ decisions before time τ , in that the results
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Figure 5: Productivity shocks over [t, t+ dt). The branches of the tree contain the probabilities of
the respective random event over [t, t+ dt).

derived above continue to hold (see Appendix C.2). Our focus in this section is therefore on the

asset pricing implications of token utility and security features rather than on developers’ problem.

We introduce productivity shocks by assuming that for t ≥ τ and Ā ∈ {AL, AH}, platform

productivity is given by

At = Ā+ εt, with εt ∈ {εB, εG} and Ā+ εB ≥ 0 and εG ≥ εB.

Productivity shocks are as follows. If ε = εG, the platform is subject to a negative productivity

shocks dA = εB − εG over dt with probability ρdt. Likewise, if ε = εB, the platform experiences a

positive shock dA = εG − εB with probability ρdt. Consequently, the volatility of the productivity

shocks, i.e. fundamental volatility, is given by εG − εB. We emphasize that productivity shocks,

unlike Ā, are purely random and not affected by developers’ actions.

In general, there are many benefits to having a stable transaction medium (Doepke and Schnei-

der, 2017). For instance, price fluctuations expose transacting users to risks during the transaction

settlement period and lead to a drop in users’ transaction activities. Excessive price volatility is

thus likely to hamper platform adoption. This implies that platform projects should aim for a

relatively stable token price and so should try to limit price fluctuations and therefore volatility.

6.1 Solution

We characterize the equilibrium token pricing after time τ for a given At = Ā. Formally, we have

to derive the state-dependent adoption levels NG and NB and token prices PG and PB. With

productivity shocks, the platform produces state contingent cash-flows dDi = µ(Ā + εi)Nidt for
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i = G,B, with µ′(·) ≥ 0. Using the same steps as above shows that adoption satisfies at time t ≥ τ :

Nt = Ni =

(
Ā+ εi

φ+ vmax{0, r − E[dPi + αdDi]/[Pidt]}

) 1
1−ξ

, for i = G,B. (25)

Let us next solve for the token price. Assume first that utility features price the token in both

states i = G,B so that Pi = vNi. This is the case when E[dPi + αdDi] < rPidt in both states

i = G,B, i.e., when the expected returns to holding tokens are lower than r. Using Eq. (25) and

EdPG = ρ(PB − PG)dt, EdPB = ρ(PG − PB)dt as well as dDi = µ(Ā+ εi)Nidt, we can solve for

Pt =

PG = v
(

Ā+εG
φ+vr−αµ(Ā+εG)−vρ(PB/PG−1)

) 1
1−ξ

, if εt = εG

PB = v
(

Ā+εB
φ+vr−αµ(Ā+εB)−vρ(PG/PB−1)

) 1
1−ξ

, if εt = εB.

(26)

Assume next that token security features pin down the token price in both states G,B. In this

case, E[dPi+αdDi] = rPidt for i = G,B and we can use Ni =
(
Ā+εi
φ

) 1
1−ξ

and dDi = µ(Ā+εi)Nidt

for i = G,B to solve for the token price as

Pt =


PG = 1

r+ρ

(
αµ(Ā+ εG)

(
Ā+εG
φ

) 1
1−ξ

+ ρPB

)
, if εt = εG

PB = 1
r+ρ

(
αµ(Ā+ εB)

(
Ā+εB
φ

) 1
1−ξ

+ ρPG

)
, if εt = εB.

(27)

In general, the token prices PG and PB are not available in closed form, unless one considers the

limit case maxA |µ′(A)| → 0 and ξ → 0; see Proposition 6 below.12 For parsimony, we do not

discuss the case in which the token is priced according to its utility features in one state and its

security features in another state.

6.2 Token price volatility: The role of utility and security features

Our objective is to characterize the effects of utility and security features on token price volatility.

In the following, we analyze token price volatility both in absolute terms, that is, σ := PG − PB,

and scaled by the average (steady-state) token price P = PH+PL
2 , that is σ̄ := σ

P
.13

First, consider that token utility features pin down the token price in that the token derives its

12While ξ → 0 precludes network effects arising from specification (1), our model still features endogenous network
effects in that a higher adoption level Nt leads to higher cash flows and dividends, which in turn increases Nt.

13Note that by our specification of productivity shocks, the system spends on average equal time in both states, so
that the expected long-run price is just the equally-weighted average of PG and PB .
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price from the level of adoption and Nt = vPt. For maxA |µ′(A)| → 0 and ξ → 0, we have that

σ ' v(εG − εB)

v(r + 2ρ)− αµH + φ
,

σ̄ ' 2 (εG − εB) (vr − αµH + φ)

(2AH + εG + εB) (v(r + 2ρ)− αµH + φ)

Naturally, volatility increases with fundamental volatility εG − εB. More interestingly, security

features α amplify rather than curb the volatility. The reason is that higher security features imply

stronger endogenous network effects. These network effects increase the sensitivity of platform

adoption to productivity shocks. This boosts the token price volatility because the token derives

its value from the level of platform adoption. Due to the endogenous network effects, volatility

σ and scaled volatility σ̄ are increasing and convex in α. In sum, network effects induced by

token security features spur adoption at the cost of an increased price volatility. While closed-form

expressions for the token price volatility are only available for maxA |µ′(A)| → 0 and ξ → 0, Fig. 6

numerically shows that the above findings also hold for our baseline environment for which µ′(·) > 0

and ξ > 0.

Second, consider that the token is priced according to its security features in both states G and

B, which is the case when v is sufficiently small. In this case, using (27), one can calculate that

σ =
α

r + 2ρ

(
µ(Ā+ εG)

(
Ā+ εG
φ

) 1
1−ξ
− µ(Ā+ εL)

(
Ā+ εL
φ

) 1
1−ξ
)
,

σ̄ =
2r

r + 2ρ

µ(Ā+ εG)
(
Ā+εG
φ

) 1
1−ξ − µ(Ā+ εL)

(
Ā+εL
φ

) 1
1−ξ

µ(Ā+ εG)
(
Ā+εG
φ

) 1
1−ξ

+ µ(Ā+ εL)
(
Ā+εL
φ

) 1
1−ξ

 .

That is, when the token is priced according to its security features, token price volatility σ is

linear in α, and therefore less sensitive to the provision of security features, while scaled volatility

σ̄ is independent of α. This holds also true for ξ > 0 and µ′(A) > 0. The reason for this lower

sensitivity is that dividends do not generate network effects if the token is priced according to its

security features. Overall, our results highlight that the combination of token utility and security

features leads to especially high token price volatility.

The following proposition summarizes our analytical results.

Proposition 6 (Token price volatility). The following holds:

1. Consider the limiting case, maxA |µ′(A)| → 0 and ξ → 0. If the token is priced according to
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Figure 6: Token price and volatility as functions of α in our base case environment with ξ > 0 and
µ′(A) > 0 and the baseline parameters. We pick µ(A) = µ̄Aω, with µ̄ = 0.025 and ω = 10. σ̄ is the
volatility σ, divided by the steady-state token price 0.5(PG +PB). The shocks are characterized by
εG = −εB = 0.1 and ρ = 0.1.

its utility features in both states G and B, then σ and σ̄ are increasing and convex in α.

2. If the token is priced according to its security features in both states G and B, then σ is

linearly increasing in α and σ̄ is independent of α.

7 Model extensions

7.1 Cash diversion

Appendix E modifies our baseline model by considering that developers can secretly divert cash

and receive per dollar diverted λ ∈ [0, 1] dollars (in this extension effort choice is thus replaced

by diversion). As in the baseline model, platform cash flows are observable after time τ and there

is no moral hazard problem once the milestone is reached. We show in this Appendix that the

incentive compatibility constraint ensuring that developers do not divert funds is similar to that of

the baseline model. For λ ≡ κ(r+Λ)
I , this model variant is in fact isomorphic to the baseline model.

7.2 Adverse selection

Appendix F extends our baseline model to incorporate adverse selection. We consider in this

Appendix that there exist two types of firms (platforms): a good platform, as described in the

baseline version of the model, and a bad platform whose productivity after the milestone equals At =

AL with µt = µL with certainty. Both platforms require an initial investment of I. The platform

is good with exogenous probability π ∈ [0, 1]. Developers are privately informed about platform

quality. Token investors only know the probability π that a platform is good. We demonstrate that
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because the bad type firm has negative NPV in the baseline model (under Assumption 1), there

does not exist a separating equilibrium in our baseline environment where Assumption 1 is satisfied.

The reason is that in a separating equilibrium, the bad type firm would not receive financing and

thus would realize zero payoff, while mimicking the good type yields positive payoff.

Appendix F then studies the (unique) pooling equilibrium and shows that introducing adverse

selection has no qualitative bearing on the model predictions regarding the effects of financing

needs (I), cost of effort (κ), or expected time to platform development (1/Λ) on the optimal

level of retention (β) and token security features (α). The main effect of adverse selection is to

quantitatively reduce the level of security features attached to tokens (of a good type platform).

Indeed, in a pooling equilibrium, developers of a good type firm have to sell more tokens to cover

initial financing needs, due to the decrease in the token price relative to the perfect information case,

leading to lower token retention β and to greater moral hazard. To maintain incentive compatibility,

developers must in turn possess more equity incentives, which requires granting lower cash-flow

rights to token holders.

To make the analysis complete, Appendix F relaxes Assumption 1 by considering environments

in which bad type platforms have positive NPV. In this case, there may exist a separating equi-

librium, in which token security features signal platform quality. Indeed, according to Proposition

2, attaching security features to tokens is only optimal if platform productivity and cash flows

are sufficiently large. Thus, attaching security features to tokens is optimal for good type firms

yet costly for bad type firms, facilitating a separating equilibrium. Such a separating equilibrium

exists when financing needs (I) are sufficiently low, network effects (ξ) are large, when transaction

frictions (v) are high, or when the platform cash flow rate is high. By contrast, sufficiently high

costs of effort κ or a sufficiently long time to project completion 1/Λ preclude the existence of the

separating equilibrium.14 That is, token security features signal good platform quality but their

ability to do so crucially depends on platform characteristics and the severity of moral hazard.

Moreover, in a separating equilibrium, adverse selection may boost the provision of token se-

curity features, while increasing initial token retention by developers. The reason is that a good

type firm signals platform quality by attaching more security features to tokens, thereby increasing

the token price at time zero. Consequently, the developers of a good type firm sell fewer tokens to

cover initial financing needs I.

In summary, the model implies that adverse selection has an ambiguous effects on the provision

14When κ or 1/Λ is large, exerting effort is no longer efficient and the good type prefers to mimic the bad type.
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of token security features, depending on whether a separating or pooling equilibrium prevails. In

a separating equilibrium, in which different types of platforms are financed with different types

of tokens and ICOs and STOs coexist, adverse selection increases the provision of token security

features. In a pooling equilibrium in which all platforms are financed with the same tokens, adverse

selection decreases the provision of token security features.

7.3 Endogenous transaction fees

Appendix G extends the model by allowing developers to charge an endogenous fee f > 0 to users

for transacting on the platform. This fee increases users’ direct cost of transacting to f + φ and

changes platform cash flows (µ(At) + f)Nt directly via f and indirectly via Nt. We consider two

cases depending on developers’ ability to commit to a fee structure. In the main case discussed

here, developers cannot commit.

Without commitment, the optimal dynamic fee f maximizes at each point in time the dividends

accruing to developers (1 − α + βα)(µH + f)NH and therefore maximizes platform cash flows

(µH + f)NH . The optimal dynamic fee depends on whether the token utility or security features

pin down the token price. Moreover, the optimal fee follows a hump-shaped pattern in α. Thus

optimal fees are the lowest when tokens have either minimum or maximum utility features with

α = 0 or α = 1, respectively. This has a bearing on the optimal level of security features. As we

show, the optimal tokens with endogenous transaction fees have either low or maximum security

features, depending on some platform characteristics, but intermediate values of α are always

suboptimal. In this context, the issuance of a utility token (i.e., α = 0) or a token with heavy cash

flow rights can be viewed as a commitment device not to charge high fees in the future, which is

particularly useful in the presence of commitment problems to future fees.

Interestingly, the optimal transaction fee f can be negative. In this case, the startup firm

subsidizes the user base to accelerate platform adoption. In practice, such subsidies are commonly

employed by large technology firms. For instance, Alibaba implemented in 2019 a reward scheme

providing subsidies to attract developers to its various platforms (Chod et al., 2019). Similarly,

Uber is planning to offer financial services, including loans to drivers at favorable rates. We show in

the appendix that subsidies to the user base are more likely if the platform is financed with utility

tokens or if network effects ξ are strong. In addition, subsidies are only optimal if the platform

generates enough revenues µH to finance these subsidies. Finally, subsidies are more likely if the

blockchain technology facilitates commitment. The reason is that with commitment, developers set
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fees with more focus on platform adoption instead of only on instantaneous cash flows.

7.4 Dynamic trading

Appendix H extends the model by considering the role of speculators. Because speculators are

financially less constrained or more diversified than users and developers, their presence creates

gains from trade, so that developers benefit from selling tokens to speculators. As developers cannot

commit their token trading strategy, trading opportunities can potentially undermine developers

incentives for platform development. To ensure smooth trading patterns, we introduce convex costs

of effort for developers.

As in the baseline model, retained tokens β provide incentives. However, the presence of gains

from trade makes developers to gradually sell their tokens throughout the development phase so

that β smoothly decreases. As developers cannot commit to keeping tokens, they sell tokens and

decrease the token price up to the point that they become marginally indifferent between buying and

selling tokens. Consequently, all gains from trade are in equilibrium dissipated by the subsequent

rise in agency costs. Appendix H shows how dynamic trading affects the amount of initial retained

tokens β and the rate of security features α. We also demonstrate that the main predictions of the

baseline model are robust to this extension.

7.5 Flow costs of platform development

Appendix I presents a model variant in which platform development requires operating (monetary)

flow costs instead of an initial lump sum cost I at time zero. To raise funds to cover these flow

costs, developers dynamically sell tokens to the market, reducing their token retention level and

incentives.15 As a result, the model variant of Appendix I features similar forces at work and

trade-offs as the model variant of Appendix H.

8 Predictions

Our paper provides several new empirical predictions related to platform financing and token design.

In the following, we summarize our main predictions.

15We assume in this Appendix that there are no exogenous costs of selling tokens and raising funds. Introducing
fixed costs of raising funds (similar to those in, e.g., Bolton, Chen, and Wang, 2011; Hugonnier, Malamud, and
Morellec, 2015) would lead firms to retain cash and would add an additional state variable to the dynamic optimization
problem of platform developers.
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Prediction 1: Using fiat money as the platform transaction medium and equity financing is only

optimal for platforms that expect high cash flows or strong network effects. For firms without high

cash flows and strong network effects (i.e., for which transaction benefits are more important as

a source of platform value), using tokens as transaction medium and token financing is optimal,

unless moral hazard is severe or financing needs are large.

This first prediction follows from Proposition 5 and relates to the optimal form of financing.

According to this prediction, only platforms where expected cash flows are large (as a fraction of

total platform value) should finance platform development with equity issues. Two additional key

determinants of optimal financing are moral hazard, which is positively related to the expected

time to platform completion, and the cost of developing the platform.

Prediction 2: For firms relying on token financing, ICOs are expected to be more prevalent for

platforms whose value comes mostly from facilitating transactions among users while STOs are

expected to be more prevalent for platforms whose value comes mostly from generating cash flows.

This second prediction follows from Proposition 4 and shows that when using token financing

the relative importance of cash flows versus transaction benefits is a key driver of token design.

Prediction 3: For firms relying on token financing, token security features and developers’ reten-

tion levels should decrease with the severity of moral hazard and the level of financing needs.

The third prediction follows from Proposition 3 and underlines the importance of frictions

in token design. Notably, because the incentives generated by each dollar of equity ownership are

stronger than the incentives from a dollar of token ownership (and equity incentives are undermined

by token security features), the level of security features in tokens should decrease with financing

needs and moral hazard.

Prediction 4: When different types of platforms are financed with different types of tokens and

ICOs and STOs coexist, adverse selection increases the provision of token security features and the

likelihood of platform success increases with token security features.

The fourth prediction follows the analysis of the effects of adverse selection on token design.

Our model predicts that in environments characterized by more informational asymmetries, e.g.,

with less developed white papers or without code development on open source platforms, token

security features should be more prevalent. It also predicts a positive relation between the ex post

value of platforms or the likelihood of platform success and the level of token security features.

Prediction 5: Token price volatility is increasing in security features.
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This last prediction follows from Proposition 6 and derives from the fact that security features

generate endogenous network effects that increase the sensitivity of platform adoption to produc-

tivity shocks, thereby increasing volatility.

9 Conclusion

We study a model in which a startup firm run by developers launches a digital platform. To

finance platform development, developers issue tokens that serve as the transaction medium on the

platform and thus possess utility features. Tokens may additionally possess cash flow rights and,

thus, security features. In the model, platform development is subject to financing needs and moral

hazard. This unified model allows us to identify the costs and benefits of various token designs

used in practice to finance startup firms.

We show that dividend rights granted to token holders spur platform adoption but dilute de-

velopers’ equity stake and therefore undermine incentives. As a result, an increase in financing

needs or in agency frictions leads to a decrease in token security features. The model also derives

conditions under which different types of financing modes are optimal. Specifically, a security to-

ken offering or an initial coin offering always dominates traditional equity financing when tokens

serve as the transaction medium on the platform. By contrast, whether a security token offering

is preferred to an initial coin offering crucially depends on platform and startup characteristics,

notably the ability to generate cash flows in addition to facilitating transactions among users.

We also examine when using fiat money as the platform transaction medium and issuing equity

to finance platform development is optimal. We find that financing platform development with

equity is only optimal if platform cash flows are expected to be large or if network effects are strong.

For firms without very high cash flows (or very strong network effects), the platform is generally

optimally financed with tokens, unless moral hazard is severe (due e.g., to a long development

phase) or financing needs are large.

Finally, we derive additional results by studying various extensions of the model. For instance,

we consider the relation between optimal platform financing and platform transaction fees or adverse

selection. Notably, we show that the issuance of a pure utility token can be viewed as a commitment

device not to charge high transaction fees in the future. In addition, in environments characterized

by informational asymmetries, token security features may signal good platform quality and thus

may help to distinguish good token offering from bad ones.
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Appendix

A Discussion of parametric assumptions

Parameter conditions for the analytical solution. We give explicit parameter conditions for
Assumption 1, which hold throughout unless otherwise mentioned.

1. We assume that platform development costs I are not excessive and that developers can raise
I dollars by issuing tokens, in that

I < v

(
Λ

r + Λ

)(
AH

vr + φ

) 1
1−ξ

. (A.1)

Condition (A.1) ensures that (16) admits a positive solution, β0 > 0, and thus facilitates
financing.

2. We assume the project has positive net present value (NPV) when full effort is exerted and
token security features are chosen optimally, in that there exists α ∈ [0, 1] with

Λ

(
PH +

(1− α)µHNH

r

)
> (r + Λ)I + κ. (A.2)

3. We assume that the project has negative NPV when no effort is exerted, in that

Λ

(
PL +

(1− α)µLNL

r

)
≤ (r + Λ)I (A.3)

for any α ∈ [0, 1].

Note that conditions (A.2) and (A.3) jointly imply that Λ
(
PH + (1−α)µHNH

r − PL − (1−α)µLNL
r

)
>

κ for some α, meaning that exerting effort is efficient. Also recall that µL = 0.

Parameters for the numerical analysis. As in Cong et al. (2020b), we set the discount rate
to r = 0.05, the velocity parameters to v = 1, and the network effects parameter to χ = 0.125. The
parameter η is set to η = 0.375 implying that ξ = 0.5. Interpreting one unit of time as one year,
we set Λ = 1 implying that developers retain tokens for about one year (because the average time
to milestone equals 1/Λ). This is consistent with the findings of Fahlenbrach and Frattaroli (2019)
who report that the weighted-average lock-up period for tokens is about one year. We normalize
AH = 1. In fact, the absolute value of AH is not particularly important; instead, its relationship
with AL matters. The value AL is set to AL = 0.55.

The function µ(A) is such that µL = µ(AL) = 0 and µH = µ(AH) = 0.025, ensuring that
µH < vr as stipulated by Assumption 1. We pick φ = 0.075 in order to normalize NH in the
frictionless case to NH = 100. This is convenient because any value N can be interpreted in
percentage terms of the adoption level NH in the frictionless benchmark. Notably, φ = 0.075 also
satisfies Assumption 1.

We choose I in order to match the sample average of token retention levels for ICOs. Specifically,
we set I = 58, which implies in the frictionless benchmark the retention level β = 39%, the average
token retention level reported for ICOs by Fahlenbrach and Frattaroli (2019). The effort cost κ is
varied and chosen so as to generate the desired tensions. We set κ = 33.33, which is 33.33% of the
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token price in the frictionless benchmark. This way we capture the high degree of agency problems
and agency costs prevailing in this market (Howell et al., 2019; Fahlenbrach and Frattaroli, 2019).

When we vary κ and I, we make sure that Assumption 1 is satisfied. This implies κ < 34.15
and I < 59.5. A similar constraint applies to ξ and v. When we vary v, we employ a lower level of
φ = 0.0735 in order to satisfy Assumption 1 across the whole range of values of v considered. We
emphasize that our results are robust across various choices of parameter values.

B Omitted proofs

B.1 Auxiliary results

We state the following two auxiliary lemmata.

Lemma 1. Define α̂ = min{1, vrµH }. It holds that

ᾱ = arg max
α

S(α) =


x ∈ [α̂, 1] if max{vr − µH , 0} ≥ (1−ξ)φ−µH

ξ

0 if vr ≤ (1−ξ)φ−µH
ξ

vr
µH

+ 1
ξ −

φ(1−ξ)
ξµH

otherwise.

with S(α) = PH + (1−α)µHNH
r and NH =

(
AH

vr−αµH+φ

) 1
1−ξ

. When ᾱ ≥ α̂, S′(α) > 0 for α ∈ [0, α̂).

Proof. Recall that α̂ = min{1, vrµH } and NH =
(

AH
max{0,vr−αµH}+φ

) 1
1−ξ

. First, note that for all

α ∈ (α̂, 1], we have by (13) that PH = αµHNH
r and thus S(α) = µHNH

r with NH =
(
AH
φ

) 1
1−ξ

.

Hence, S(α) does not depend on α for α > α̂ (i.e., S′(α) = 0 for α > α̂).

Second, define ε := 1/(1− ξ) ≥ 1 and calculate for α < α̂ (in which case PH = vNH)

S′(α) = ε

(
v +

(1− α)µH
r

)
NH

µH
vr − µHα+ φ

− µH
r
NH

∝ ε (vr + (1− α)µH)
µH

vr − µHα+ φ
− µH ∝ εvr + ε(1− α)µH − vr + µHα− φ

= v(ε− 1)r + εµH − α(ε− 1)µH − φ ∝ vr +
µH
ξ
− αµH −

(1− ξ)φ
ξ

.

It follows that S′(α) has at most one root on (0, α̂). If α = ᾱ ∈ (0, α̂), then the optimal α = ᾱ

solves the FOC S′(ᾱ) = 0, so ᾱ = vr
µH

+ 1
ξ −

φ(1−ξ)
ξµH

.

Next, if S′(0) ≤ 0, then S′(α) < 0 for all α < 0, hence α = ᾱ = 0 is optimal if S′(0) ≤ 0.
Observe that

S′(0) ≤ 0⇐⇒ vr

µH
+

1

ξ
− (1− ξ)φ

ξµH
≤ 0.

The above inequality condition is equivalent to vr ≤ (1−ξ)φ−µH
ξ .

Last, if S′(α̂) ≥ 0, then S′(α) > 0 for all α < α̂, so α = ᾱ ∈ [α̂, 1] is optimal. Observe that

S′(α̂) ≥ 0⇐⇒ vr − α̂µH +
µH
ξ
− (1− ξ)φ

ξ
≥ 0. (B.1)

The above inequality can be compactly rewritten as max{vr − µH , 0} ≥ (1−ξ)φ−µH
ξ .
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Lemma 2. It holds that

arg max
α

S(α) = arg max
α

(
βPH +

(1− α)µHNH

r

)
− κ

Λ
,

with S(α) = PH + (1−α)µHNH
r , NH =

(
AH

max{0,vr−αµH}+φ

) 1
1−ξ

, and β = β0 satisfying (16).

Proof. Because β = β0 satisfies (16), it holds that β = 1− I
PH

r+Λ
Λ , implying

βPH +
(1− α)µHNH

r
− κ

Λ
= S(α)− κ

Λ
− r + Λ

Λ
I.

Because κ
Λ and (r+Λ)I

Λ do not depend on α, the claim follows.

B.2 Proof of Proposition 1

Proof. The assertion follows directly from the developments in the main text.

B.3 Proof of Proposition 2

Proof. Lemma 1 derives the expression of ᾱ = arg maxα∈[0,1] S(α). When κ = 0, there is no moral
hazard problem and the incentive condition (14) (i.e., IC(α) ≥ 0) is not relevant for the developers’

optimization problem (9). As a result, the developers solve maxα

(
βPH + (1−α)µHNH

r

)
− κ

Λ , where

β = β0 satisfies (16). By Lemma 2, the developers choose the level of α to maximize S(α), so that
α = ᾱ.

B.4 Proof of Proposition 3

B.4.1 Claim 1

Proof. When κ/Λ → 0, the incentive condition IC(α) ≥ 0 is always satisfied for any α and
thus not relevant for the developers’ optimization problem. As a result, the developers solve

maxα

(
βPH + (1−α)µHNH

r

)
− κ

Λ , where β = β0 satisfies (16). By Lemma 2, the developers choose the

level of α to maximize S(α), so that α = ᾱ. By continuity, it holds that α = ᾱ for κ/Λ sufficiently
small, i.e., for κ or 1/Λ sufficiently small.

Consider the limit case I → 0, denoted by I = 0. When I = 0, the incentive condition
IC(α) ≥ 0 becomes

Λ

(
PH +

(1− α)µHNH

r
− PL

)
= Λ (S(α)− PL) ≥ κ.

As by Assumption 2, α = ᾱ = 1 maximizes S(α), it follows by means of parameter condition (A.2)
(i.e., Assumption 1) that ΛS(1) > (r + Λ)I + κ. At the same time, parameter condition (A.3)
implies that PL ≤ (r+ Λ)I for any α ∈ [0, 1]. As a result, IC(α) > 0 for α = 1. Because α = ᾱ = 1
is the developers’ optimal choice absent frictions (see Proposition 2 and Lemma 1), it follows that
the incentive condition IC(α) is not relevant for the developers’ optimization problem and loose
in optimum, when I = 0. That is, when I = 0, the developers maximize S(α) over α and choose
α = ᾱ = 1. By continuity, it follows that α = ᾱ, provided I > 0 is sufficiently small.
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B.4.2 Claims 2 and 3

Proof. Take the financing constraint (4) (which binds in optimum) or equivalently (16), that is,
β = 1 − I

PH
r+Λ

Λ . It follows that β strictly decreases in I when PH decreases in I. Note that by
the token pricing equation (13), PH does not depend on I directly but only through the optimal
choice of α. Therefore, if β increases in I, then α must strictly increase in I, because PH strictly
increases in α.

Take the surplus (i.e., overall platform value) S(α) and observe that S(α) does not depend
on I directly but only through the optimal choice of α. Also note that an increase in financing
frictions/needs, as captured by I, in optimum cannot cause more efficient provision of token security
features α, i.e., cannot increase surplus S(α). Because α = ᾱ = 1 is efficient and optimal absent
frictions and when I = 0 and because S′(α) > 0 for all α ∈ [0, 1), this means that α cannot strictly
increase in I. That is, α decreases in I and so does PH , implying that β strictly decreases in I.

Also note that only if the incentive condition IC(α) ≥ 0 is tight, then α strictly decreases in I,
as I can affect the choice of optimal α only via the incentive condition (14). Analogously, it follows
that β strictly increases in Λ and that α (strictly) increases in Λ (only if the incentive condition
IC(α) ≥ 0 is tight).

Finally, note that κ affects PH and thus β only through the optimal choice of α. If PH increases
in κ, then α must increase in κ, as PH increases in α. However, it is clear that an increase in agency
frictions, as captured by κ, in optimum cannot trigger more efficient efficient provision of token
security features α, i.e., cannot increase S(α). Because α = ᾱ = 1 is efficient and optimal absent
agency frictions (i.e., when κ = 0) and because S′(α) > 0 for α ∈ [0, 1), optimal α must decrease in
κ. Thus, dβ/dκ ≤ 0 and dα/dκ ≤ 0, where the inequalities are strict only if the incentive condition
IC(α) ≥ 0 is tight.

B.4.3 Claim 4

Proof. Note that NH =
(

AH
vr+φ−αµH

) 1
1−ξ ≥

(
AH
vr+φ

) 1
1−ξ

> 1, where the second inequality uses the

parameter assumption AH > vr + φ. In addition, due to NH > 1, it follows that NH strictly
increases in ξ and so does PH = vNH , thus ∂β

∂ξ > 0 by means of (16) with β = β0. Next, note that:

∂NH

∂ξ
= NH ln(NH)

1

(1− ξ)2
> NL ln(NL)

1

(1− ξ)2
=
∂NL

∂ξ
. (B.2)

Taking IC(α) = Λ
(
βv + (1−α)µH

r

)
NH − κ− ΛβvNL, it follows that

∂IC(α)

∂ξ
= Λv

∂β

∂ξ
(NH −NL) + Λβv

(
∂NH

∂ξ
− ∂NL

∂ξ

)
+

Λ(1− α)µH
r

∂NH

∂ξ

> Λv
∂β

∂ξ
(NH −NL) + Λβv

(
∂NH

∂ξ
− ∂NL

∂ξ

)
> 0,

where the first inequality uses µH > 0 and the second inequality uses (B.2). Because α = ᾱ = 1 is
efficient absent frictions, because S′(α) > 0 for all α ∈ [0, 1), and because an increase in ξ relaxes

incentive compatibility (i.e., ∂IC(α)
∂ξ > 0), it follows that α increases in ξ and β strictly increases

in ξ. Note that α strictly increases in ξ only if the incentive condition IC(α) ≥ 0 is tight in
optimum.
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B.4.4 Claim 5

Proof. We show that developers do not find it optimal to issue equity next to tokens and start
with some additional notation that allows for equity issuance (next to tokens). The value of equity
derives from the dividends received by shareholders. As a result, it is given by the discounted
stream of expected future dividends

Ej,τ =

∫ ∞
t

e−r(s−t)µ(As)Ns(1− α)ds =
(1− α)Njµj

r

after time τ (i.e., for t ≥ τ) for j = H,L and by

Ej = Et
[∫ ∞

t
e−r(s−t)µ(As)Ns(1− α)ds

]
=

ΛEj,τ
r + Λ

before time τ (i.e., for t < τ) for j = H,L. We denote by γ the developers’ equity retention level
after time zero. In our model, there is no reason to issue equity after time zero. Further, it suffices
to focus on instances in which α < 1, as otherwise the equity value trivially equals zero.

When the startup firm can issue equity at time 0, the financing constraint (which binds in
optimum) becomes

Λ

r + Λ

(
(1− β)PH +

(1− γ)(1− α)NHµH
r

)
= I, (B.3)

as the startup firm can cover the cost I of developing the platform by raising equity and/or by
selling tokens. Selling equity, like granting dividend rights to token holders, implies a dilution of
the developers’ stake in the firm. With equity financing, the incentive constraint becomes

ICE(α) := Λ

(
βPH +

γ(1− α)µHNH

r

)
− κ− ΛβPL ≥ 0. (B.4)

We can then derive developers’ (continuation) payoff before time τ as

VE(α) =
Λ(vβ + γ(1− α)µH/r)NH − κ

r + Λ
=

ΛS(α)− κ
r + Λ

− I, (B.5)

where the subscript “E” denotes quantities under external equity financing. Next, using (B.3), we
formulate the developers’ optimization problem as

max
α,β,γ∈[0,1]

VE(α) s.t. (B.3).

That is, by (B.5), developers maximize S(α) subject to the incentive constraint (B.4) and the
financing constraint (B.3) (which binds in optimum) over α, β, γ ∈ [0, 1]. Because equity and
tokens are fairly priced, developers can extract all the surplus from the platform so that VE(α)
does not directly depend on (β, γ). Thus, for any α, it is optimal for developers to choose (β, γ)
to maximize ICE(α). Due to (B.5), for given (β, γ), it is optimal for developers to choose α to
maximize S(α) subject to ICE(α) ≥ 0. Because of ᾱ = 1 and S′(α) > 0 for all α < 1, the developers
choose in optimum the maximum level of α that satisfies ICE(α) ≥ 0.

Let αNE denote the optimal level of security features without equity financing (i.e., with γ = 1
and IC(αNE) ≥ 0). First consider that αNE = 1. Then the equity value is zero. Thus, raising
funds by means of equity requires to set α < 1. However, setting α < 1 is sub-optimal because
α = ᾱ = 1 maximizes S(α) (see Assumption 1 and Lemma 1) and therefore VE(α). Therefore, let
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us consider in the following that αNE < 1. By Assumption 1 and Lemma 1, absent frictions, the
optimal choice of α is equal to ᾱ = 1. Thus, αNE < 1 implies that IC(αNE) = 0.

Next, take any α and the financing constraint (1 − β)PH + (1−γ)(1−α)NHµH
r = (r+Λ)I

Λ and
implicitly differentiate w.r.t. γ to obtain

0 = −PH
dβ

dγ
− (1− α)NHµH

r
=⇒ dβ

dγ
= −(1− α)NHµH

PHr
= −(1− α)µH

vr
,

where we used the pricing relationship PH = NHv, implied by vr > µH (see Assumption 2). We
look at the incentive condition:

ICE(α) = ICE(α|γ) := Λ

(
βv +

γ(1− α)µH
r

)
NH − κ− ΛβvNL ≥ 0

and calculate:

dICE(α)

dγ
∝ NH

(
dβ

dγ
+

(1− α)µH
vr

)
−NL

dβ

dγ
=

(1− α)NL

vr
µH . (B.6)

Thus, dICE(αNE)/dγ > 0.

Also note that VE(α) does not directly on (β, γ). Choosing γ = 1 and β to satisfy the financing
constraint (4) yields payoff VE(αNE), with ICE(αNE |γ = 1) = 0 and ICE(α|γ = 1) < 0 for
α ∈ (αNE , 1]. If there existed α > αNE with ICE(α|γ = 1) ≥ 0, then it would be optimal to
increase token security features up to α as S′(α) > 0 for all α ∈ [0, 1) (owing to Assumption 2
and Lemma 1), contradicting the optimality of αNE . Here, ICE(α|γ = x) explicitly denotes the
function ICE(·), when tokens possess cash-flow rights α and developers retain fraction γ of equity.

Consider now that the developers choose γ = γ̂ < 1. Owing to dICE(α)/dγ > 0 for α < 1, it
follows that ICE(α|γ = γ̂) < 0 for α ≥ αNE . Thus, developers realize payoff bounded by VE(αE)
with some αE < αNE . Because of Assumption 2 and Lemma 1 (i.e., S′(α) > 0 for α ∈ [0, 1)) and
(B.5), it holds that VE(αE) < VE(αNE), so that setting γ < 1 is sub-optimal and raising funds by
issuing equity next to tokens is sub-optimal.

B.5 Proof of Proposition 4

Proof. By Proposition 2, α = 0 maximizes the overall surplus if and only if vrξ ≤ (1 − ξ)φ − µH .
By Lemma 2, α = 0 then also maximizes βPH + (1−α)µHNH

r , with β = β0 satisfying (16).

Recall that the developers’ incentive constraint reads

IC(α) = Λ

(
βPH +

(1− α)µHNH

r
− βPL

)
− κ ≥ 0.

Because in optimum β = β0 solves (16) and PH strictly increases in α (see the token pricing
equation (13)), it follows that β increases in α, while PL does not depend on α = 0, due to µL = 0
(see the token pricing equation (13)). Therefore, βPL increases in α and hence is minimized for

α = 0. As α = 0 maximizes βPH + (1−α)µHNH
r , it follows that α = 0 maximizes IC(α). As a

result, when vrξ ≤ (1− ξ)φ−µH , α = 0 maximizes both overall platform value (surplus) S(α) and
incentives IC(α) and thus is optimal.
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Next, a STO with α > 0 maximizes the surplus S(α) if (see Proposition 2)

ᾱ > 0 ⇐⇒ vrξ > (1− ξ)φ− µH .

By Lemma 2, α > 0 then also maximizes βPH + (1−α)µHNH
r , with β = β0 satisfying (16). Then,

α > 0 is optimal when (in optimum) IC(α) > 0 and the incentive constraint (14) does not affect
the developers’ optimization problem and so does not constrain the choice of α relative to the
frictionless benchmark. This is the case if either κ, 1/Λ or I is sufficiently small (for details: see
proof of Claim 1 in Proposition 3).

B.6 Proof of Proposition 5

Proof. Recall that by Assumption 2 and Lemma 1, the value of a token-based platform is maximized
for ᾱ = 1. In addition, we have that vr > µH . The adoption level of a fiat-based platform equals

NF :=
(
AH
φ

) 1
1−ξ

and is — due to vr > µH — always larger than the adoption level of a token-based

platform, NT :=
(

AH
φ+vr−αµH

) 1
1−ξ

, for any α ∈ [0, 1]. That is, NF > NT .

Consider the problem maxv∗∈{0,v} S(ᾱ), where v is an exogenous parameter. This maximization
problem can be solved by comparing the surplus (i.e., overall platform value) under a fiat-based

platform, given by A := µH
r

(
AH
φ

) 1
1−ξ

, with the surplus under a token-based platform when α =

ᾱ = 1, given by B := v
(

AH
φ+vr−µH

) 1
1−ξ

. Then, a fiat-based platform yields higher surplus than a

token-based platform if and only if A ≥ B, that is, if and only if µH
vr ≥

(
φ

φ+vr−µH

) 1
1−ξ

, which yields

(24).

Recall that the developers’ incentive constraint reads

IC(α) = Λ

(
βPH +

(1− α)µHNH

r
− βPL

)
− κ ≥ 0.

The arguments presented in the proof of Lemma 2 illustrate that maximizing βPH + (1−α)µHNH
r ,

with β = β0 satisfying (16), is equivalent to maximizing the overall platform value (surplus) S(α).

Thus, when (24) holds, then v∗ = 0 also maximizes βPH + (1−α)µHNH
r , with β = β0 satisfying (16).

Owing to µL = 0 and the pricing equation (13), it follows under a fiat-based platform with v∗ = 0
that PL = 0, whereas PL ≥ 0 under a token-based platform with v∗ = v. That is, setting v∗ = 0
minimizes the term βPL, while maximizing βPH + (1−α)µHNH

r . As a result, when (24) holds, then
v∗ = 0 maximizes both the overall platform value (surplus) S(α) and the developers’ incentives
IC(α). Hence a fiat-based platform is optimal when (24) holds.

In contrast, when (24) does not hold, a token-based platform leads to higher surplus S(α),
in that v∗ maximizes overall platform value. Hence, when (24) does not hold, then v∗ = v also

maximizes βPH + (1−α)µHNH
r , with β = β0 satisfying (16). It is therefore optimal to implement

a token-based platform with v∗ = v if the incentive condition (14) does not affect the developers’
optimization problem (i.e., does not constrain the optimal choice of v∗), which is the case if either
I, κ or 1/Λ is sufficiently low (for details: see proof of Claim 1 in Proposition 3).

We demonstrate under what conditions (24) is satisfied. Note that—owing to ξ > 0—(24) holds
in the limit v →∞ and thus, by continuity, for v sufficiently large. Likewise, because vr > µH , it
follows that the RHS of (24) tends to zero as ξ → 1, so that (24) holds for ξ sufficiently large.
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Last, we analyze µH and define f(µH) : µH 7→ µH
vr −

(
φ

vr−µH+φ

) 1
1−ξ

and note that (24) holds

whenever f(µH) ≥ 0. Observe that for µH = vr, (24) holds in equality and f(µH) = 0. Next,
calculate f ′(vr) = 1

vr −
1

(1−ξ)φ , which is negative if and only if vr > (1− ξ)φ. Thus, if vr > (1− ξ)φ,

it follows that f(µH) > 0 and (24) holds in a left neighbourhood of vr, i.e., for µH < vr sufficiently
large. Note that µH ≥ φ(1− ξ) implies vr > φ(1− ξ), due to vr > µH .

C Token price volatility

C.1 Proof of Corollary 6

Proof. Take Ā ∈ {AL, AH}. First, assume that utility features pin down the token price in both
states, G,B. This results into the equilibrium pricing system (26):

PG = PG(α) = v

(
Ā+ εG

vr − αµ(Ā+ εG) + φ− vρ(PB/PG − 1)

) 1
1−ξ

PB = PB(α) = v

(
Ā+ εB

vr − αµ(Ā+ εB) + φ− vρ(PG/PB − 1)

) 1
1−ξ

.

Linearize the above system (w.r.t. ξ and µ(·)) to obtain

PG = PG(α) = v

(
Ā+ εG

vr − αµ(Ā) + φ− vρ(PB/PG − 1)

)
+ o(ξ) + o(max

A
|µ′(A)|),

PB = PB(α) = v

(
Ā+ εB

vr − αµ(Ā) + φ− vρ(PG/PB − 1)

)
+ o(ξ) + o(max

A
|µ′(A)|).

Discarding the terms o(ξ) + o(maxA |µ′(A)|), this becomes a system of two linear equations, which
can be solved for

PG '
v
(
Ā(v(2ρ+ r)− αµ(Ā) + φ)Ā+ εG(v(r + ρ)− αµ(Ā)) + εBvρ

)(
φ− αµ(Ā) + vr

) (
φ− αµ(Ā) + v(r + 2ρ)

)
and

PB '
v
(
Ā(v(2ρ+ r)− αµ(Ā) + φ)Ā+ εB(v(r + ρ)− αµ(Ā)) + εGvρ

)(
φ− αµ(Ā) + vr

) (
φ− αµ(Ā) + v(r + 2ρ)

) ,

where we omit the remainder terms of order o(ξ) + o(maxA |µ′(A)|). One can then calculate that

σ ' PG − PB =
v(εG − εB)

φ+ v(r + 2ρ)− αµ(Ā)

σ̄ ' PG − PB
0.5(PG + PB)

=
2 (εG − εB)

(
vr − αµ(Ā) + φ

)(
2Ā+ εG + εB

)
(v(r + 2ρ)− αµ(Ā) + φ)

,

showing that σ and σ̄ are increasing and convex in α, for ξ and maxA |µ′(A)| sufficiently small.

The second claim directly follows from the main text and in particular after some calculations,
departing from expression (27).
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C.2 The problem before time τ with uncertainty after time τ

Set Ā = AH . At time τ , we have by assumption that P(ετ = εG) = P(ετ = εB) = 1/2. The
solution to the model with persistent productivity shocks is then similar to that of Section 3 with
the expected token price P̄ and expected adoption levels N̄ , given by

P̄ :=
PG + PB

2
and N̄ :=

NG +NB

2
,

replacing the token price PH and adoption level NH .

D Micro-foundation for transaction protocol and holding period

D.1 Microfoundation for convenience yield

The flow utility from transacting, as stipulated in (1), can be micro-founded by a random search
and matching protocol. For a detailed micro-foundation, we refer to Cong et al. (2020c,b).

D.2 Microfoundation for token holding period

In the following, we give several potential ways to micro-found the holding period vdt. For the
exposition, we consider our framework after the milestone, i.e., t > τ , and assume that all users
hold the tokens merely for transaction purposes. That is, the token is priced according to its utility
features (which is the case if vr > αµH).

Transaction settlement delays. There are transaction settlement delays of length vdt. Con-
sider a transaction that is initiated at time t. After the transaction is initiated, its execution is
delayed by vdt units of time and so its execution is completed at time t + vdt. Notably, over
[t, t + vdt], tokens used in the transaction, initiated at time t, are locked and cannot be used oth-
erwise, i.e., cannot be sold. After the transaction is executed at time t + vdt, tokens used in the
transaction can be sold again. It follows that any transaction requires to hold tokens over a time
period of length vdt.

In our model, the value of any transaction is one dollar, i.e., 1/Pt tokens. That is, Nt is the
number of dollar transactions which are initiated over a short period of time [t, t+ dt). Thus, over
any time period [t, t+ dt), Nt initiated transactions—each worth one dollar—require to hold 1/Pt
tokens for vdt units of time.

Transactions are equally spread over time (i.e., over the time interval [t, t + dt)). This implies
that at any time t, tokens are only held for transactions that are initiated over the interval [t−vdt, t)
(and so executed over [t, t+ vdt)). The number of transactions initiated over [t− vdt, t) equals

1

dt

(∫ t

t−vdt
Nsds

)
=

1

dt

(∫ t

t−vdt
(Nt + (Ns −Nt)) ds

)
=

1

dt

(
Ntvdt− o((dt)2)

)
= vNt, (D.1)

where the second equality uses that Nt −Ns ' dNt is infinitesimal in that ds(Nt −Ns) = o((dt)2).
The last inequality ignores higher order terms in that o((dt)2) = 0.

As a result, at any time t, vNt transactions, that have been initiated yet not executed, require
to hold one dollar in tokens, i.e., 1/Pt dollars. Hence, the aggregate token demand equals vNt/Pt,
which by virtue of market clearing must equal the token market supply 1−βt. Therefore, the token
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price equals:

Pt =
vNt

1− βt
.

Deposits. Alternatively, we could obtain the same results by assuming that users have to hold
fraction v of the overall transaction value in tokens over [t, t+ dt). Here, v > 1 implies that users
have to put a deposit while v < 1 allows users to transact with margins. Specifically, a transaction
of value x requires to holder vx tokens over [t, t+ dt). This implies the token demand vNt/Pt and
so—by virtue of market clearing—the token price:

Pt =
vNt

1− βt
.

E Cash diversion

Consider the following formulation of the moral hazard problem. Over [t, t+ dt), with probability
Λdt, the milestone τ arrives. If developers invest upon reaching the milestone amount I > 0,
productivity becomes At = AH for t ≥ τ . If they invest less than I or do not invest at all,
productivity becomes At = AL for t ≥ τ . Thus, in order to develop the project and to reach high
platform productivity, developers must raise amount I at time zero and save/store this amount to
be able to invest at the milestone. We assume stored/saved dollars to not earn interest. As in the
baseline model, it is optimal not to hold more cash than necessary, i.e., no more than I dollars.

Following DeMarzo and Sannikov (2006), before time τ , developers can secretly divert cash and
receive per dollar diverted λ ∈ [0, 1] dollars. After time τ , platform cash flows are observable, and
there is no moral hazard problem anymore.

Given α and β, we analyze the developers’ incentives to divert cash at any time t before time
τ . It is clear that if cash diversion is optimal, then it is optimal to divert all cash I, yielding λI
dollars. However, after diversion, the project has low productivity after the milestone, and the
price becomes Pt = PL = vNL. That is, at time τ , developers earn βPL dollars from selling all
retained tokens and (1−α)µLNL/r dollars from future cash flows. Otherwise, if developers do not
divert cash, token price equals PH = vNH , and they obtain βPH dollars from selling all retained
tokens and (1− α)µHNH/r dollars from future cash flows.

As at any time t < τ the expected time to reaching the milestone equals 1/Λ, it follows that
cash diversion is not optimal if and only if

λI +
Λ(βPL + (1− α)µLNL/r)

r + Λ
≤ Λ(βPH + (1− α)µHNH/r)

r + Λ
.

Rewriting yields

Λ

(
βPH +

(1− α)µHNH

r

)
− λ(r + Λ)I − Λ

(
βPL +

(1− α)µLPL
r

)
,

which is similar to the incentive constraint in the baseline model, i.e., (14). For λ ≡ κ(r+Λ)
I , this

model variant in fact is isomorphic to the baseline model.
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F Adverse selection

This Appendix introduces adverse selection in our model by considering that there are two possible
types of firms (i.e., platforms) operated by developers: a good platform, as described in the baseline
version of the model, and a bad platform whose productivity after the milestone equals At = AL
with µt = µL with certainty. Both platforms require an initial investment I. The platform is good
with exogenous probability π ∈ [0, 1]. Developers are privately informed about platform quality.
Token investors only know the probability π that a platform is good. Assumption 1 implies that
good platforms are profitable and have positive net present value (NPV), but bad platforms with
low productivity AL are inefficient to finance and have negative net present value.

Let us start the analysis by looking for a separating equilibrium. In a separating equilibrium,
the good firm grants cash flow rights α to token holders and retains tokens β, resulting in (state-
contingent) adoption and token prices for j = H,L after time τ , given by

Nj(α) = Nj =

(
Aj

max{0, vr − αµj}+ φ

) 1
1−ξ

(F.1)

and

Pt = Pj =

v
(

Aj
vr−αµj+φ

) 1
1−ξ

if vr > αµj

αµj
r

(
Aj
φ

) 1
1−ξ

if vr ≤ αµj .
(F.2)

In contrast, the bad firm chooses cash flow rights αL and retention βL. As the bad firm (platform) is
inefficient (i.e., has negative NPV) and so does not receive financing, it follows that in a separating
equilibrium, the payoff of a bad firm is equal to zero. On the other hand, mimicking the good firm
and setting αL = α and retaining βL = β tokens yields strictly positive payoff ΛβPL

r+Λ > 0. As a
result, whenever the bad platform has negative NPV, there does not exist a separating equilibrium.
Therefore, we study in the following a pooling equilibrium.

F.1 Pooling equilibrium

In a pooling equilibrium, both good and bad firms grant cash-flow rights α to token holders and
retain initially β tokens. After time τ , token price equals PH , if the firm is of good type and
developers exert sufficient effort, and equals PL otherwise. As in the baseline model, we assume
that exerting effort is efficient and focus therefore on pooling equilibria, in which a good firm has
productivity AH after time τ and developers exert effort.

At time zero, given a fraction π of good firms, the token price equals

p :=
Λ

r + Λ
(πPH + (1− π)PL).

Any firm sells at time zero the minimal amount of tokens needed to cover initial financing needs I,
in that the retention level is given by

β = 1− I

p
.

Adverse selection worsens the financing conditions of a good firm. As a consequence, with adverse
selection, developers (operating a good firm) must sell more tokens 1−β at time zero to raise funds
I, thereby reducing the retention level β and developers’ incentives.
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Figure 7: Comparison pooling equilibrium and baseline model.

For developers to have sufficient incentives to exert effort over (0, τ), the incentive condition
(14) has to hold, i.e.,

IC(α) := Λ

(
βPH +

(1− α)µHNH

r

)
− κ︸ ︷︷ ︸

Payoff under at=1

− ΛβPL︸ ︷︷ ︸
Payoff under at=0

≥ 0. (F.3)

Recall that by assumption 1, µL = 0. Finally, a good firm’s problem boils down to solving

max
α[0,1]

Λ

(
βPH +

(1− α)µHNH

r

)
− κ s.t. IC(α) ≥ 0, β = 1− I

p̄
. (F.4)

In contrast, a bad firm chooses α and β to mimic a good firm, leading to (scaled) payoff ΛβPL > 0.
Because the bad firm’s productivity is low with certainty, there is no moral hazard problem for bad
type firms.

Fig. 7 illustrates the effects of introducing adverse selection on outcome variables. The top
panels show that adverse selection reduces the level of security features attached to tokens of
good platforms for two reasons. First, due to adverse selection (which implies that p ≤ PH),
developers have to sell more tokens at time zero to cover their initial financing needs, leading to lower
initial token retention β. To maintain incentive compatibility, developers, in turn, must possess
more equity incentives, which requires to grant less cash-flow rights to token holders. Second, by
increasing α and spurring platform adoption, developers of a good platform increase the token price
PH but may reduce the average token price PHπ + PL(1 − π). This is because granting cash-flow
rights to token holders may reduce platform value in case the platform happens to be of low quality
with At = AL for t ≥ τ . In fact, Proposition 2 highlights that granting cash-flow rights to token
holders is only optimal if platform productivity is sufficiently high.

Fig. 7 demonstrates that even mild adverse selection can lead to a substantial reduction in
token security features α and developers’ token retention β. In effect, we pick the value π = 0.98
as the base case, because lower values of π make it inefficient to finance the platform. Fig. 7 also
demonstrates that introducing adverse selection has no bearing on the predictions of the model
regarding the effects of financing needs (I), the cost of effort (κ), or the expected time to platform
development (1/Λ)) on the optimal level of retention (β) and token security features (α).
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F.2 Alternative model assumptions and separating equilibrium

This section relaxes Assumption 1 by considering that the project has positive NPV and may
produce cash-flows with µL > 0 even if developers do not exert effort, in that

max
α∈[0,1]

Λ

r + Λ

(
PL +

(1− α)µLNL

r

)
> I. (F.5)

As a result, a bad platform with low productivity AL and cash-flow rate µL has a positive NPV
and receives financing in frictionless markets. Under this assumption there can be a separating
equilibrium. In the following, we assume that a bad platform has sufficiently low productivity and
hence sufficiently low cash-flows in that µL ≤ (1−ξ)φ−vrξ, where (1−ξ)φ−vrξ > 0, so that under
perfect information it is optimal to set cash-flow rights to α = αL ≡ 0 for a bad type platform.
Also recall that due to vr > µH ≥ µL, it holds that Pi = vNi for i = H,L.

Consider first the problem of a bad type firm. By Proposition 2 (by replacing µH by µL in
the statement of the Proposition), it is optimal to set token security features of a bad platform to
αL = 0 when a bad project receives financing, because of µL ≤ (1− ξ)φ− vrξ. Developers’ payoff
is therefore given by

VL :=
Λ

r + Λ

(
v +

µL
r

)( AL
vr + φ

) 1
1−ξ
− I =

Λ

r + Λ

(
βLv +

µL
r

)( AL
vr + φ

) 1
1−ξ

, (F.6)

which is positive, by Eq. (F.5), and where developers’ initial retention level satisfies

βL := 1− (Λ + r)Iv

Λ

(
AL

vr + φ

) −1
1−ξ

. (F.7)

By (F.5) and the optimality of α = αL = 0, it follows that βL ∈ [0, 1].
When there are no frictions, developers of a good platform optimally set α = 1. In the presence

of moral hazard, they choose the highest level of α ∈ [0, 1] that satisfies the incentive compatibility
constraint IC(α) ≥ 0 (see Assumption 1 and Proposition 2). In addition, developers retain the

maximum amount of tokens subject to their financing needs, in that β = 1− (Λ+r)Iv
ΛNH

.

By Proposition 2, platforms with low (high) cash flows optimally feature tokens with low (high)
security features. Because a bad platform produces low cash flows, a high level of token security
features may differentiate a good platform project from a bad one. In other words, token security
features can serve as a signal for good platform quality. That is, the benefit of mimicking the
high type is that the low type can sell tokens at a higher price at time zero and thus retain more
tokens (i.e., mimicking reduces the cost of investment). The cost of mimicking the high type is
the increase in token security features, which reduces platform value (i.e., mimicking reduces the
benefit of investment).

In the following, we therefore look for a separating equilibrium in which developers of a good
platform choose α according to

maxα s.t. IC(α) ≥ 0 and β = 1− (Λ + r)Iv

ΛNH
(F.8)

and developers of a bad platform choose αL = 0 and βL = 1− (Λ+r)Iv
Λ

(
AL
vr+φ

) −1
1−ξ

.

If it exists, this separating equilibrium is also the least cost separating equilibrium because in
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equilibrium, developers do not face additional optimization constraints (relative to the baseline
model) and, in fact, solve (9). We also emphasize that because developers are risk neutral, token
retention is not costly for platform developers and hence does not signal platform quality. Chod
and Lyandres (2019) consider a risk-averse entrepreneur launching a platform. In their framework,
token retention is costly for the entrepreneur, and there exists a separating equilibrium in which
token retention signals a high platform quality. By assuming risk neutrality, we eliminate the
signaling effect of token retention and highlight that token security features signal high platform
quality too. Our findings can be viewed as complementary to those in Chod and Lyandres (2019).

In a separating equilibrium, it must hold that the bad type does not want to mimic the good
type. When the bad type mimics the good type, it can sell tokens at time zero at a higher price and
thus can retain more tokens, i.e., β > βL. The cost of mimicking the high type is that α increases,
which reduces platform value. If the bad type does not mimic the good type, its payoff equals VL.

By contrast, its payoff upon mimicking the good type reads V mimic
L := Λ

r+Λ

(
βv + (1−α)µL

r

)
NL. In

a separating equilibrium, the following must hold

VL ≥
Λ

r + Λ

(
βv +

(1− α)µL
r

)
NL = V mimic

L . (F.9)

Moreover, provided that exerting full effort is efficient, the good type firm does not have incentives to
mimic the bad type of firm. Hence, (F.9) is sufficient for the existence of the separating equilibrium.
The reason is that in the proposed separating equilibrium, the good type solves (9) and thus does not
face additional optimization constraints (relative to the baseline model). That is, in the separating
equilibrium, the good type already chooses the retention level β and token security features α
that maximizes her payoff subject to the incentive compatibility constraint (14) and the financing
constraint (4). Therefore, the good type cannot do better by choosing different levels of β and α.

Fig. 8 examines the effects of a firm’s environment on the existence of a separating equilibrium.
To make sure that the bad type platform has positive NPV, we depart from our baseline parameter
values along two dimensions: we set AL = 0.9 (instead of AL = 0.55) and I = 1 (instead of I = 58).
We also consider that cash flows are given by µH = µ = 0.025 and µL = 0. Fig. 8 shows that
when financing needs are small, the separating equilibrium described above exists. Indeed, when
financing needs I are sufficiently low, β and βL are low and so is the benefit of mimicking. In
this case, (F.9) is satisfied, and the separating equilibrium exists. When κ and 1/Λ are sufficiently
large, the development effort is no longer efficient, and the good type prefers to mimic the bad
type so that there is no separating equilibrium. Fig. 8 also shows that strong network effects (ξ),
high platform transaction frictions (v), or a high cash-flow rate (µ) facilitate the existence of the
separating equilibrium, in line with the above discussion.

In this separating equilibrium and provided that ᾱ = 1 (see Assumption 1), adverse selection
does not change the optimal level of token security features α and the optimal retention level β
compared to the base case model. The reason is that signaling is de facto costless for the good
type: the good type chooses the highest level of α satisfying incentive compatibility (14), which
at the same time makes it (most) costly for the low type to mimic the high type. The following
section relaxes Assumption 1 and considers parameter configurations with ᾱ < 1, so that adverse
selection may boost the provision of token security features in a separating equilibrium.

As a result, adverse selection only affects the provision of token security features in the pooling
equilibrium. Interestingly, adverse selection and moral hazard may interact and reinforce each other
and hence jointly curb the provision of token security features. Moral hazard requires developers to
possess sufficient equity incentives and leads to low token security features α. Low token security
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Figure 8: When does a separating equilibrium exist? Sep = 1 indicates that the prescribed sep-
arating equilibrium exists. Parameter values are set as in the base case environment except for
AL = 0.9 and I = 1 to ensure that the bad type platform has positive NPV.

features α make it attractive for the low type to mimic the high type, thereby destabilizing the
separating equilibrium and leading to a pooling equilibrium, which exacerbates moral hazard and
reduces token security features even further (as shown in Appendix F.1).

F.3 Costly signalling

In the previous section, signalling is de-facto costless for the good type firm, in that the good type
firm finds it optimal to choose α ∈ [0, 1] as high as possible, subject to incentive compatibility.
This is a consequence of Assumption 2 which implies that absent friction α = ᾱ = 1 is optimal.
This section considers parameter configurations such that ᾱ < 1 is optimal for the good type firm
and αL = 0 is optimal for the bad type firm, absent frictions. That is, input parameter values are
such that

ᾱ =
vr

µH
+

1

ξ
− φ(1− ξ)

ξµH
∈ (0, 1).

In addition, we consider that vr > µH , so tokens are priced according to utility features.

We look for a separating equilibrium in which the good type firm chooses token security features
α and token retention β, while the bad type firm chooses token security features αL = 0 and token
retention βL (with βL characterized in (F.7)). In the separating equilibrium, the bad type firm
must not have incentives to mimic the good type firm, so that (F.9) must hold. Next, consider the
good type firm. In equilibrium, the good type firm’s payoff equals

VH :=
Λ

r + Λ

(
βv +

(1− α)µH
r

)
NH ,

where β = 1 − (Λ+r)Iv
ΛNH

and NH is a function α, i.e., NH = NH(α). Alternatively, the good type
can pick a a level of token security features α′ 6= α, in which case the market perceives the good
type firm as bad type firm. To cover initial financing needs I, the good type firm’s retention level
equals then βL. As a result, upon deviating, the good type firm’s payoff equals

V Dev
H := max

α′∈[0,1]

(
Λ

r + Λ

(
βLv +

(1− α′)µH
r

)
NH

)
,

subject to IC(α′) ≥ 0, where NH is a function of α′, i.e., NH = NH(α′). For the good type not to
deviate, it must be that

VH ≥ V Dev
H . (F.10)

In a separating equilibrium, both (F.9) and (F.10) have to be satisfied.
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Figure 9: Comparison separating equilibrium and baseline model. We pick the parameters I = 2 >
0 = κ, µH = 0.2 > 0.1 = µL and AL = 0.9.

Provided there exists at least one separating equilibrium, we focus on the least cost separating
equilibrium, which can be found by solving

max
α∈[0,1]

VH s.t. (F.9) and (F.10).

This amounts to
min
α≥ᾱ

α s.t. (F.9) and (F.10).

In the following, we assume a separating equilibrium exists and compare the model outcomes in
the least cost separating equilibrium with those of the baseline model.16 Fig. 9 illustrates that in
the least cost separating equilibrium, the good type firm chooses higher α (i.e., α = αSig) than in
the baseline model (i.e., α = αBase). The reason is that by attaching high token security features,
a good type firm signals good platform quality. Because a higher level of α boosts the token price,
the good type firm’s level of initial token retention βSig in the least cost separating equilibrium is
higher than in the baseline model, i.e., than βBase. The intuition is that a good type firm signals
both by token retention and attaching security features to tokens. Fig. 9 demonstrates that these
effects are robust to parameter changes.

G Transaction fees

Suppose now that developers can dynamically charge a fee f > 0 to users for transacting on the
platform. This fee increases users’ direct cost of transacting to f + φ and platform cash flows to

dDt = (µ(At) + f)Ntdt,

so the level of platform adoption becomes

NH =

(
AH

max{0, vr − α(µH + f)}+ φ+ f

) 1
1−ξ

, (G.1)

16The question of the existence of a separating equilibrium was already discussed in the previous section.
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when the platform charges transaction fees. In the following, we consider that developers cannot
commit to future transaction fees. Appendix G.3 analyzes the case of full commitment. For
simplicity, we abstract from moral hazard w.r.t. effort by taking κ, 1/Λ or I sufficiently small.

Without commitment, the optimal dynamic fee f maximizes at each point in time t ≥ τ the
dividends accruing to developers:

(1− α)(µH + f)NH

and therefore maximizes platform cash flows (µH + f)NH .17 This leads to the following result.

Proposition 7. The optimal dynamic fee for platform developers satisfies

f∗ = min

{
(1− ξ)(vr + φ)− (1− αξ)µH

ξ(1− α)
,
vr

α
− µH

}
.

If (1 − ξ)(vr + φ) > µH , the fee increases in α for α ≤ α1 and decreases in α for α ≥ α1, where
α1 ∈ (0, 1) is the unique solution to

(1− ξ)(vr + φ)− (1− αξ)µH
ξ(1− α)

=
vr

α
− µH .

The resulting adoption level satisfies

Nf
H =


(

AHξ
vr+φ−µH

) 1
1−ξ

if vr > α(f + µH)(
AH

vr/α+φ−µH

) 1
1−ξ

otherwise.

Proposition 7 shows that the optimal dynamic fee depends on whether the token utility or
security features pin down the token price (i.e., whether vr > α(f + µH) or vr ≤ α(f + µH),
respectively). If (1 − ξ)(vr + φ) > µH , the optimal fee follows a hump-shaped pattern in α. The
optimal level of security features with endogenous transaction fees is then characterized in the
following corollary.

Corollary 1. Tokens with α = 0 are optimal if and only if

(1− ξ)(φ− µH) ≥ vr(ξ
ξ
ξ−1 − 1). (G.2)

Tokens with α = 1 are optimal if and only if condition (G.2) is not satisfied. Platform adoption is
higher for α = 1 than for α = 0.

If the token is priced according to its utility features, then the optimal transaction fee satisfies
f∗ < vr

α − µH . In this case, users effectively incur the transaction fee f∗(1 − α). The reason is
that a fraction α of the transaction fees flows back to users in the form of dividends. Higher α in
turn implies higher dividends, which allows developers to charge higher fees without endangering
adoption. In this context, the issuance of a utility token (i.e., α = 0) can be viewed as a commitment
device not to charge high fees in the future.

If the token is priced according to its security features, then f∗ = vr
α −µH and developers charge

lower transaction fees as token cash flow rights increase, in an attempt to limit purely return-driven
investments and maximize adoption. Also note that, even if α = 1, the proceeds from transaction
fees do not fully flow back to users but partially accrue to (return-driven) token investors, who do

17We assume that even if α = 1, β = 0 developers set fees in order to maximize (µH + f)NH .
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not transact. In sum, both high and low token security features serve as commitment device for
low future transaction fees and, thus, are particularly useful for platform building in the presence
of commitment problems to future fees. As a result, either α = 1 or α = 0 is optimal.

Interestingly, the optimal transaction fee f can be negative. In this case, the startup firm
subsidizes the user base in order to accelerate platform adoption.

Corollary 2. Subsidies f < 0 are optimal if µH > S := (1−ξ)(vr+φ)
1−αξ . If developers can commit to a

fee structure {f} at time zero, subsidies are optimal if µH > S − vr
1−ξ(1−α) .

As shown in Corollary 2, subsidies to the user base are more likely if the platform is financed
with utility tokens (i.e., for α = 0) or if the network effects are strong. In addition, subsidies are
only optimal if the platform generates enough revenues µH to finance these subsidies. We also show
that subsidies are more likely if the blockchain technology facilitates commitment.

G.1 Proof of Proposition 7

Proof. Define ε = 1/(1 − ξ). Note that NH =
(

AH
max{0,vr−α(µH+f)}+φ+f

) 1
1−ξ

and that the optimal

fee f = f∗ is such that: f∗ = arg maxf≥0(µH + f)NH .

1. Assume that vr − α(µH + f) > 0. Then, the FOC ∂(µH+f)NH
∂f = 0 must hold in optimum.

That is,

0 = NH − (µH + f)
∂NH

∂f
= NH −

εNH(1− α)(µH + f)

vr − αµH + φ+ f(1− α)

∝ vr − αµH + φ+ f(1− α)− ε(1− α)(µH + f).

Thus: (1− α)f = (vr+φ)(1−ξ)−µH
ξ + αµH for optimal f = f∗.

Plugging the optimal fee expression into (G.1) yields the desired expressions for platform adop-

tion, i.e.,
(

Aξ
vr+φ−µH

) 1
1−ξ

, and platform value (surplus), i.e.,
(
v + (1−ξ)(vr+φ−µH)

ξr

)(
AHξ

φ+vr−µH

) 1
1−ξ

.

Both expressions do not depend explicitly on α. It follows that the developers’ payoff and
overall platform value (surplus) do not depend explicitly on α either.

2. Next, we assume that vr ≤ α(µH + f), implying that NH =
(
AH
φ+f

) 1
1−ξ

. Then, if vr <

α(µH + f), the FOC ∂(µH+f)NH
∂f = 0 must hold, so that

0 = NH − ε
µH + f

φ+ f
NH ∝ 1− εµH + f

φ+ f
=⇒ f =

φ− εµH
ε− 1

=
(1− ξ)φ− µH

ξ
.

Otherwise, if vr = α(µH + f), then f = vr
α − µH = vr−αµH

α . Altogether, f = f∗ =

max
{
vr−αµH

α , (1−ξ)φ−µH
ξ

}
. Assumption 1 implies that (1−ξ)φ−µH

ξ < vr
α −µH ⇐= (1− ξ)(φ−

µH) < vrξ, hence f = f∗ = vr−αµH
α .

In sum, we have shown that:18

f∗ = min

{
(1− ξ)(vr + φ)− (1− αξ)µH

ξ(1− α)
,
vr

α
− µH

}
.

18For α = 1, the expression for f∗ with some slight abuse of notation simply becomes vr
α
− µH .
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If (1− ξ)(vr + φ) > µH , the first expression in the “min” operator increases in α while the second
expression decreases in α. The first expression in the “min” operator tends to ∞ as α → 1 while
the second one is always positive (due to vr ≥ µH) and tends to∞ as α→ 0. Hence, there exists a

unique cutoff α1 ∈ (0, 1) solving (1−ξ)(vr+φ)−(1−αξ)µH
ξ(1−α) = vr

α − µH (in α). Below α1, the payoff does
not explicitly depend on α, as shown before.

G.2 Proof of Corollary 1

Proof. First, consider that α is such that f∗ = vr
α − µH , which implies the adoption level NH =(

AH
vr/α−µH+φ

)1/(1−ξ)
and the price PH = α(µH+f)NH

r = vNH . This is the case when α = 1. Thus,

the overall surplus is

S(α) = vPH + (1− α)
µH + f

r
= NH

(
v + (1− α)

v

α

)
NH .

Next, for α > 0:

S′(α) = − v
α
NH −

(1− α)v

α2
NH +

(
v + (1− α)

v

α

)
N ′H(α)

∝ −vα− (1− α)v + ε
(
v + (1− α)

v

α

) vr

vr/α− µH + φ

∝ −vα+
εv2r

vr/α− µH + φ
∝ −1 +

εvr

vr + α(φ− µH)
.

Hence, S′(α) = 0 is solved by: εvr = vr + α(φ− µH) so that α = min
{

ξvr
(1−ξ)(φ−µH) , 1

}
is optimal

under these circumstances. Assumption 1 then implies that α = 1, leading to adoption NH =(
AH

φ+vr−µH

) 1
1−ξ

and payoff (surplus) v
(

AH
φ+vr−µH

) 1
1−ξ

. Note that for α = 1: f∗ = vr − µH .

Second, consider α is such that f∗ = (1−ξ)(vr+φ)−µH
ξ(1−α) + αµH

1−α . This is the case when α = 0. In

this case, the payoff does not depend on α (see previous results) and surplus (payoff) is given by(
v + (1−ξ)(vr+φ−µH)

ξr

)(
AHξ

φ+vr−µH

) 1
1−ξ

.

In sum, α ∈ {0, 1} is optimal. Note that α = 0 is optimal for developers if it leads to higher
overall platform value (i.e., surplus) than α = 1 (as developers can extract all residual payoff).
Thus, α = 0 is optimal if(

v +
(1− ξ)(vr + φ− µH)

ξr

)(
AHξ

φ+ vr − µH

) 1
1−ξ
≥ v

(
AH

φ+ vr − µH

) 1
1−ξ

⇐⇒
(
v +

(1− ξ)(vr + φ− µH)

ξr

)
ξ

1
1−ξ ≥ v ⇐⇒ ((1− ξ)(φ− µH) + vr) ξ

ξ
1−ξ ≥ vr

⇐⇒ (1− ξ)(φ− µH) ≥ vr(ξ
ξ
ξ−1 − 1).

G.3 Full commitment to transaction fees

Blockchain technology facilitates commitment to various metrics of platform and token design. For
example, Cong et al. (2020b) demonstrate that the commitment to predetermined rules of token
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supply stimulates platform building. In this section, we analyze the effects of full commitment to
future transaction fees.

In line with economic intuition, Corollary 3 shows that developers charge lower transaction fees
and that adoption is higher under full commitment.

Corollary 3. Assume full commitment and φ > µH . Users incur the transaction fee:

f∗ = min

{
(1− ξ)φ− ξvr − (1− αξ)µH

ξ(1− α)
,
vr

α
− µH

}
.

If (1− ξ)φ− ξvr− µH > 0, the fee increases in α for α ≤ α2 and decreases in α for α ≥ α2, where
α2 ∈ (0, 1) is the unique solution to

(1− ξ)φ− ξvr − (1− αξ)µH
ξ(1− α)

=
vr

α
− µH .

This implies the adoption level:

Nf
H =


(
AHξ
φ−µH

) 1
1−ξ

, if vr > α(f + µH)(
AH

vr/α+φ−µH

) 1
1−ξ

, otherwise.

Remarkably, we find that the issuance of a utility token makes developers optimize platform
adoption instead of cash flows under full commitment to transaction fees. It therefore follows that
the ability to commit makes ICOs relatively more valuable.

Corollary 4. Assume full commitment to fees {f} and φ > µH . Then, α = 0 is optimal if and
only if:

(1− ξ)(φ− µH) ≥ vr

((
(φ− µH)

(φ− µH + vr)ξ

) 1
1−ξ

ξ
ξ
ξ−1

)
. (G.3)

Otherwise, α = 1 is optimal.

G.3.1 Proof of Corollary 3

Proof. 1. Assume that vr > (µH + f)α. Under full commitment, developers choose the fee f in
order to maximize (given α) S(α). Note that

∂S(α)

∂f
∝ (vr + (µH + f)(1− α))N ′H(f) + (1− α)NH(f)

∝ 1− 1

1− ξ
(vr + (µH + f)(1− α))

vr + φ− µHα+ (1− α)f
.

In optimum, the FOC ∂S(α)
∂f = 0 must hold. We can solve for optimal f = f∗ via (1− α)f =

φ(1−ξ)−µH−ξvr
ξ + αµH leading to the adoption level N∗H =

(
AHξ
φ−µH

) 1
1−ξ

.

2. Next, consider vr ≤ (µH + f)α. If vr = (µH + f)α, then f = vr
α − µH and N∗H =(

AHξ
vr
α

+φ−µH

) 1
1−ξ

. If vr < (µH + f)α, then NH =
(
AH
φ+f

) 1
1−ξ

and PH = α(µH+f)NH
r . We
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can wlog. assume that α = 1. The FOC of maximization is

∂S(α)

∂f
∝ (µH + f)N ′H(f) +NH(f) ∝ 1− 1

1− ξ
µH + f

vr + f
= 0.

We can solve for: f = (1−ξ)φ−µH
ξ .

Overall, if vr ≤ α(µH+f), then f = f∗ = max
{

(1−ξ)φ−µH
ξ , vrα − µH

}
. Because of (1−ξ)φ−µH

ξ <
vr
α − µH ⇐= (1− ξ)(φ− µH) < vrξ, we have that f = f∗ = vr/α− µH .

In sum, we have shown that f∗ = min
{

(1−ξ)φ−ξvr−(1−αξ)µH
ξ(1−α) , vrα − µH

}
, as desired. Consider

the equation (1−ξ)φ−ξvr−(1−αξ)µH
ξ(1−α) = vr

α − µH . If (1 − ξ)φ − ξvr − µH > 0, the above equation

possesses a unique solution on α2 ∈ (0, 1).

G.3.2 Proof of Corollary 4

Proof. As in the proof of corollary 1, it suffices to compare payoffs under the polar cases α = 0 and
α = 1. Notably, α = 0 is optimal if and only if:(

vr +
(1− ξ)(φ− µH)− ξvr

ξ

)(
AHξ

φ− µH

) 1
1−ξ
≥ vr

(
AH

vr + φ− µH

) 1
1−ξ

⇐⇒ (1− ξ)(φ− µH)

ξvr
≥
(

(φ− µH)

(φ− µH + vr)ξ

) 1
1−ξ

⇐⇒ (1− ξ)(φ− µH) ≥ vr

((
(φ− µH)

(φ− µH + vr)ξ

) 1
1−ξ

ξ
ξ
ξ−1

)
.

G.4 Proof of Corollary 2

Proof. First, absent commitment, the fee levied reads f∗ = min
{

(1−ξ)(vr+φ)−(1−αξ)µH
ξ(1−α) , vrα − µH

}
,

which is—due to vr ≥ µH —negative if and only if (1−ξ)(vr+φ)−(1−αξ)µH
ξ(1−α) < 0, i.e., if and only if

µH > S := (1−ξ)(vr+φ)
1−αξ .

Second, with full commitment to a fee structure at time zero, Proposition 4 implies the optimal

fee is given by f∗ = min
{

(1−ξ)φ−ξvr−(1−αξ)µH
ξ(1−α) , vrα − µH

}
, which is smaller than zero if and only if

(1−ξ)φ−ξvr−µH
ξ + αµH < 0, i.e., if and only if µH > S − vr

1−ξα .

H Dynamic trading

The objective of this Appendix is to introduce richer trading dynamics in the model by considering
the role of speculators. Specifically, we consider that there are risk neutral speculators with discount
rate ρ < r, capturing the notion that speculators are financially less constrained or more diversified
than users and developers. Developers cannot commit at time zero to their trading of tokens.19

19Similar results could be obtained by assuming instead that users discount at rate ρ < r instead of r. However, to
facilitate comparison with the previous sections, we introduce speculators. In line with this assumption, Fahlenbrach
and Frattaroli (2019) document that tokens are held by both speculators and platform users.
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In addition to speculators, we introduce convex costs of effort κa2

2 and assume that with effort
a ∈ [0, ā], the project succeeds at time τ and At = AH with probability pa and the project fails
at time τ with At = AL with probability 1 − pa. The convex cost is needed to generate smooth
trading patterns, as will become clear below. We impose that ā ≤ 1 and p ∈ (0, 1) and assume
throughout that optimal effort is interior.

We look for a Markov Perfect equilibrium with state variable β, where dβt = ηtdt − βt1{t=τ}.
That is, developers optimally sell all retained tokens at time τ because, as in the baseline model,
there is no moral hazard problem after time τ . After time τ , the token price (adoption level) is
given by PH (NH), if A = AH , and is given by PL (NL), if A = AL. Before time τ , the token
price is a function of β, P (β), and the developers’s value function is also a function of β, V (β); in
addition, the developers trade tokens at endogenous rate ηt for t < τ .

Fix α, which is chosen at time zero, and consider the developers’ problem in state β. Define
the developers’ payoff from reaching the milestone with A = Ai:

Ti(β) := βPi +
(1− α)µiNi

r
.

This payoff consists of the value of token sales at the milestone, βPi, and the present value value
of future dividends, (1−α)µiNi

r . Developers’ value function V (β) before time τ reads then

(r + Λ)V (β) = max
η,a

{
Λ (paTH(β) + (1− pa)TL(β))− κa2

2
+ η(V ′(β)− P (β))

}
,

where the last term in the brackets captures the effects of trading. Thus, if effort a is interior (i.e.,
a < ā), it is given by

a =
Λp

κ
(TH(β)− TL(β)). (H.1)

That is, incentives are captured by the difference TH(β)−TL(β). It is easy to see that TH(β)−TL(β)
increases in β, so that token retention incentivizes effort.

Using arguments similar to those presented in DeMarzo and Urošević (2006), one can show that

in equilibrium, developers are indifferent between buying and selling tokens. That is, ∂V (β)
∂η = 0

whenever β ∈ (0, 1), i.e.,
P (β) = V ′(β). (H.2)

The reason is that developers’ token sales exacerbate moral hazard and thereby depress platform
value and token prices. As developers cannot commit to keeping tokens, they sell tokens and
decrease the token price up to the point that they become marginally indifferent between buying
and selling tokens. As such, all gains from trade are in equilibrium dissipated by the subsequent
rise in agency costs (this observation is also related to that in DeMarzo and He (2020) on the effects
of changes in capital structure on shareholder wealth in a no-commitment equilibrium).

We can insert (H.1) and (H.2) back into developers’ HJB equation and solve for their value
function in closed form

V (β) =
ΛTL(β) + 1

2κ(Λp(TH(β)− TL(β)))2

r + Λ
.
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Figure 10: Model with optimal dynamic trading with κ = 33.33, I = 20, and p = 0.5.

Using (H.2) and differentiating the value function with respect to β, we obtain

P (β) =
ΛT ′L(β) + (Λp)2

κ (TH(β)− TL(β))(T ′H(β)− T ′L(β))

r + Λ
.

That is, the token price for t < τ is a function of β, in that Pt = P (βt). Before time τ , speculators
are marginal token investors. Since they are risk neutral, they simply need to be compensated for
their time preference ρ, in that ρPtdt = EdPt. This can be written as

ρP (β) = Λ(paPH + (1− pa)PL − P (β)) + P ′(β)η.

Using this equation, we can solve for the trading rate η in closed form:

η =
(ρ+ Λ)P (β)− Λ(paPH + (1− pa)PL)

P ′(β)
.

As ρ < r and there are gains for developers from selling tokens, it follows that η < 0. That is,
developers optimally sell their token at a rate before the milestone is reached.

The initial retention level β is set such that (1− β)P (β) = I and developers choose α to solve
the problem

max
α∈[0,1]

V (β).

We solve for the optimal value of α and initial retention β = β0. Fig. 10 presents the model
outcomes for different values of κ, I, and 1/Λ. As in the baseline version of the model, an increase
of κ, I, or 1/Λ reduces the provision of security features α as well as the initial retention level β.

I Operating flow costs

Consider that instead of a cost I at time zero, developers incur monetary flow costs idt when
developing the project over [t, t+ dt). There are no financing frictions and to cover these monetary
flow costs, developers sell retained tokens. Developers can stop financing the platform, in which
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case it cannot be completed and future productivity equals zero. That is, for t < τ , the milestone
τ arrives with probability Λdt over [t, t+ dt) only if developers cover the development costs idt.

Starting with β0 = 1 retained tokens at time zero, developers sell the retained tokens at rate
η < 0 during platform development [0, τ) to cover development costs idt. In addition, developers
sell all retained tokens at the milestone τ . Formally:

dβt = ηtdt− βt1{t=τ}.

We look for a Markov Perfect Equilibrium with state variable β. Before the milestone is reached
(i.e., for t < τ), the developers’ value function V (β) and the token price P (β) are functions of β.
To solve the model with flow costs, we first fix a level of α and solve for V (β) and P (β). We then
select the optimal level of α by maximizing developers’ payoff at time zero.

As in the baseline version, there is a moral hazard problem, in that developers must exert effort
to achieve high platform productivity and exerting full effort is optimal in equilibrium. As a result,
the incentive condition (14) must be satisfied:

IC(α) := Λ

(
βPH +

(1− α)µHNH

r

)
− κ︸ ︷︷ ︸

Payoff under at=1

−Λ

(
βPH +

(1− α)µLNL

r

)
︸ ︷︷ ︸

Payoff under at=0

≥ 0. (I.1)

Crucially, selling tokens reduces the retention level β, thereby undermining developers’ incentives
to exert effort. Because users and developers both discount at rate r, there are no gains from trade,
so that at any point in time t < τ , developers sell the minimal amount of tokens that is needed to
cover financing i, which maximizes incentives and thus is optimal. That is:

− ηP (β) = i ⇐⇒ η =
i

P (β)
. (I.2)

For a given level of α, the minimum level of retention β (depending on α) required to maintain
incentive compatibility satisfies IC(α) = 0, so that

β =
κ

Λ(PH − PL)
+

(1− α)(µLNL − µHNH)

r(PH − PL)
.

In the following, we assume that i) β ≥ 0 and ii) the project is inefficient to finance when produc-
tivity is low. The latter assumption implies that platform development and financing is terminated
once β reaches β (and the project is never started when β ≥ 1).

Conditional on full effort, the developers’ value function solves the ODE

(r + Λ)V (β) = Λ

(
βPH +

(1− α)µHNH

r

)
+ V ′(β)η,

subject to V (β) = 0, while the token price solves the ODE

(r + Λ)P (β) = ΛPH + P ′(β)η,

subject to P (β) = 0. The trading rate η is given by η = i/P (β). The solution to this system of
coupled ODEs is not available in closed-form.

Finally, the optimal level of token security features α is set to maximize developers’ payoff at
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time zero V (β0) = V (1), so that developers solve

max
α∈[0,1]

V (1).
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