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Abstract

We build a dynamic agency model in which the agent controls both current earnings

via short-term investment and firm growth via long-term investment. Under the optimal

contract, agency conflicts can induce short- and long-term investment levels beyond first

best, leading to short- or long-termism in corporate policies. The paper analytically shows

how firm characteristics shape the optimal contract and the horizon of corporate policies,

thereby generating a number of novel empirical predictions on the optimality of short- vs.

long-termism. It also demonstrates that combining short- and long-term agency conflicts

naturally leads to asymmetric pay-for-performance in managerial contracts.
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1 Introduction

Should firms target short-term objectives or long-term performance? The question of the opti-

mal horizon of corporate policies has received considerable attention in recent years, with much

of the discussion focusing on whether short-termism destroys value. The worry often expressed

in this literature is that short-termism—induced for example by stock market pressure—may

lead firms to invest too little (see Asker, Farre-Mensa, and Ljunqvist (2015), Bernstein (2015),

or Gutierrez and Philippon (2017) for empirical evidence). Another line of argument recognizes

however that while firms must invest in their future if they are to have one, they must also

produce earnings today in order to pay for doing so. In line with this view, Giannetti and

Yu (2018) find that firms with more short-term institutional investors suffer smaller drops in

investment and have better long-term performance than similar firms following shocks that

change an industry’s economic environment.

While empirical evidence relating short- or long-termism to firm performance is accumulat-

ing at a fast pace, financial theory has made little headway in developing models that character-

ize the optimal horizon of corporate policies or the relation between firm characteristics and this

horizon. In this paper, we attempt to provide an answer to these questions through the lens of

agency theory. To do so, we develop a dynamic agency model in which the agent controls both

current earnings and firm growth (i.e., future earnings) through unobservable investment. In

this multi-tasking model, the principal optimally balances the costs and benefits of incentivizing

the manager over the short- or the long-term. As shown in the paper, this can lead to optimal

short- or long-termism, depending on the severity of agency conflicts and firm characteristics.

Additionally, we show that the same firm can find it optimal at times to be short-termist—i.e.,

favor current earnings—and at other times to be long-termist—i.e., favor growth. Our findings

are generally consistent with the views expressed in The Economist1 that “long-termism and

short-termism both have their virtues and vices—and these depend on context.”

We start our analysis by formulating a dynamic agency model in which an investor (the

1See “The Tyranny of the Long-Term,”The Economist, November 22, 2014.
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principal) hires a manager (the agent) to operate a firm. In this model, agency problems

arise because the manager can take hidden actions that affect both earnings and firm growth.

As in He (2009) or Bolton, Wang, and Yang (2019), earnings are proportional to firm size,

which is stochastic and governed by a (controlled) geometric Brownian Motion (i.e., subject

to permanent growth shocks). In contrast with these models, earnings are also subject to

moral hazard and short-term shocks that do not necessarily affect (or correlate with) long-term

prospects (i.e., shocks to firm size). The agent controls the drifts of the earnings and firm size

processes through unobservable investment. Notably, the agent can stimulate current earnings

via short-term investment and firm growth via long-term investment.

Investment is costly and the manager can divert part of the funds allocated to investment,

which requires the compensation contract to provide sufficient incentives to the agent. Un-

der the optimal contract, the manager is thus punished (rewarded) if either cash-flow or firm

growth is worse (better) than expected. Because the manager has limited liability, penalties

accumulate until the termination of the contract, which occurs once the manager’s stake in the

firm falls to zero. Since termination generates deadweight costs, maintaining incentive compat-

ibility is costly. Based on these tradeoffs, the paper derives an incentive compatible contract

that maximizes the value that the principal derives from owning the firm. It then analyti-

cally demonstrates that the optimal contract can generate short- or long-termism in corporate

policies, defined as short- or long-term investment levels above first-best levels.

Our theory of short- and long-termism differs from existing contributions in two important

respects. First, while most dynamic agency models focus either on short- or long-term agency

conflicts, we consider a multi-tasking framework with both long- and short-term agency con-

flicts. We show that agency conflicts over different horizons interact, which can generate short-

and long-termism in corporate policies. Second, unlike most models on short-termism, we do

not assume that focusing either on the short or the long term is optimal. In our model, the

optimal corporate horizon is determined endogenously and reflects both agency conflicts and

firm characteristics. These unique features allow us to generate a rich set of testable predictions

about firms’ optimal investment rates and the horizon of corporate policies.
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A first result of the paper is to show that short- or long-termism can only arise when

the firm is exposed to a dual moral hazard problem. To understand why this condition is

necessary, consider first long-termism. In our model, positive growth shocks lead to a permanent

increase in earnings (and risk) and to a greater misalignment between shareholders’ interests

and management’s incentives by diluting the manager’s stake in the firm. To offset these

adverse dilution effects and reduce agency costs, the manager’s promised wealth must increase

sufficiently in response to positive growth shocks. When the firm is exposed to both long- and

short-term moral hazard, the contract optimally grants the manager a larger stake in the firm,

which increases potential dilution effects. The principal then counteracts these dilution effects

by tying the agent’s compensation more to long-term performance (i.e., long-term shocks),

which leads to higher powered long-run incentives. The incentive compatibility condition with

respect to long-term investment, which associates higher-powered incentives to higher levels of

investments, in turn implies that the firm must also increase long-term investment, possibly

beyond first-best levels. Our analysis demonstrates that long-termism is more likely to arise

when the firm’s cash flow is more volatile or when its investment technology is less efficient.

A second result of the paper is to show that short-termism can only arise if the firm is

exposed to a dual moral hazard problem and there are direct externalities between short- and

long-term investment. Notably, we show that a necessary condition for short-termism is that

shocks to firm size and shocks to cash flows are correlated. When this correlation is negative—

an assumption supported in the data (see, e.g., Chang, Dasgupta, Wong, and Yao (2014))—we

additionally show that short-termism occurs when the agent’s stake in the firm is low and

the risk of termination and agency costs are high. Indeed, in such instances, the benefits

of long-term growth are limited. By contrast, stimulating short-term investment increases

earnings and reduces the risk of termination and agency costs. Interestingly, a recent study by

Barton, Manyika, and Williamson (2017) finds using a data set of 615 large- and mid-cap US

publicly listed companies from 2001 to 2015 that “the long-term focused companies surpassed

their short-term focused peers on several important financial measures.” While our model does

indeed predict that firm performance should be positively related to the corporate horizon, it
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in fact suggests the reverse causality.2

Incentives are provided in the optimal contract by making the agent’s compensation con-

tingent on firm performance, via exposure to the firm’s stock price and earnings. In previous

dynamic contracting models, the optimal contract generates just enough incentives to the agent

(i.e., incentive compatibility constraints are tight) because incentive provision comes with the

threat of termination and is therefore costly to implement. A distinctive feature of our model

is that the optimal contract introduces exposure to permanent shocks that is not needed to

incentivize investment. In particular, the agent is provided minimal long-run incentives when

the firm is close to financial distress and higher powered long-run incentives after positive

past performance, when sufficient slack has been accumulated. In this region, incentives have

option-like features and increase after positive performance.

To understand this result, note that when the manager’s stake is large and therefore sub-

ject to substantial dilution risk upon unexpected firm growth, it becomes optimal to mitigate

these adverse dilution effect through high powered incentive pay. This generates the distinct

prediction that extra pay-for-performance is introduced when the manager’s stake in the firm

and dilution risk are large enough. We show indeed that in such instances the principal can

eliminate dilution risk by fully exposing the manager’s wealth to permanent shocks, while

maintaining incentive compatibility. When this is the case, long-run incentives are effectively

costless and the manager is exposed to permanent, growth shocks beyond the level needed to

incentivize long-term investment. In other words, positive permanent shocks lead to additional

pay-for-performance and negative permanent shocks eventually eliminate this extra sensitivity

to performance implied by the optimal contract. Our model therefore provides a rationale for

the asymmetry of pay-for-performance observed in the data (see, e.g., Garvey and Milbourn

(2006) and Francis, Iftekhar, Kose, and Zenu (2013)).

Our paper relates to the growing literature on short-termism. Influential contributions in

2Interestingly, this causality issue is already discussed in The Economist, Schumpeter’s article “Corporate
short-termism is a frustratingly slippery idea” who writes: “Do short-term firms become weak or do weak firms
rationally adopt strategies that might be judged short term?” Similarly, Barton et al. (2017) write in their
own study “one caveat: we’ve uncovered a correlation between managing for the long term and better financial
performance; we haven’t shown that such management caused that superior performance.”
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this literature include Stein (1989), Bolton, Scheinkman, and Xiong (2006) or Aghion and

Stein (2008) in which stock market pressure leads managers to boost short-term earnings at

the expense of long-term value. In related work, Thakor (2018) builds a model in which short-

termism is efficient as it limits managerial rent extraction and leads to a better allocation

of managers to projects. Narayanan (1985) develops a model in which short-term projects

privately benefit managers by enhancing reputation and increasing wages. Von Thadden (1995)

studies a dynamic model of financial contracting in which the fear of early project termination

by outsiders leads to short-term biases of investment. Marinovic and Varas (2018) and Varas

(2017) develop dynamic contracting models in which the manager can undertake inefficient

actions to boost short-run performance at the expense of the long-run. Likewise, Zhu (2018)

develops a model of persistent moral hazard in which the agent can choose between a short-

and long-term action and characterizes the contract that implements the long-term action. In

contrast with these models, we do not assume that focusing either on the short or the long

term is optimal and there is no intrinsic conflict between short- and long-termism in our setup.

Hoffmann and Pfeil (2018) build a model in which the agent privately observe cash flows that

he can divert and/or invest to increase the likelihood of adoption of future technologies.3 Their

model does not address the issue of short- vs. long-termism in corporate policies.

Our modeling of cash flows with permanent and transitory shocks is similar to that in

Décamps, Gryglewicz, Morellec, and Villeneuve (2017) and Hackbarth, Rivera, and Wong

(2018). The model of Décamps et al. (2017) does not feature agency conflicts. The model of

Hackbarth et al. (2018) shows that debt financing may render short-termism optimal for share-

holders. Their dynamic agency model differs from ours in that it considers different managerial

preferences and focuses on the agency-induced cost of debt (overhang). Consequently, the

mechanism generating short-termism is distinct from ours. Notably, short-termism only arises

because debt overhang reduces the benefits of long-term investment to shareholders which, in

3While Hoffmann and Pfeil (2018) find that overinvestment is more likely for firms with a superior investment
technology, our model implies that overinvestment rather arises when the investment technology is inefficient.
In Hoffmann and Pfeil (2018) firm size remains constant over time, thereby ruling out potential dilution of the
managerial stake, so that the mechanism leading to over-investment differs from ours.
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the presence of a resource constraint, leaves more resources for short-term investment. Unlike

our model, their model does not feature long-termism or asymmetric pay-for-performance.

Our paper is more generally related to the growing literature on dynamic contracting. Most

contributions in this literature study agency conflicts over the short run, using a stationary en-

vironment characterized by identically and independently distributed cash flow shocks; see for

example DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007), Sannikov

(2008), Zhu (2012), Miao and Rivera (2016), Malenko (2018), or Szydlowski (2018). Likewise,

Biais, Mariotti, Rochet, and Villeneuve (2010) and DeMarzo, Fishman, He, and Wang (2012)

study dynamic contracting models with time-varying firm size in which cash-flow shocks are

short-lived. In these models, the manager can affect current but not directly future firm per-

formance. In contrast, He (2009) and He (2011) focus on agency conflicts over the long run by

considering a framework in which the manager can affect firm growth.4 In these last two mod-

els, instantaneous earnings are not subject to short-term moral hazard. Our model combines

both strands of the literature in a unified framework in which the optimal horizon of corporate

policies arises endogenously. Our framework is also related to Ai and Li (2015) and Bolton

et al. (2019), which study optimal investment under limited commitment. These models do not

feature moral hazard. Ai and Li (2015) demonstrate that shareholders’ limited commitment can

lead to overinvestment in a model in which firms are subject to permanent shocks. In contrast,

we assume full commitment of shareholders (the principal) and identify agency frictions as a

potential driver of overinvestment.

Section 2 presents the model and its solution. Section 3 analyzes the implications of the

model for optimal investment. Section 4 derives predictions on the horizon of corporate policies.

Section 5 shows how the optimal contract can be implemented by exposing the manager to the

firm’s stock price and earnings. Section 6 focuses on asymmetric pay-for-performance. Section

7 shows the robustness of our results to alternative model specifications. Section 8 concludes.

4In a similar setting, Gryglewicz and Hartman-Glaser (2019) show that agency conflicts over the long-run
can lead to the early exercise of real options.
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2 The model

2.1 Assumptions

Throughout the paper, time is continuous and uncertainty is modeled by a probability space

(Ω,F ,F,P) with the filtration F = {Ft : t ≥ 0}, satisfying the usual conditions. We con-

sider a principal-agent model in which the risk-neutral owner of a firm (the principal) hires a

risk-neutral manager (the agent) to operate the firm’s assets. In the model, firm performance

depends on investment, which can be targeted towards the short- or long-run and entails a mon-

etary cost. Agency problems arise because investment decisions are delegated to the manager,

who can take divert part of the resources allocated to investment.

The firm employs capital to produce output, whose price is normalized to one. At any

time t ≥ 0, earnings are proportional to the capital stock Kt—i.e., the firm employs an “AK”

technology—and subject to permanent (long-term) and transitory (short-term) shocks. Perma-

nent shocks change the long-term prospects of the firm and influence cash flows permanently by

affecting firm size. Following He (2009), DeMarzo et al. (2012), and Bolton, Chen, and Wang

(2011), we consider that the firm’s capital stock (firm size) {K} = {Kt}t≥0 evolves according

to the controlled geometric Brownian motion process:5

dKt = (`tµ− δ)Ktdt+ σKKtdZ
K
t , (1)

where µ > 0 is a constant, δ > 0 is the rate of depreciation, σK > 0 is a constant volatility

parameter, {ZK} = {ZK
t }t≥0 is a standard Brownian motion, and `t is the firm’s long-term

investment choice. For the problem to well defined, we consider that `t ∈ [0, `max] with `max <

r+δ
µ

where r ≥ 0 is the constant discount rate of the firm owner. In addition to these permanent

shocks, cash flows are subject to short-term shocks that do not necessarily affect long-term

5This specification for capital accumulation and revenue in which capital dynamics are governed by a con-
trolled geometric Brownian motion has been used productively in asset pricing (e.g. Cox, Ingersoll, and Ross
(1985) or Kogan (2004)), corporate finance (e.g. Abel and Eberly (2011) or Bolton et al. (2019)), or macroeco-
nomics (e.g. Gertler and Kiyotaki (2010) or Brunnermeier and Sannikov (2014)).
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prospects. Specifically, cash flows dXt are proportional to Kt but uncertain and governed by:

dXt = KtdAt = Kt

(
stαdt+ σXdZ

X
t

)
, (2)

where α and σX are strictly positive constants, st ∈ [0, smax] is the firm’s short-term investment

choice and {ZX} = {ZX
t }t≥0 is a standard Brownian motion. In the following, {ZX} is allowed

to be correlated with {ZK} with correlation coefficient ρ, in that:6

E[dZK
t dZ

X
t ] = ρdt, with ρ ∈ (−1, 1). (3)

Investment entails costs I(Kt, st, `t). We assume that the investment cost is homogeneous

of degree one in capital Kt, as in DeMarzo et al. (2012) or Bolton et al. (2011). That is, we

have that I(Kt, st, `t) ≡ KtC(st, `t), where we assume that C is increasing and convex in its

arguments. Unless otherwise mentioned, we consider quadratic costs of investment

C(st, `t) =
1

2

(
λss

2
tα + λ``

2
tµ
)
, (4)

in which case we assume that smax, `max are large enough to ensure that investment is interior at

all times. The assumption of quadratic investment cost is made merely for analytical parsimony,

in that all our results in sections 1-4 hold true for any other cost function that is strictly convex

in s, `. This includes cost-functions where short- and long-run investment are substitutes or

complements, which occurs when ∂2C(s,`)
∂s∂`

6= 0. We purposefully refrain from such a specification

6In general, the correlation coefficient ρ between short-term and permanent cash flow shocks can be positive
or negative. Considering, for example, the automobile industry, there is a general tendency for buyers of
moving away from diesel cars towards electric cars. In the case of Volkswagen, this negative permanent demand
shock on diesel cars has been compounded by the diesel gate, implying a positive correlation between short-run
and long-run cash flow shocks. In the case of Tesla Motors, the positive long-run demand shock on electric
cars has been dampened by negative shocks on the supply chain (notably for Model 3), implying a negative
correlation between short-run and long-run cash flow shocks. Additional examples of a negative correlation
include decisions to invest in R&D or to sell assets. When the firm sells assets today, it experiences a positive
cash flow shock. However, it also decreases permanently future cash flows. Examples of positive correlation
include price changes due to the exhaustion of the existing supply of a commodity or improving technology for
the production and discovery of a commodity. Chang, Dasgupta, Wong, and Yao (2014) estimate that for firms
listed in the Compustat Industrial Annual files between 1971 and 2011, the correlation between short-term and
permanent cash flow shocks is negative.
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because interactions between short- and long-run investment arise endogeneously in our model

and we are able to attribute these interactions entirely to the presence of moral hazard over

different time-horizons.7

The manager is protected by limited liability, does not accept negative payments from the

principal dCt, and cannot be asked to cover the investment cost I(Kt, st, `t) = KtC(st, `t) out

of her own pocket. More specifically, the principal has to allocate funds to the manager before

she can carry out the investment decisions st, `t. As a result, over [t, t + dt] the agent is paid

dCt+KtC(st, `t)dt and wage payments net of investment cost dCt must be positive, i.e., dCt ≥ 0.

At any time t, the manager has full discretion over investment st, `t and can divert from the

funds KtC(st, `t) she is handed over from the principal. In particular, the manager can change

recommended short-run (respectively long-run) investment st (respectively `t) by any amount

εs (respectively ε`) and keep the difference between actual investment cost and allocated funds,

i.e.,

Kt

[
C(st, `t)− C(st − εs, `t − ε`)

]
,

for herself. Because {X} and {K} are subject to Brownian shocks—as long as σX > 0 and

σK > 0—there is moral hazard over short- and long-term investment decision. For simplicity,

we assume that diversion does not entail efficiency losses.

In the baseline version of our model, we assume the agent has sufficient private funds so that

she can in principle also boost firm investment, i.e., implement investment ŝt > st or ˆ̀
t > `t.

While this assumption does not drive our main results, it offers several advantages. First, it

considerably simplifies the analysis. Second, and most importantly, it allows us to connect more

easily to the existing models of He (2009) and DeMarzo et al. (2012) and to clearly demonstrate

how the combination of short- and long-run moral hazard induces short- and long-termism. We

7The cost of investment C could also be linear in st, `t. Optimal investment would accordingly follow a
bang-bang solution, that is either full or no investment (st, `t) ∈ {0, smax} × {0, `max}, in which case finite
boundaries smax, `max would be needed to ensure a well-behaved solution. The upper bounds on the investment
levels can be related to the maximum time the manager can spend on the job. The upper bound on long-term
investment, i.e., `max <

r+δ
µ , also naturally arises in our model as a necessary condition to obtain finite firm

values. Equivalently, there are linear adjustment cost of investment up to some threshold—that is smax for
short-run and `max for long-run investment—and infinite adjustment cost afterwards. We analyze this special
case in section 4.
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analyze the case of limited, i.e., zero, private wealth in section 5 and show that our results on

short- and long-termism hold in this alternative setting.

As in DeMarzo and Sannikov (2006), Biais et al. (2007), or DeMarzo et al. (2012), the agent

is more impatient than the principal and has a discount rate γ > r. As a result, the principal

cannot indefinitely postpone payments to the agent. The agent possesses an outside option

normalized to zero and maximizes the present value of her expected payoffs.8 Because the

agent is protected by limited liability, her continuation value can never fall below her outside

option in which case she would profit from leaving the firm. Her employment starts at time

t = 0 and is terminated at an endogenous stopping time τ at which point the firm is liquidated.

At the time of liquidation, the principal recovers a fraction R > 0 of assets, valued at RKτ .

Liquidation is inefficient and generates deadweight losses.9

Before proceeding, note that when σK = 0, we obtain the environment of the dynamic

agency model of DeMarzo et al. (2012) or the financing frictions model of Bolton et al. (2011).

Since there is no noise to hide the long-term investment choice, the long-term agency conflict is

irrelevant in that case. By contrast, when σX = 0, we obtain the cash-flow environment used in

the dynamic capital structure (Leland (1994) or Strebulaev (2007)) and real options literature

(Carlson, Fisher, and Giammarino (2006) or Morellec and Schürhoff (2011)) as well as in the

dynamic agency models of He (2009, 2011). Since there is no noise to hide the short-term

investment choice, the short-term agency conflict is irrelevant in that case.

2.2 The contracting problem

To maximize firm value, the investor chooses short- and long-term investment {s}, {`} and

offers a full-commitment contract to the agent at time t = 0, which specifies wage payments

8As in Albuquerque and Hopenhayn (2004) or Rampini and Viswanathan (2013), we could assume that the
manager can appropriate a fraction of firm value so that the manager has reservation value θKt, where θ ≥ 0 is
a constant parameter. The entire analysis can be conducted by replacing 0 with θ.

9We could equally assume that the firm can replace the manager instead of being liquidated when w falls
to zero. The model results would remain unchanged, as long as finding a new manager, i.e., replacement, is
costly for the firm. For instance, one could assume some replacement cost kKτ , which could be microfounded
by costly labor market search.
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{C}, recommended investment {s}, {`}, and a termination time τ . Because the agent cannot

be paid any negative amount net of investment cost, the process {C} is non-decreasing in that

dCt ≥ 0 for all t ≥ 0. Moreover, the contract cannot request the agent to finance investment,

so that she is handed over the investment cost I(Kt, st, `t) at time t from the principal. We let

Π ≡ ({C}, {s}, {`}, τ) represent the contract, where all elements are progressively measurable

with respect to F. With the agent’s actual investment choice {ŝ}, {ˆ̀}, we call a contract

incentive compatible if st = ŝt and `t = ˆ̀
t for all t ≥ 0 and focus throughout the paper on

incentive compatible contracts, where we denote the set of these contracts by IC. Since we only

consider contracts of the set IC, we will not formally distinguish between recommended and

actual investment.

For an incentive compatible contract Π let us define the agent’s expected payoff at time

t ≥ 0, i.e., her continuation value, as

Wt = Wt(Π) ≡ Et
[∫ τ

t

e−γ(u−t)dCu

]
.

Wt = Wt(Π) equals the promised value the agent gets if she follows the recommended path

from time t ≥ 0 onwards. W0 = W0(Π) is the agent’s expected payoff at inception.

The principal receives the firm cash flows net of investment cost and pays the compensation

to the manager. As a result, given the contract Π, the principal’s expected payoff can be written

as:

P̂ (W,K) ≡ E
[∫ τ

0

e−rt(dXt −KtC(st, `t)dt− dCt) + e−rτRKτ

∣∣∣W0 = W,K0 = K

]
. (5)

The objective of the principal is to maximize the present value of the firm cash flows plus

termination value net of the agent’s compensation, where we make the usual assumption that

the principal possesses full bargaining power. Denote the set of incentive compatible contracts
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by IC. The investor’s optimization problem reads

P (W,K) ≡ max
Π∈IC

P̂ (W,K) s.t. Wt ≥ 0 and dCt ≥ 0 for all t ≥ 0. (6)

With slight abuse of notation, we denote by Π ≡ ({C}, {s}, {`}, τ) the solution to this opti-

mization problem.

2.3 First-best short- and long-term investment

We start by deriving the value of the firm and the optimal investment levels absent agency

conflicts, i.e. when there is no noise to hide the agent’s action in that σX = σK = 0. Throughout

the paper, we refer to this case as the first-best (FB) outcome.

Given the stationarity of the firm’s optimization problem, the choice of s and ` is time-

invariant absent agency conflicts and the first-best firm value reads

P FB(K) = max
(s,`)∈[0,smax]×[0,`max]

K

r + δ − µ`

[
αs− 1

2

(
λsαs

2 + λ`µ`
2
)]
≡ KpFB,

where the short- and long-term investment choice {sFB, `FB} maximize firm value. We denote

the scaled firm value absent moral hazard by pFB. Simple algebraic derivations lead to the

following result:

Proposition 1 (First-best firm value and investment choices). Assume the bounds imax for

i ∈ {s, `} are such that the first-best solution is interior. Then the following holds:

i) First-best short-term investment satisfies: sFB = 1
λs

.

ii) First-best long-term investment satisfies: `FB = 1
µ

[
r + δ −

√
(r + δ)2 − µα

λsλ`

]
= pFB

λ`
.

2.4 Model solution

We now solve the model with agency conflicts over the short and long term, that is assuming

σK > 0 and σX > 0. Recall that the contract specifies the firm’s investment policy {s}, {`},
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payments to the agent C, and a termination date τ all as functions of the firm’s profit history.

Given an incentive-compatible contract and the history up to time t, the discounted expected

value of the agent’s future compensation is given by Wt. As in DeMarzo and Sannikov (2006)

or DeMarzo et al. (2012), we can use the martingale representation theorem to show that the

continuation payoff of the agent solves:

dWt = γWtdt− dCt + βst (dXt − αstKtdt) + β`t (dKt − (µ`t − δ)Ktdt). (7)

This equation shows that the agent’s continuation value must grow at rate γ, in order to

compensate for her time-preference. In addition, compensation must be sufficiently sensitive to

firm performance, as captured by the processes βst = dWt/dXt and β`t = dWt/dKt, to maintain

incentive compatibility. To understand why such a compensation scheme may align incentives,

suppose that the agent decides to deviate from the recommended choice and chooses investment

ŝt = st − ε during an instant [t, t + dt]. By doing so, she keeps the amount of investment cost

saved

Kt

(
C(st, `t)− C(st − ε, ˆ̀

t)
)
dt ' KtCs(st, `t)εdt = Ktαλsstεdt.

At the same time however, she lowers mean cash flow by Ktαεdt, so that her overall com-

pensation is reduced by αKtβ
s
t εdt. Therefore, the agent does not deviate from the prescribed

short-run investment if βst = λsst. Similarly, the agent does not deviate from the prescribed

long-run investment if β`t = λ``t. Both incentive compatibility constraints require that the

agent has enough skin in the game, as reflected by sufficient exposure to firm performance.

The investor’s value function in an optimal contract, given by P (W,K), is the highest

expected payoff the investor may obtain given K and W . While there are two state variables in

our model, the scale invariance of the firm’s environment allows us to write P (W,K) = Kp(w)

and reduce the problem to a single state variable: w ≡ W
K

, the scaled promised payments to

the agent as in He (2009) or DeMarzo, Fishman, He, and Wang (2012).

To characterize the optimal compensation policy and its effects on the investor’s (scaled)

13



value function p(w), note that it is always possible to compensate the agent with cash so that

it costs at most $1 to increase w by $1 and p′(w) ≥ −1. In addition, as shown by (7), deferring

compensation increases the growth rate of W (and of w) and thus lowers the risk of liquidation,

but is costly due to the agent’s impatience, γ > r. As a result, the optimal contract sets

dc ≡ dC
K

to zero for low values of w and only stipulates payments to the manager once the firm

has accumulated sufficient slack. That is, there exists a threshold w with

p′(w) = −1 and dc = max{0, w − w}, (8)

where the optimal payout boundary is determined by the super-contact condition:

p′′(w) = 0. (9)

When w falls to zero, the contract is terminated and the firm is liquidated so that

p(0) = R. (10)

When w ∈ [0, w], the agent’s compensation is deferred and dc = 0. The Hamilton-Jacobi-

Bellman equation for the principal’s problem is then given by (see Appendix B):

(r + δ)p(w) = max
s,`,βs,β`

{
αs− C(s, `) + p′(w)w(γ + δ − µ`) + µ`p(w) (11)

+
p′′(w)

2

[
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβ
s(β` − w)

]}
,

subject to the incentive compatibility constraints on βs and β`.

Due to the scale invariance, i.e., P (W,K0) = p(w)K0, the investor’s maximization problem

at t = 0 can now be rewritten as

max
w0∈[0,w]

p(w0)K0

14



with unique solution w0 = w∗ satisfying

p′(w∗) = 0. (12)

As a consequence, the principal initially promises the agent utility w∗K0 and expects a payoff

P (K0w
∗, K0) = p(w∗)K0. For convenience, we normalize K0 to unity in the following and

refer to p(w∗) as expected payoff instead of scaled expected payoff. The following Proposition

summarizes our results about the optimal contract. Its proof is deferred to Appendix B.

Proposition 2 (Firm value and optimal compensation under agency).

Let Π ≡ ({C}, {s}, {`}, τ) denote the optimal contract solving problem (6). The following holds

true:

1. There exist F-progressive processes {β`} and {βs} such that the agent’s continuation utility

Wt evolves according to (7). The optimal contract is incentive compatible in that βs = λss

and β` = λ`` where {s}, {`} are the firm’s optimal investment decisions.

2. Firm value is proportional to firm size, in that P (W,K) = Kp(w). The scaled firm value

p(w) is the unique solution to equation (11) subject to (8), (9), and (10) on [0, w]. For

w > w the scaled value function satisfies p(w) = p(w) − (w − w). Scaled cash payments

dc = dC
K

reflect w back to w.

3. The function p(w) is strictly concave on [0, w).

Before proceeding, note that w serves as a proxy for the firm’s financial slack in our model,

so that states where w is close to zero—and the firm close to liquidation—correspond to financial

distress. Since the firm has to undergo inefficient liquidation after a series of adverse shocks

drive w down to zero, the principal becomes effectively risk averse with respect to the volatility

of w, so that the value function is strictly concave. That is p′′(w) < 0 for w < w. Put differently,

the concavity of p implies that the principal would like to minimize the volatility of w, while

maintaining incentive compatibility.
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Note also that overall value, P (W,K) +W , is split between the principal and the manager,

where the manager obtains a fraction

S(w) =
W

P (W,K) +W
=

w

p(w) + w
,

of overall value. Because of S ′(w) > 0 for all w ∈ (0, w), the scaled continuation value w

corresponds (monotonically) to the fraction of overall firm value that goes to the manager.

Therefore, we also refer to w as the agent’s or manager’s stake in the firm.10 When the

manager’s stake w falls down to zero, she has no more incentives to stay and accordingly leaves

the firm. In this case, deadweight losses are incurred due to contract termination.

3 Short- vs. long-run incentives

This section examines the implications of agency conflicts for long- and short-term investment

choices. For clarity of exposition, we assume that the correlation between short- and long-run

shocks ρ is zero and that the parameters are such that investment levels s and ` are interior.

Section 4.2 analyzes the effects of non-zero correlation.

3.1 Short-term investment and incentives

Optimal short-term investment s = s(w) is obtained by taking the first-order condition in (11)

after utilizing the incentive compatibility condition βs = λss. This yields the following result:

Proposition 3 (Optimal short-term investment). Optimal short-term investment is given by

s(w) =

Direct benefit
of investment︷︸︸︷

α

λsα︸︷︷︸
Direct cost

of investment

−p′′(w)(λsσX)2︸ ︷︷ ︸
Agency cost

of investment

. (13)

10In fact, S ′(w) = p(w) − p′(w)w and S ′′(w) = −wp′′(w) > 0 due to concavity of the value function. Since
S ′(0) = R ≥ 0, it follows that S ′(w) > 0 for all w ∈ (0, w].
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Short-term investment is strictly lower than under first-best except at the boundary, in that

s(w) < sSB for w < w and s(w) = sFB. If γ − r and σK are sufficiently small, then s(w)

increases in w, i.e., ∂s(w)
∂w

> 0

An important implication of Proposition 3 is that agency conflicts lead to underinvestment

for the short run, i.e. s(w) < sFB when ρ = 0. Upon increasing the investment rate s, the firm

does not only incur direct, monetary cost of investment but also agency costs, because higher

s requires higher incentives βs. Consequently, the agent’s stake becomes more volatile, which

raises the risk of costly liquidation and therefore leads to endogeneous agency costs or incentive

costs of investment. These agency costs decrease in the level of financial slack w and vanish

at the payout boundary w where p′′(w) = 0, at which point the firm’s short-run investment

reaches first-best, s(w) = sFB.

3.2 Long-term incentives and investment

Next, we characterize the firm’s optimal long-term investment. Using the HJB equation (11)

and the incentive compatibility condition β` = λ``, we get the following result:

Proposition 4 (Optimal long-term investment). Optimal long-term investment is given by

`(w) =

Direct benefit
of investment︷ ︸︸ ︷

µ(p(w)− p′(w)w)

Reducing dilution risk︷ ︸︸ ︷
−p′′(w)wλ`σ

2
K

λ`µ︸︷︷︸
Direct cost

of investment

−p′′(w)(λ`σK)2︸ ︷︷ ︸
Agency cost

of investment

. (14)

The firm always underinvests for the long-term close to the boundary, in that there exists ε > 0

such that `(w) < `FB for w ∈ [w − ε, w].

To get some intuition for the results in Proposition 4, let us consider the costs and benefits

from marginally increasing long-term investment `:

∂p(w)

∂`
∝ µ(p(w)− p′(w)w)︸ ︷︷ ︸

Direct benefit

−λ`µ`︸ ︷︷ ︸
Direct
cost

+ p′′(w)`(λ`σK)2︸ ︷︷ ︸
Agency cost

−p′′(w)wλ`σ
2
K︸ ︷︷ ︸

Reducing dilution
risk

. (15)

17



Consider first the costs of raising long-term investment. The above expression shows that,

in addition to the direct cost of investment, the firm incurs an agency cost. This agency

cost arises because increasing long-run investment requires higher long-run incentives β` and

therefore makes w more volatile. The agency cost of investment depends on the principal’s

effective risk aversion −p′′(w) and decreases optimal investment `(w).

Consider next the benefits of raising long-term investment. The first difference between

optimal short- and long-term investment is that the direct benefit of long-term investment is

time-varying and given by p(w)− p′(w)w. Note that long-term investment expenditures today

lead to a higher average cash-flow rate in the future. However, due to the possibility of firm

liquidation owing to the moral hazard problem, the firm cannot perpetually enjoy this increase

in the cash-flow rate, so that the benefit of long-term investment p(w)−p′(w)w is strictly lower

than pFB. Ceteris paribus, this lowers the firm’s investment rate `(w). Remarkably, in contrast

to the case of short-term investment, long-term investment is below the first-best level for high

w close to w. The reason is that while the agent becomes a residual claimant on cash flows

at w, she is not a residual claimant on the benefits of long-term growth at the first-best level

because of the agency-induced firm liquidation in the future. It holds, however, that long-

term investment is more profitable when the firm has more financial slack and the distance to

liquidation is far, that is p(w)− wp′(w) increases in w.

A second difference is that investment in `(w) offers an additional benefit compared to

investment in s(w): It mitigates the dilution of the agent’s stake w. Since p′′(w) ≤ 0, this effect

unambiguously increases long-term investment. To understand the source of this effect, first

note that by Ito’s Lemma, the dynamics of the agent’s stake are given by:11

dw = (γ + δ − µ`)wdt+ βsσXdZ
X + (β` − w)σKdZ

K , (16)

11As illustrated in Appendix B, the below dynamics is under an auxiliary measure P̃ rather than under the
physical measure P. The choice of the probability measure does not matter, since w has the same volatility
under both measures and volatility is the only quantity we study in in the following discussion.
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so that the instantaneous variance of dw satisfies

Σ(w) ≡ V(dw)

dt
= (βsσX)2 + (β` − w)2σ2

K . (17)

From equation (16), we see that a positive permanent shock dZK > 0 has two opposing

effects on the manager’s incentives. First, the agent is rewarded for strong performance via

the sensitivity β` and is promised higher future payments W . This increases w = W
K

(via its

numerator) by β`σKdZ
K , which equals λ``(w)σKdZ

K . Second, firm size K grows more than

expected, thereby reducing the agent’s stake w = W
K

(via its denominator) by −wσKdZK . We

refer to the reduction of the agent’s stake upon a positive shock dZK > 0 as dilution and

the volatility generated by this effect, i.e. −wσK , as dilution risk. Altogether, we have that

dw/dZK = (β` − w)σK . Because performance-based compensation and dilution move w in

opposite directions, long-run incentives β` mitigate the dilution effect which, ceteris paribus,

lowers risk (see equation (17)) and is thus beneficial. This makes contracting for long-term

investment cheaper and increases `(w).

More generally, our model suggests that the manager’s compensation should increase with

firm size. Indeed, an increase in firm size (due to a positive permanent shock dZK > 0) raises

both the firm’s future cash-flow rate and the magnitude of future cash-flow shocks. As a result,

the firm becomes not only more profitable but also more risky (in absolute terms). Both effects

call for an increase in the manager’s continuation value, which better aligns the manager’s and

the principal’s interests and facilitates contracting for long-term investment.

It is illustrative to look at this effect from the perspective of agency costs. As long as β` < w,

raising β` lowers the volatility and instantaneous variance Σ(w) of w and therefore the risk of

liquidation, so that the effective (marginal) agency cost of long-run investment is pinned down

by the net change in risk, that is by

−p′′(w)`(λ`σK)2︸ ︷︷ ︸
Agency cost (>0)

+ p′′(w)wλ`σ
2
K︸ ︷︷ ︸

Reducing dilution
risk (<0)

= −p′′(w)σ2
Kλ`(λ``− w)︸ ︷︷ ︸

Effective agency cost (≶0)

. (18)
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As is the case with the agency cost of investment, the benefits of mitigating dilution risk

depend on how much volatility in w matters for the investor’s value function, i.e., on principal’s

effective risk-aversion −p′′(w). Therefore, it is most beneficial to alleviate dilution via long-run

incentives β` when the concavity of the scaled value function is the largest. The effect disappears

at w = w where p′′(w) = 0. When w is close to w and therefore p′′(w) ' 0 and p′(w) ' −1, the

firm always underinvests, because direct benefits of investment p(w)−wp′(w) ' p(w)+w < pFB

are reduced by the presence of moral hazard and agency-induced firm liquidation, which implies

`(w) = (p(w) + w)/λ` < pFB/λ` = `FB.

4 Short- and long-termism in corporate policies

Because the manager’s ability to divert funds decreases the benefits of investment, each moral

hazard problem working in isolation leads to underinvestment relative to the first-best levels.

The novel insight of our model is that a simultaneous moral hazard problem over both the

short- and long-run can generate overinvestment. We call overinvestment for the long-run, i.e.

` > `FB, long-termism and overinvestment for short-run, i.e. s > sFB, short-termism. Below

we analyze and contrast the circumstances that lead to long-termism and short-termism. We

find that long-termism can arise irrespective of whether the different sources of cash-flow risk

are correlated while short-termism requires ρ 6= 0.

4.1 Long-termism

Proposition 4 and equation (14) reveal that moral hazard decreases long-run investment via

the direct benefit channel and the agency cost channel. The firm can potentially overinvest to

reduce dilution risk. In the next proposition, we show that the last effect can dominate the

former two effects and present sufficient conditions for overinvestment to arise.

Proposition 5 (Long-termism). The following holds true:

i) Long-termism, i.e. `(w) > `FB, arises only if σX > 0 and σK > 0.
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ii) Assume σX > 0 and σK > 0. Then, there exist wL and wH with 0 < wL < wH < w such

that `(w) > `FB for w ∈ (wL, wH), provided that µ and γ − r are sufficiently low. The

firm underinvests, i.e. `(w) < `FB, when w < wL or w > wH , that is when w is close to

zero or close to w.

iii) Higher volatility σX > 0 or σK > 0 favors long-termism: If µ is sufficiently low and

parameters are such that sup{`(w) : 0 ≤ w ≤ w} = `FB, then there exists ε > 0 such that

sup{`(w) : 0 ≤ w ≤ w} > `FB if σX or σK increases by ε.

The first part of Proposition 5 states that long-termism can only arise when firm cash flows

are subject to both transitory and permanent shocks, that is when σX > 0 and σK > 0, and

the firm is exposed to a simultaneous moral hazard problem over both the short- and long-

run. When permanent cash-flow shocks are removed from the model, i.e., σK = 0, long-term

investment ` is observable and contractible. In addition, there is no risk of dilution of the

agent’s stake as all shocks are purely transitory in nature. Under these circumstances, long-

term investment satisfies

`(w) =
p(w)− wp′(w)

λ`
<
pFB

λ`
= `FB

Because short-run agency lowers the direct benefits of long-run investment, the firm always

underinvests for the long-term.

To see why transitory shocks, or equivalently moral hazard over the short-term, are essential

for long-termism, we start with the following observation. Since the direct benefit of long-term

investment under moral hazard is below the first-best level, it follows from equation (15) that

a necessary condition for overinvestment in `(w) is that the dilution effect exceeds the agency

cost effect. Using equation (18), this is equivalent to requiring that the effective (marginal)

agency cost is negative. Thus, overinvestment in ` or long-termism arises only if

−p′′(w)(λ``− w)λ`σ
2
K < 0⇐⇒ w > λ`` = β`,
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that is, if the manager’s stake is large relative to her long-term incentives. When σX = 0, the

firm faces no transitory cash-flow risk and therefore optimally grants the manager a relatively

low stake, which puts a limit on potential dilution effects. More specifically, if it were that

w > β` = λ``, it follows from (17) that the firm would profit from decreasing w by making

infinitesimal payouts dc > 0 and thus reducing the risk in w by

Σ(w)− Σ(w − dc) ' (w − λ``)dc > 0.

This strategy would reduce the risk the manager is exposed to, and still provide sufficient

incentives. Consequently, σX = 0 implies that w ≤ λ`` for all w, the effective agency cost of

long-term investment is positive, and the firm underinvests in `.12

When both σX and σK are strictly positive, the above argument does not work as the firm

also needs to account for short-run risk and incentives. In order to decrease termination risk,

it can then be optimal for the firm to delay payments to the manager further, even if w ' β`

and the manager’s stake is barely exposed to permanent cash-flow risk. This can lead to w

exceeding β`, that is, to a negative effective agency cost and to overinvestment in `. The

mechanism is as follows. When the agent holds a large stake w, the risk of dilution identified

above generates additional termination risk, which diminishes the risk reduction induced by

postponing payouts. The principal can mitigate these adverse dilution effects by tying the

agent’s compensation more to long-term performance, which leads to higher long-run incentives

β`. The incentive compatibility condition β` = λ`` then implies that the firm must also increase

long-term investment.

The second part of Proposition 5 shows that long-termism arises when the asset growth rate

µ is low, that is, when long-run investment is sufficiently inefficient. Proposition 5 therefore

offers a potential explanation for the puzzling empirical evidence that in recent years capital is

12In fact, the inequality is strict: w < β` = λ``(w). To get some intuition, note that in case β` = w, the firm
becomes riskless. The benefits of reducing w by an infinitesimal amount dc > 0 are proportional to (γ− r)o(dc)
and therefore of order o(dc), while the cost—stemming from the additional risk of liquidation—are of order
o((dc)2). Consequently, the firm would never set β` = w, so that β` = λ``(w) > w for all w ∈ [0, w]. This result
is established in He (2009).
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not allocated to the industries with the best growth opportunities (as recently documented by

Lee, Shin, and Stulz (2018)). Additionally, long-termism arises when cash flow is sufficiently

volatile in either time-horizon, i.e., σX > 0 and σK > 0 are large, and when the agent is

sufficiently patient, i.e., γ − r > 0 is low.

The intuition for these findings is as follows. As explained above, long-termism requires the

dilution effect to exceed the agency cost effect, which happens when the manager’s stake is large

relative to her long-term incentives, w > β`. When this is the case, the effective agency cost is

negative. Both higher cash-flow risk (σX and σK) and lower cost of delaying payouts (γ − r)

increase the value of deferred compensation so that w rises, leading to an (average) increase

in the manager’s stake within the firm. On the other hand, low asset growth rate decreases

contracted long-term investment ` and accordingly long-term incentives β`.

To generate long-termism, the agency-cost-based motives for overinvestment must also ex-

ceed the preference for underinvestment that arises because of the diminished direct benefit of

investment. Recall that the marginal direct benefit of long-run investment under moral hazard

equals µ(p(w) − p′(w)w) and is below its first-best counterpart while the marginal direct cost

λ`µ is at the first-best level. Since both the direct benefit and cost are proportional to µ, this

motive to underinvest is quantitatively low when µ is low and can then be overcome by the

agency-cost-based preference for overinvestment.

Figure 1 presents a quantitative example illustrating long-termism. The parameters satisfy

the conditions set in Proposition 5 and are as follows. We set the discount rate parameters

to r = 4.6% and γ = 4.8% and the depreciation rate to δ = 12.5%, similar to DeMarzo et al.

(2012). The volatility parameter of the long term shock is set to σK = 20%, in line with Kogan

(2004), while the volatility parameter of the short-term shock is set to σX = 25%, in line with

DeMarzo et al. (2012). The drift parameter for the profitability/productivity process is set to

α = 25%. The left plot shows that the firm underinvests in the short run for all w. The middle

plot shows that the firm overinvests in the long run for intermediate values of w. This is when

the dilution effect, whose magnitude is proportional to p′′(w)wσ2
K , is the strongest. The right
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plot also shows that long-termism is related to a negative effective agency cost. Conversely,

according to Proposition 5, long-termism never arises in financial distress, i.e. when w is close

to 0, or when the firm is expected to make direct payments to the manager, i.e. when w is close

to w.

4.2 Correlated cash-flow shocks and short-termism

As shown in Proposition 3, short-termism cannot occur in our baseline model with independent

shocks, that is when ρ = 0. By contrast, when permanent and transitory cash-flow shocks are

correlated, direct externalities between short- and long-term investment and incentives arise.

These externalities can lead to corporate short-termism, i.e. to s > sFB, as we demonstrate

below.

To start with, note that when shocks are correlated, optimal short- and long-term investment

are given by:

s(w) =
α +

Externality︷ ︸︸ ︷
p′′(w)ρσXσKλs (λ``(w)− w)

λsα− p′′(w)(λsσX)2
(19)

and

`(w) =
µ (p(w)− p′(w)w) +

Externality︷ ︸︸ ︷
p′′(w)ρσXσKλ`λss(w)−p′′(w)wλ`σ

2
K

λ`µ− p′′(w)(λ`σK)2
. (20)

Compared to equations (13) and (14), new terms appear that affect optimal investment

levels and incentives. Since s(w) depends on `(w) and vice versa, there are direct externalities

between investment levels and incentives. Intuitively, when the two sources of risk are positively

correlated, exposing the manager’s continuation payoff to both transitory and permanent shocks

creates additional volatility and is therefore costly. Conversely, when the correlation is negative,

exposure to both shocks partially cancels out, thereby reducing the volatility of the manager’s

continuation payoff w.

From equation (20), the externality of s(w) on `(w) is negative (positive) if ρ > 0 (ρ < 0)

The magnitude of the externality scales with the curvature of the value function p′′(w)—i.e.,
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the principal’s effective risk-aversion—and is therefore relatively weaker once w is sufficiently

large and the risk of termination is sufficiently remote.

Likewise, equation (19) demonstrates that the choice of long-term investment `(w) also

feeds back into the choice of short-term investment s(w). However, the externality effect in the

numerator of s(w) in (19) has two separate components:

p′′(w)ρσXσKλs
(
λ``(w)− w

)
= p′′(w)ρσXσKλsλ``(w)︸ ︷︷ ︸

Agency cost

−p′′(w)ρσXσKλsw︸ ︷︷ ︸
Reducing dilution risk

. (21)

This decomposition shows that when the correlation between shocks is non-zero, incentives

for the short-run are also used to counteract the dilution in the manager’s stake arising upon

positive permanent shocks dZK > 0. As discussed in section 4.1, with no correlation, the

principal counteracts this dilution effect by tying the manager’s compensation to permanent

shocks and increasing long-term incentives. When the two sources of cash-flow risk are positively

(negatively) correlated, it is possible to reduce dilution risk also by means of higher (lower)

short-term incentives.

Notably, when ρ < 0 and w is low, positive risk externalities of short- and long-term

incentives emerge and may dominate dilution effects of short-term incentives. In this case,

short-termism, s(w) > sFB, can become optimal.

Proposition 6 (Short-termism under distress with ρ < 0). The following holds true:

i) Short-termism arises only if σX > 0, σK > 0, and ρ 6= 0. Conversely, if either σX = 0,

σK = 0, or ρ = 0, short-termism cannot arise and s(w) ≤ sFB for all w.

ii) Assume σX > 0, σK > 0 and ρ < 0. Then, there exist wL < wH with s(w) > sFB

for w ∈ (wL, wH), provided σX is sufficiently small. When in addition λ` and γ − r are

sufficiently small, the set {w ∈ [0, w] : s(w) > sFB} is convex and contains zero and s(w)

decreases on this set.

While long-termism occurs mainly for large values of the manager’s stake w with the ob-

jective to alleviate the excessive dilution risk via long-run incentives β`, short-termism is more
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likely to occur for low values of w when the correlation between shocks is negative. When the

agent’s stake w is small, dilution risk is negligible and positive externalities between short- and

long-term incentives induce more short-term investment. In addition, short-termism can arise

when cash-flow risk σX is small so that short-run agency cost is sufficiently low and does not

dominate the externality effect.

Figure 2 provides an example of short-termism when the correlation between long- and

short-term shocks is negative. Consistently with Proposition 6, the firm overinvest in the

short-run when in distress and w is close to 0. Figure 2 further illustrates that both short-

and long-termism may but need not happen within the same firm, depending on the level of

financial slack as measured by w. In distress, the firm overinvests in generating (short-term)

profits, while after a strong performance, the firm overinvests in (long-term) growth. While

the effects of absolute short-termism appear to be quantitatively small, the effects of relative

short-termism s(w)/sFB

`(w)/`FB
, which determines whether investment is distorted toward the short-term

compared to first-best, can be quantitatively large. Absent agency fictions, this ratio equals

by construction one and a value above (below) one indicates an investment distortion towards

the (long-) short-run. The right-hand side plot of Figure 2 presents the relative short-termism

ratio which for our parameter values is a non-monotonic U-shaped function of w. The relative

short-termism for large w close to w arises for all parameters (compare Proposition 3 and 4).

The ratio is below 1 for intermediate w whenever substantial absolute long-termism arises.

Relative short-termism again dominates for low w and this region exists due to negative ρ and

relatively low cost of short-term investment (low σX and λ`; cf. Proposition 6).

Our focus on the case of negative correlation is due to the finding in Chang et al. (2014) that

the correlation coefficient between permanent and transitory cash-flow shocks ρ is on average

negative. When this is the case, our model predicts that firms with a high risk of liquidation—

i.e., firms that perform worse and have little financial slack—should find it optimal to focus on

the short term (i.e., current earnings) while firms with a low risk of liquidation—i.e., cash-rich

firms that perform well—should find it optimal to focus on the long term (i.e., asset growth).

Interestingly, a recent study by Barton et al. (2017) finds using a data set of 615 large- and
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mid-cap US publicly listed companies from 2001 to 2015 that “the long-term focused companies

surpassed their short-term focused peers on several important financial measures.” While our

model does indeed predict that firm performance should be positively related to the corporate

horizon, it, in fact, suggests the reverse causality.

For completeness, we also investigate optimal investment when the correlation between

cash-flow shocks is positive. In this case, the firm can overinvest in both short- and long-term

investment at the same time. This happens when the agent’s stake in the firm is large, thereby

exposing the manager to a high risk of dilution. To reduce this dilution risk, the principal

provides high-powered incentives to the manager. Importantly, when correlation is positive,

unexpected asset growth dZK > 0 triggers on average unexpected cash flow ρdZK , which leads

a reward (β` + ρβs)dZK for the agent.13 Consequently, both short- and long-run incentives

counteract the adverse dilution in the agent’s stake, so that the desire to mitigate dilution

risk translates into high-powered incentives and, accordingly, to overinvestment for both time

horizons. The next proposition characterizes this outcome.

Proposition 7 (Short-termism with ρ > 0). Assume σX > 0, σK > 0 and ρ > 0. Then, there

exist wL < wH with s(w) > sFB for w ∈ (wL, wH), provided σX > 0 and γ − r sufficiently

small. When in addition µ is sufficiently small, the set {w ∈ [0, w] : s(w) > sFB} is convex

with inf{w ∈ [0, w] : s(w) > sFB} > 0 and sup{w ∈ [0, w] : s(w) > sFB} = w.

5 Incentive contracts contingent on stock prices

The optimal contract provides short- and long-run incentives, βst and β`t , by conditioning

the agent’s compensation on earnings and asset size. In practice, executive compensation

is commonly linked to stock prices (via stock and option grants) and to accounting results

(via performance-vesting provisions of these grants and via performance-based bonuses). The

use of both stock prices and accounting measures in designing executive compensation has

13To see this, one can decompose dZXt = ρdZKt +
√

1− ρ2dZTt , where {ZT } is a standard Brownian Motion,
independent of {ZX}. Hence, E(ZXt |ZKt ) = ρZKt or in differential form E(dZXt |dZKt ) = ρdZKt .
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been increasing over time. Stock and option grants constitute a majority of CEO compensa-

tion (Edmans, Gabaix, and Jenter, 2017). A majority of equity grants have accounting-based

performance-vesting provisions with earnings being the most common metric (Bettis, Bizjak,

Coles, and Kalpathy, 2018). We now show that the optimal contract implied by our model is

broadly consistent with these patterns and can be implemented by exposing the manager to

stock prices and earnings.

We start with writing the dynamics of earnings and stock prices. The firm’s (instantaneous)

earnings net of investment cost are given by:

dEt = [αst − C(st, `t)]Ktdt+KtσXdZ
X
t ,

while the stock price (with full equity financing and the total share supply normalized to one),

i.e., firm value, evolves according to:

dPt
Pt

= µPt dt+ ΣX
t dZ

X
t + ΣK

t dZ
K
t ,

where the expressions for µPt , ΣX
t , and ΣK

t are given in Appendix I. The principal provides

the incentives to the manager by choosing the manager’s exposures to earnings and stock price

changes, respectively defined by:

βEt =
dWt

dEt
and βPt =

dWt

dPt
.

The exposures βEt and βPt are set so as to generate the required short- and long-run incentives

under the optimal contract. Appendix I derives the following expressions for the exposures

implied by the optimal contract:

βPt = λ``t ×
(

1

p(wt) + p′(wt)(λ``t − wt)

)

28



and

βEt = λsst ×
(

p(wt)− p′(wt)wt
p(wt) + p′(wt)(λ``t − wt)

)
.

An appropriate exposure to the firm’s stock price (which takes into account the non-linear

relation between stock price and asset size) provides the right amount of long-run incentives.

It additionally provides some short-run incentives as the stock price is also subject to short-run

shocks. The exposure to earnings is set to provide the required residual exposure to short-run

shocks. This characterization of the optimal contract highlights an important implication of our

model: While stock prices account for both short- and long-run shocks to firm value, exposing

the manager solely to the firm’s stock price cannot in general provide a right mix of short- and

long-run incentives. To achieve optimal incentives, the manager also needs to be exposed to

short-run accounting performance metrics such as earnings.

6 Asymmetric pay in executive compensation

We now turn to analyze the dynamics of incentive provision and show that the optimal contract

induces asymmetric pay. We assume throughout the section that the correlation ρ between

short- and long-run shocks is zero. For clarity of exposition, we focus on a specification in

which the investment cost C is linear:

C(s, `) = αλss+ µλ``. (22)

As a consequence, investment follows a bang-bang solution, i.e., either full or no investment

is optimal: s ∈ {0, smax} and ` ∈ {0, `max}. Equivalently, one could also specify that there is

a linear adjustment cost to short-run (resp. long-run) investment up to some threshold smax

(resp. `max) and an infinite adjustment cost afterward. The Appendix shows that the results

derived in this section also apply when the investment cost is convex.

Corner levels of investment are the only relevant cases in a model with binary effort choice

(i.e., s ∈ {0, smax} or ` ∈ {0, `max}), as in He (2009), or in a model with effort cost functions
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that are linear in effort levels, as in Biais et al. (2007) or DeMarzo et al. (2012). As a result,

considering a linear cost function C allows us to directly compare our results with those in

the models in which moral hazard is solely over the long- or the short-run and to clarify what

outcomes are unique and novel to our model featuring both types of moral hazard. Finally,

we assume that full short- and long-run investment is always optimal so that s(w) = smax and

`(w) = `max for all w. Thus with the linear investment cost, the dynamics of optimal incentives

are not confounded by changes to investment levels.

When the investment cost is linear, incentive-compatibility requires

βs ≥ λs and β` ≥ λ`.

The objective of the principal when choosing the manager’s exposure to firm performance is to

maximize the value derived from the firm, given a promised payment w to the manager. To

do so, the principal equivalently minimizes the agent’s exposure to shocks, while maintaining

incentive compatibility (see equation (11)). Minimizing risk exposure amounts to minimizing

the instantaneous variance of the scaled promised payments:

Σ(w) = (βsσX)2 + (β` − w)2σ2
K subject to βs ≥ λs and β` ≥ λ`

This leads to the following result:

Proposition 8 (Asymmetric pay in executive compensation). When investment costs are linear

and full investment is optimal, i.e. s = smax and ` = `max, we have that:

i) Incentives are given by βs = λs and β` = λ` + max{0, w − λ`}.

ii) β`(w) > λ` arises, only if σX > 0 and σK > 0,.

iii) Assume σX > 0 and σK > 0. If γ−r, `max or λ` is sufficiently low, w > λ` and β`(w) > λ`

for w ∈ (λ`, w].

The finding that the incentive compatibility constraint βs ≥ λs in Proposition 8 is tight is

standard and intuitive. The principal needs to expose the agent to firm performance, but this
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is costly because this increases the risk of inefficient liquidation. Thus, the principal optimally

exposes the agent to as little short-run risk as possible.

The finding that the incentive compatibility constraint β` ≥ λ` is not necessarily tight stems

from the fact that the principal optimally wants to expose the manager’s continuation payoff to

long-run, permanent shocks. Indeed, and as noted above, a positive permanent shock dZK > 0

has two effects. First, the agent is rewarded for good performance and is promised higher

future payments W , which increases the stake w by β`σKdZ
K . Second, firm size K grows

more than expected, thereby reducing the agent’s stake in the firm by −wσKdZK . This second

effect implies that the agent’s stake w is exposed to dilution risk, which can be alleviated using

long-run incentives β`.

When w > λ`, the principal can fully eliminate dilution risk by setting β` = w, while main-

taining incentive compatibility. Under these circumstances, long-run incentives are effectively

costless and the manager is exposed to long-run shocks beyond the level needed to incentivize

long-term investment. By contrast, incentive compatibility prevents the principal from elimi-

nating long-run risk when λ` > w and β` = λ`. Importantly, there is no agency conflict over the

long-run and the agent is paid for luck when λ` = 0, that is for productivity shocks beyond her

influence, just as in Hoffmann and Pfeil (2010) and DeMarzo, Fishman, He, and Wang (2012).

An important implication of Proposition 8 is that, in our model with dual moral hazard, the

agent receives asymmetric performance pay. In particular, the agent is provided minimal long-

run incentives β` = λ` > w for low w and higher powered long-run incentives β` = w > λ` after

positive past performance, in which case sufficient slack w has been accumulated. In this region,

incentives have option-like features and increase after positive performance. Our findings are

consistent with evidence on the asymmetry of pay-for-performance in executive compensation

(see for example Garvey and Milbourn (2006) and Francis, Iftekhar, Kose, and Zenu (2013)).

In contrast with the suggested explanations, the asymmetry in pay-for-performance is part of

an optimal contract and is not due to managerial entrenchment.14

14In our model, the agent is essentially paid more for a positive shock than he is punished after a negative shock
of the same size. Obviously, this statement is mathematically not exact since the agent’s sensitivity to shocks
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It should be stressed that the model predicts an asymmetry in pay sensitivity to long-run

shocks but not to short-run shocks. With the implementation of the optimal contract using

stock prices and earnings (see section 5), the asymmetric sensitivity applies to stock prices but

not to earnings.

Remarkably, asymmetric performance-pay and strong long-run incentives β` ≥ λ` can only

arise when σX > 0 and σK > 0 and there is a moral hazard over both time horizons, the short-

and long-run. When σX = 0, the principal does not grant the agent a stake w larger than λ`,

in that payouts dc > 0 are made before the agent’s stake can grow sufficiently large.

To close this section note that our findings differ from those in He (2009). First, in his model

the incentive condition—which corresponds to β` ≥ λ` in our paper’s notation—is always tight.

This occurs because of w ≤ w < λ`, in that the payout boundary cannot exceed λ`. Intuitively,

if it were to happen that w ≥ λ`, the firm could profit by paying the agent some small amount

dc. This is because the subsequent increase in liquidation risk is negligible, i.e., of order o(dc2),

while the cost of delaying payments—or equivalently the benefits of paying the agent earlier—

are of order o(dc). While in our model risks associated with permanent cash-flow shocks dZK are

also negligible whenever w ' λ`, the firm remains exposed to substantial transitory cash-flow

shocks. As a consequence, it can be optimal to accumulate even more slack and to eliminate

permanent cash-flow risk if possible, in that w > λ` and β` = w > λ` for w ∈ (λ`, w].

Second, in He (2009) all risk from permanent cash-flow shocks is eliminated after sufficiently

strong past performance only in the extreme case of an equally patient agent and principal.

This implies that the firm eventually becomes riskless and the agent works forever. As a result,

the first-best outcome can be achieved. In contrast, all risk from permanent cash flow shocks

can be eliminated in our model even under the assumption that the agent is more impatient

than the principal γ > r; yet the firm remains exposed to transitory cash-flow shocks. As a

consequence, only long-run agency conflicts may be temporarily harmless. Indeed, sufficiently

dZK is locally symmetric, but carries some meaning for shocks over a larger time interval. For a stark intuition,
imagine however that at time t scaled continuation value equals wt = λ` − ε and let ∆ = 2ε > 0. A shock
ZKt+dt − ZKt = ∆ > 0 raises wt+dt beyond λ` and therefore increases the agent’s value by Wt+dt −Wt > 2ελ`.

In contrast, a shock ZKt+dt − ZKt = −∆ < 0 decreases the agent’s value by 2ελ`.
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adverse cash-flow shocks may lower w, drive it below λ`, and even trigger liquidation, implying

that first-best will never be reached.

7 Robustness and extensions

7.1 Agent’s limited wealth

Let us now consider what happens when the agent possesses zero wealth. For simplicity, we

focus in the following on the case of quadratic investment cost, zero correlation and, without

loss of generality, δ = 0. Given prescribed investment levels (st, `t), if the agent were to

increase short-term investment by some small amount ε > 0, she would require additional

funds εCs(st, `t) = λsαε. Due to the lack of private wealth, the only possibility is to curb

long-term investment by εCs(st,`t)C`(st,`t)
= ελsαs

λ`µ`
and therefore (mis)-allocate this amount from the

long-term towards short-term investment. The above reallocation boosts the cash-flow rate by

Ktαε, while lowering the growth rate of assets by Ktε
λsαs
λ`µ`

µ, so that incentive compatibility

requires βst ≥ β`t
λsst
λ``t

. To preclude symmetric redirecting from investment funds from the short-

towards the long-term, we get the reverse inequality. Combining these conditions implies:

βst
λsst

=
β`t
λ``t

. (23)

The standard incentive conditions are additionally required to discourage the agent to divert

from investment funds for her own consumption:

βst ≥ λsst and β`t ≥ λ``t. (24)

By standard arguments, the HJB-equation describing the principal’s problem reads then:

rp(w) = max
s,`,βs,β`

{
αs− C(s, `) + p′(w)w(γ − µ`) + µ`p(w) +

p′′(w)

2

[
(βsσX)2 + σ2

K(β` − w)2
]}
,

33



subject to the incentive constraints (23) and (24) and the usual boundary conditions.

To see why our results on short- and long-termism are practically unaffected by the as-

sumption of limited wealth, let us substitute (23) into the HJB equation and eliminate βs and

analyze the optimality conditions for the controls. Because

∂p(w)

∂s
∝ α− λsαs+ p′′(w)

(
β`λs
λ``

σX

)2

s︸ ︷︷ ︸
Agency cost of investment (<0)

,

it is clear that s(w) < sFB for all w ∈ [0, w) owing to the agency cost associated with short-term

investment, which confirms the result of Proposition 3.

Next, note that

∂p(w)

∂`
∝ µ

(
p(w)− wp′(w)− λ``

)︸ ︷︷ ︸
Investment Benefit-Cost;∈o(µ)

−p
′′(w)

`

(
β`λss

λ``
σX

)2

︸ ︷︷ ︸
Additional Incentives;>0

+ 1{β`=λ``}σ
2
Kp
′′(w)(β` − w)︸ ︷︷ ︸

Effective Agency Cost of Investment

. (25)

Interestingly, by increasing long-term investment and owing to the convexity of the cost func-

tion, the principal makes misallocations of funds from the long- towards the short-term more

costly for the agent and therefore provides effectively additional incentives for the manager to

implement the prescribed investment allocation. The remaining terms in (25) are standard

with the sole caveat that β` ≥ `λ` need not be tight, in which case long-term investment ` can

be boosted without incurring additional agency cost.

To continue, observe that for µ sufficiently low, the first-term becomes negligible. If the

incentive compatibility condition with respect to long-term incentives is tight (such that β` =

λ`` ), then for γ− r sufficiently low, we find w < w with w > λ``
FB, in which case ∂p(w)

∂`
> 0 for

` ≤ `FB and thus `(w) > `FB.15 If β` > λ``, then the right-hand side of (25) is strictly positive

for a low growth rate µ. In either case, we are able to recover our result from Proposition 5.16

15This claim relies on the premise that limγ↓r w = ∞ and that w increases in σX , σK and λs. These claims
can be proven utilizing the proof technique used to establish the analogous claims in the baseline model.

16It is obvious that when either σX = 0 or σK = 0, we have only one relevant incentive constraint: either
βs ≥ λss or β` ≥ λ``. From there it is straightforward to verify that no long-termism can occur. The claim is
slightly more involved for σX = 0. Then, the principal set β` = max{w, λ``}. Arguments similar to ones used
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Moreover, one can solve for the optimal level of long-term incentives, which are now given

by:

β` = max

{
λ``,

w

1 + π2

}
for π =

λssσX
λ``σK

As a consequence, the incentive constraint need not be binding for high levels of w, which leads

to asymmetric performance-pay as in Proposition 8.

While not shown explicitly here, continuing this line of arguments, we could also recover our

results of Propositions 6 and 7. In particular, the same forces drive short- and long-termism as

in our baseline model. Conclusively, the assumption that the manager has unlimited wealth is

indeed without loss of generality while simplifying the exposition.

7.2 Private investment cost

In the model, we assume that the principal bears the investment cost C while the agent can

divert funds for her private consumption. Alternatively, we could also assume that the effort (in-

vestment) cost C is private to the manager. In this alternative setting, incentivizing investment

s, ` requires compensating this private cost to the manager by increasing the growth rate of

the agent’s scaled continuation value w. Hence, ignoring all other effects, increasing s, ` makes

w drift up and therefore reduces the likelihood of termination. As a consequence, additional

investment/effort cost C is actually beneficial for the principal when p′(w) > 0 or, equivalently,

when w is low. As shown in DeMarzo, Livdan, and Tchistyi (2014) and Szydlowski (2018), this

beneficial private cost effect may lead to overinvestment. For completeness, we solve our model

with private investment cost in the Appendix and demonstrate that short- and long-termism

can arise in this model as well.

In the baseline version of our model, the manager does not finance investment expenditures

from her own pockets and agency conflicts arise because of a misallocation or appropriation of

funds allocated to investment. We believe that this setup is more realistic for most real-world

in the proof of Proposition 5 can then be used to show that λ``(w) > w for all w, so that the problem becomes
standard and agency cost of investment induce underinvestment.
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environments. In addition, it allows us to clearly identify the drivers of short- and long-termism,

compared to a model in which the cost of investment is private (see the Appendix for details).

8 Conclusion

We develop a continuous-time agency model in which the agent controls current earnings via

short-term investment and firm growth via long-term investment. In this multi-tasking model,

the principal optimally balances the costs and benefits of incentivizing the manager over the

short- or the long-term. As shown in the paper, this can lead to optimal short- or long-termism,

i.e. to short- or long-term investment levels above first best levels, depending on the severity of

agency conflicts and firm characteristics. The model predicts that the nature of the risks facing

firms is key in determining the corporate horizon. We show for example that the correlation

between between shocks to earnings and to firm value leads to externalities between investment

choices, which are necessary to generate short-termism. We additionally predict that firm

performance should be positively related to the corporate horizon. In particular, firms should

become more short-termist after bad performance.

Incentives are provided in the optimal contract by making the agent’s compensation contin-

gent on firm performance, via exposure to the firm’s stock price and earnings. Because the firm

is subject to long-run, permanent shocks, it is optimal to introduce exposure to long-run volatil-

ity that is not needed to incentivize effort in the contract. In our model with multi-tasking,

however, the principal needs to incentivize the manager to exert long-run effort. This generates

the distinct prediction that extra pay-for-performance is introduced and the manager’s wealth

is fully exposed to permanent shocks only when her stake in the firm is large enough. Notably,

when her stake is low, the extra pay-for-performance effect is shut down and the incentive com-

patibility constraint is binding. In other words, positive permanent shocks lead to additional

pay-for-performance and negative permanent shocks eventually eliminate this extra sensitivity

to performance implied by the optimal contract. Our model therefore provides a rationale for

the asymmetry of pay-for-performance observed in the executive compensation data.
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Appendix

Without loss in generality, we consider throughout the whole Appendix that the depreciation rate
of capital δ equals zero. To ensure the problem is well-behaved, we impose the following regularity
conditions:

a) Square integrability of the payout process {C}:

E

[(∫ τ

0
e−γsdCs

)2
]
<∞.

b) The processes {s} and {`} are of bounded variation.

c) The sensitivities {βs} and {β`} are almost surely bounded, so that there exists M > 0 with
P(βKt < M) = 1 for each t ≥ 0 and K ∈ {s, `}. We make this assumption for purely technical
reasons and can choose M <∞ arbitrarily large (enough), such that this constraint never binds
at the optimum.

A Proof of Proposition 1

Proof. The first best investment levels (sFB, `FB) maximize

p̂(s, `) =
1

r + δ − µ`
[αs− C(s, `)] .

For the case of quadratic cost, straightforward calculations lead to the desired expressions for sFB, `FB

and pFB ≡ p̂(sFB, `FB), where `FB satisfies the relation µpFB = C`(sFB, `FB).

B Proof of Proposition 2

B.1 Auxiliary results

We first show that each investment path ({s}, {`}) induces a probability measure under certain con-
ditions. To begin with, fix a probability measure P0 such that

dXt = σXKtdW̃
X
t and dKt = σKKtdW̃

K
t

with correlated standard Brownian motions {W̃X}, {W̃K} under this measure, both progressive with

respect to F. The measure P0 corresponds to perpetual zero investment. Define W̃t ≡
(
W̃X
t , W̃

K
t

)′
and let the (unconditional) covariance matrix of W̃t under P0 be:17

V0
(
W̃t

)
= E0

(
W̃tW̃

′
t

)
=

(
1 ρ
ρ 1

)
× t ≡ Ct.

In this equation, V0(·) denotes the variance operator with respect to the measure P0. Let us employ
a Cholesky decomposition to write M−1(M−1)′ = C or equivalently M′M = C−1 for an invertible,

17For a matrix-valued random variable Y : Ω → Rn×k we denote the transposed random variable by Y′ :
Ω→ Rk×n.
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deterministic matrix M. Observe that

V0
(
MW̃t

)
= ME0

(
W̃tW̃

′
t

)
M′ = MCM′ · t = M

(
M′M

)−1
M′ · t = I · t,

where I ∈ R2×2 denotes the identity matrix. Because the two components of W̃t are jointly normal and
uncorrelated, they are also independent in that the process {W̃T } ≡ {MW̃} follows a bidimensional

standard Brownian motion. We can now apply Girsanov’s theorem to {W̃T } where all components,
by definition, are mutually independent.

As a first step, we define

Θt = Θt(s, `) ≡
(αst
σX

,
µ`t
σK

)′
and Θ̃t = Θ̃t(s, `) ≡MΘt(s, `).

Further, let

Γ′t = Γ′t(s, `) ≡ exp
(∫ t

0
Θ̃u · dW̃T

u −
1

2

∫ t

0
||Θ̃u||2du

)
,

where || · || denotes the Euclidean norm in R2 and∫ t

0
Θ̃u · dW̃T

u =

∫ t

0

∑
i=1,2

Θ̃u,idW̃
T
u,i =

∑
i=1,2

∫ t

0
Θ̃u,idW̃

T
u,i.

Throughout the paper, we will assume that the processes {s}, {`} are such that the ‘Novikov condition’
is satisfied, in that

E0

[
exp

(1

2

∫ τ

0
||Θ̃t||2(s, `)dt

)]
<∞.

In fact, our regularity conditions imply the Novikov condition. Then, {Γ′} follows a martingale under
P0 rather than just a local martingale. Due to E0Γ′t = E0Γ′0 = 1, the process {Γ′} is a progressive
density process and defines the probability measure Ps,` via the Radon-Nikodym derivative(

dPs,`

dP0

)
|Ft = Γ′t.

By Girsanov’s theorem {
ZTt = W̃T

t −
∫ t

0
Θ̃udu : t ≥ 0

}
follows a bidimensional, standard Brownian motion under the measure Ps,`. The linearity of the
(Riemann-) integral implies

M

((
ZXt
ZKt

))
≡ ZTt = M

(
W̃t −

∫ t

0
Θudu

)
= M

((
W̃X
t

W̃K
t

)
+

(∫ t
0 Θu,1du∫ t
0 Θu,2du

))
.

Therefore, for each t ≥ 0

dZXt ≡
dXt −Ktαstdt

KtσX
and dZKt ≡

dKt −Ktµ`tdt

KtσK

are the increments of a standard Brownian motion under Ps,` with instantaneous correlation ρdt. In
the following, we say the measure Ps,` is induced by the processes {s}, {`}. Note that all probability
measures of the family {Ps,`}{{s},{`}} are mutually equivalent, in that they share the same null sets.
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B.2 Proof of Proposition 2.1

Proof. Consider an incentive compatible contract Π ≡ ({C}, {s}, {`}, τ). Further, assume in the fol-
lowing without loss of generality that F is the filtration generated by {X}, {K}, in that Ft = σ(Xs,Ks :
0 ≤ s ≤ t). Then, the agent’s continuation utility at time t (under the principal’s information) is de-
fined by

Wt(Π) ≡ Es,`t
[ ∫ τ

t
e−γ(z−t)dCz +

∫ τ

t
e−γ(z−t)Kz

(
C(sz, `z)− C(ŝz, ˆ̀

z)
)
dz

]
,

where Es,`t (·) denotes the conditional expectation given Ft , taken under the probability measure Ps,`
induced by {s} and {`}. Define for t ≤ τ :

Γt(Π) ≡ Es,`t [W0(Π)] =

∫ t

0
e−γzdCz +

∫ t

0
e−γzKz

(
C(sz, `z)− C(ŝz, ˆ̀

z)
)
dz + e−γtWt(Π). (A1)

By construction, {Γt(Π) : 0 ≤ t ≤ τ} is a square-integrable martingale under Ps,`, progressive with
respect to F. In the following, we will invoke incentive compatibility, i.e., st = ŝt, `t = ˆ̀

t, whenever no
confusion is likely to arise.

Next, observe that any sigma-algebra is invariant under an injective transformation of its generator.
In particular, let M ∈ R2×2 an invertible, deterministic matrix with det(M) 6= 1 and note that

Ft = σ(Xs,Ks : s ≤ t) = σ(Z1
s , Z

2
s : s ≤ t) = σ(Zs : s ≤ t) = σ(M · Zs : s ≤ t)

with Zt ≡ (Z1
t , Z

2
t )′. Here,

dZ1
t ≡

dXt −Ktαstdt

KtσX
and dZ2

t ≡
dKt −Ktµ`tdt

KtσK
(A2)

are the increments of a standard Brownian motion under the probability measure Ps,`. Note that
dZ1

t = dZXt and dZ2
t = dZKt whenever at = ât for all a ∈ {s, `}.

As in the previous section, let the covariance matrix V(Zt) = Ct and employ a Cholesky decom-
position M′M = C−1. We have already shown that {ZTt ≡MZt : 0 ≤ t ≤ τ} follows a bidimensional,
standard Brownian-motion under Ps,`, where both components are mutually independent. By the mar-
tingale representation theorem (see e.g. Shreve (2004)), there exists a bidimensional process {bt}t≥0,
progressively measurable with respect to F, such that

dΓt(Π) = e−γtb′t · dZTt = e−γtb′t ·MM−1 · dZTt = e−γtKt

(
βst σXdZ

1
t + β`tσKdZ

2
t

)
,

where we exploit the linearity of the Itô integral—i.e. d
(
MZTt

)
= MdZTt —and set (βst σX , β

`
tσK) ≡

b′tM/Kt for all t. Combining with equation (A1), one can verify that

dΓt(Π) = e−γtKt

(
βst σXdZ

1
t + β`tσKdZ

2
t

)
= e−γt − γe−γtWt(Π)dt+ e−γtdWt(Π)

and thus equation (7) holds after rearranging. Indeed, since the right hand side of (7) satisfies a
Lipschitz-condition under the usual regularity conditions (i.e. square integrability of {C} and {s}, {`}
of bounded variation), {W} is the unique strong solution to the stochastic differential equation (7).

Next, we provide necessary and sufficient conditions for the contract Π to be incentive compatible.
For this purpose, let the recommended investment processes {s} and {`} and the expected payoff of
the agent at time t be Wt, when following the recommended strategy from time t onwards. Further,
let {ŝ} and {ˆ̀} represent the actual investment processes, which may in principle differ from {s} and
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{`}. We have

Wt ≡ Es,`t
[ ∫ τ

t
e−γ(z−t)dCz

]
.

Recall that Es,`t denotes the expectation, conditional on the filtration Ft, taken under the probability
measure Ps,`. As shown above, the process {W} solves the stochastic differential equation:

dWt = γWtdt+ βst
(
dXt −Ktαstdt

)
+ β`t

(
dKt −Ktµ`tdt

)
− dCt.

We can rewrite this stochastic differential equation as

dWt + dCt = γWtdt

+Ktβ
s
t

[
α(ŝt − st)dt+ σXdZ

X
t

]
+Ktβ

`
t

[
µ(ˆ̀

t − `t)dt+ σKdZ
K
t

]
with

dZXt ≡
dXt −Ktαŝtdt

KtσX
and dZKt ≡

dKt −Ktµˆ̀
tdt

KtσK
.

Girsanov’s theorem implies now that dZXt ≡ dXt−Ktαŝtdt
KtσX

and dZKt ≡
dKt−Ktµˆ̀

tdt
KtσK

are the increments

of a standard Brownian motion under the measure P ŝ,ˆ̀ induced by ({ŝ}, {ˆ̀}).
Next, define the auxiliary gain process

gt = gt
(
{ŝ}, {ˆ̀}

)
≡
∫ t

0
e−γzdCz −

∫ t

0
e−γzKz(C(ŝz, ˆ̀

z)− C(sz, `z))dz + e−γtWt

and recall that Wτ = 0. Now, note that the agent’s actual expected payoff under the strategy ({ŝ}, {ˆ̀})
reads

W ′0 ≡ max
{ŝ},{ˆ̀}

Eŝ,ˆ̀
[∫ τ

0
e−γzdCz −

∫ τ

0
e−γzKz(C(ŝz, ˆ̀

z)− C(sz, `z))dz
]

= max
{ŝ},{ˆ̀}

Eŝ,ˆ̀
[
gτ
(
{ŝ}, {ˆ̀}

)]
.

We obtain

eγtdgt = Kt

[
C(st, `t)− C(ŝt, ˆ̀

t)
]
dt

+Kt

[
αβst (ŝt − st) + µβ`t (

ˆ̀
t − `t)

]
dt+Kt

[
βst σXdZ

X
t + β`tσKdZ

K
t

]
≡ µgt dt+Kt

[
βst σXdZ

X
t + β`tσKdZ

K
t

]
.

It is now easy to see that, when choosing ŝt = st, ˆ̀
t = `t, the agent can always ensure that µgt = 0, in

which case {gz}z≥0 follows a martingale under Ps,`. Hence,

W ′0 = max
{ŝ},{ˆ̀}

Eŝ,ˆ̀
[
gτ
(
{ŝ}, {ˆ̀}

)]
≥ Es,`

[
gτ
(
{s}, {`}

)]
= W0.

The inequality is strict if and only if there exist processes {ŝ}, {ˆ̀} and a stopping time τ ′ with

P ŝ,ˆ̀(τ ′ < τ) > 0 such that µgτ ′ > 0. This arises because then there also exists a set A ⊆ [0, τ)×Ω with

µGt (ω) > 0 for all (t, ω) ∈ A and L ⊗ P ŝ,ˆ̀(A) > 0,
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where L is the Lebesgue-measure on on the Lebesgue sigma-algebra in R. Because P ŝ,ˆ̀(τ < ∞) for
all admissible {ŝ}, {ˆ̀} it follows that e−γtµGt (ω) > 0 for all (t, ω) ∈ A. Whence,

W ′0 ≥
∫
A
e−γzµgz(ω)d

(
L(z)⊗ Ps,`(ω)

)
+W0 > W0.

In case W ′0 > W0, either ŝz(ω) 6= sz(ω) or ˆ̀
z(ω) 6= `z(ω) on the set A, which has positive measure,

so that Π is not incentive compatible.
Hence, for Π to be incentive compatible, it must for all t ≥ 0 (almost surely) hold that

max
ŝt,ˆ̀t

{
αβst (ŝt − st) + µβ`t (

ˆ̀
t − `t) +

[
C(st, `t)− C(ŝt, ˆ̀

t)
]}

= 0

or equivalently (
st, `t

)
∈ arg max

ŝt,ˆ̀t

{
αβst (ŝt − st) + µβ`t (

ˆ̀
t − `t) +

[
C(st, `t)− C(ŝt, ˆ̀

t)
]}

for given βst , β
`
t . After going through the maximization, we obtain that this is satisfied if Cs(st, `t) =

βstα and C`(st, `t) = β`tµ, in case (st, `t) ∈ (0, smax) × (0, `max). If at ∈ {st, `t} is not interior, in
that at = amax for a ∈ {s, `}, then at = ât solves the above maximization problem if and only if
βstα ≥ Cs(st, `t), if at = st, or β`tµ ≥ C`(st, `t), if at = `t. It evidently suffices here to consider
first-order optimality, so that the result follows.

B.3 Proof of Proposition 2.2

In this section, we proceed as follows. First, we represent P (W,K) as a twice continuously differentiable
solution of a HJB equation and then show that there exists a function p ∈ C2, such that P (W,K) =
Kp(w) and p(w) solves the ’scaled’ HJB equation (11). Second, we verify that P (W,K) or equivalently
p(w) with corresponding payout threshold w and w0 = w∗ characterizes indeed the optimal contract
Π∗. Since we focus on incentive compatible contracts, we will work in the following—unless otherwise
mentioned—with the measure Ps∗,`∗ induced by optimal investment ({s∗}, {`∗}). For convenience, we
will denote this measure by P, if no confusion is likely to arise. We follow an analogous convention
concerning the expectation operator, where we will just write Et(·) instead of Es∗,`∗(·|Ft).

B.3.1 Scaling of the value function

Given the optimal control and stopping problem (6), suppose that the principal’s value function
P (W,K) satisfies the HJB equation

rP = max
s,`,βs,β`

{
αsK −KC(s, `) + PWγW + PKµ`K +

1

2

(
PWW

[(
βsσXK

)2
+
(
β`σKK

)2
+ 2ρσXσKK

2βsβ`
]

+ PKK
(
σKK

)2
+ 2PWK

[(
σKK

)2
β` + ρσXσKK

2βs
])}

in some region S ⊂ R2, subject to the boundary conditions

P (0,K) = RK,P (W, 0) = 0, PW (W,K) = −1, PWW (W,K) = 0.
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Here, W ≡ W (K) = wK parametrizes the boundary of S, on which W,K > 0. Taking the guess
P (W,K) = p(W/K)K for some function p ∈ C2, we obtain

PW = p′(w), PK = p(w)− wp′(w), PWK = −w/Kp′′(w), PWW = p′′(w)/K, pKK = w2/Kp′′(w),

which implies the HJB equation (11) and its boundary conditions.
In the following, we will assume that (11) admits an unique, twice continuously differentiable

solution p(·) on [0, w]. A formal existence proof is beyond the scope of the paper and therefore
omitted.18

We first rewrite the principal’s problem (6) in a convenient manner. Let

Ψt =
(
ρσKt, σKt

)′
and Ψ̃t = MΨt,

where M′M = C−1 and Ct is the covariance matrix of (ZXt , Z
K
t ). Next, define the equivalent, auxiliary

probability measure P̃ according to the Radon-Nikodym derivative(
dP̃
dP

)
|Ft ≡ exp

{∫ t

0
Ψ̃udu−

1

2

∫ t

0
||Ψ̃u||2du

}
. (A3)

By arguments similar to those in Appendix B.1, Girsanov’s theorem implies that

Z̃Xt = ZXt − ρσKt and Z̃Kt = ZKt − σKt

are both standard Brownian motions with correlation ρt under P̃. An application of Itô’s Lemma
consequently yields that the scaled continuation value {w} evolves according to

dwt + dct = (γ − µ`t)wtdt+ βst σXdZ̃
X
t + (β`t − wt)σKdZ̃Kt

under P̃. Finally, for ψt ≡ rt− µ
∫ t

0 `zdz we are able to rewrite the principal’s problem (6) as

max
{c},{s},{`},w∗

Ẽ
[∫ τ

0
e−ψt

(
αst − C(st, `t)

)
dt−

∫ τ

0
e−ψtdct + e−ψtR

∣∣∣∣w0 = w∗
]
,

where the expectation Ẽ[·] is taken under the equivalent, auxiliary measure P̃. Here, dct ≡ dCt/Kt =
max{wt − w, 0}. The stated integral expression is implied by following Lemma.

Lemma 1. Suppose {w} is the unique, strong solution to the stochastic differential equation

dwt = δtdt+ ∆twtdt− dct + (β`t − wt)σKdZKt + βst σXdZ
X
t

for t ≤ τ , standard Brownian motions {ZX}, {ZK} with correlation ρ and progressive processes {δ},
{∆}, {β`}, {βs} of bounded variation.19 Assume that dwt = 0 for t > τ where τ = min{t ≥ 0 : wt = 0}.
Furthermore, dct = max{wt−w, 0} with threshold w > 0. Let now g : [0, w]→ R of bounded variation.
Then the twice continuously differentiable function f : [0, w]→ R (i.e. f ∈ C2) solves the differential

18Indeed, the possible discontinuities of the functions s(·), `(·) cause technical complications. If smax, `max

are sufficiently large, this problem is not present anymore. Then, the existence and uniqueness of the solution
follow from the Picard-Lindelöf theorem, since the required Lipschitz condition is evidently satisfied.

19We call a process {Y } ’of bounded variation’ if it can be written as the difference of two almost surely
increasing processes. Similarly, a function F ∈ R[a,b] is called ’of bounded variation’ if it can be written as the
difference of two increasing functions on the interval [a, b].
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equation

rtf(wt) = g(wt) + f ′(wt)[δt + ∆twt] + f ′′(wt)
[
σ2
K(β`t − wt)2 + (βst σX)2 + 2ρσXσKβ

s
t (β

`
t − wt)

]
(A4)

with boundary conditions f(0) = R, f ′(w) = −1 if and only if

f(w) = E
[∫ τ

0
e−

∫ t
0 rudug(wt)dt−

∫ τ

0
e−

∫ t
0 rududct + e−

∫ τ
0 ruduR

∣∣∣∣w0 = w

]
for a progressive discount rate process {r} of bounded variation.

Proof. Suppose f(·) solves (A4). Define

ht ≡
∫ t

0
e−

∫ z
0 rudug(wz)dz −

∫ t

0
e−

∫ z
0 rududcz + e−

∫ t
0 ruduf(wt).

Applying Itô’s Lemma, we obtain

e
∫ t
0 rudtdht =

{
g(wt)− rtf(wt) +

f ′′(wt)

2

[
σ2
K(β`t − wt)2 + (βst σX)2 + 2ρσXσKβ

s
t (β

`
t − wt)

]
+ f ′(wt)(δt + ∆twt)

}
dt

−
[
(1 + f ′(wt))dct

]
+ f ′(wt)

[
dZXt β

s
t σX + dZKt (β`t − wt)σK

]
.

The first term in curly brackets equals zero because f(·) solves (A4). Since f ′(w) = −1 and dct = 0 for
all wt ≤ w, the second term in square brackets equals also zero and therefore {h} follows a martingale
up to time τ . As a result, we have:

f(w0) = f(w) = h0 = E [hτ ] = E
[ ∫ τ

0
e−

∫ t
0 rsdsg(wt)dt−

∫ τ

0
e−

∫ t
0 rsdsdct + e−

∫ τ
0 rsdsR

∣∣∣∣w0 = w

]
.

The result follows.

B.3.2 Verification

Proof. Next, we verify the optimality of the contract Π∗ among all contracts Π satisfying incentive
compatibility. To do so, we show that the principal obtains under any contract Π ∈ IC at most (scaled)
payoff G̃(Π)/K ≤ p(w∗), with equality if and only if Π = Π∗. Here, p(·) solves the HJB equation (11)
with corresponding payout threshold w and w0 = w∗.

Consider any incentive-compatible contract Π ≡ ({C}, {s}, {`}, τ). For any t ≤ τ , define its
auxiliary gain process G as

Gt(Π) =

∫ t

0
e−ru

(
dXu − C(su, `u)du

)
−
∫ t

0
e−rudCu + e−rtP (Wt,Kt),

where the agent’s continuation payoff evolves according to (7). Recall that wt = Wt
Kt

and P (Wt,Kt) =
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Ktp(wt). Itô’s lemma implies that for t ≤ τ :

ert
dGt(Π1)

Kt

=

[
− (r − µ`t)p(wt) + αst − C(st, `t) + p′(wt)wt(γ − µ`t)

+
p′′(wt)

2

[
(βst σX)2 + σ2

K(β`t − wt)2 + 2ρσXσKβ
s
t (β

`
t − wt)

]]
dt− (1 + p′(wt))dct

+ σK
(
p(wt) + p′(wt)(β

`
t − wt)

)
dZKt + σX

(
1 + βst p

′(wt)
)
dZXt .

Under the optimal investment and incentives, the first term in square bracket stays at zero always.
Other investment and incentive policies will make this term negative (owing to the concavity of p).
The second term is non positive since p′(wt) ≥ −1, but equal to zero under the optimal contract.
Therefore, for the auxiliary gain process, we have

dGt(Π) = µG(t)dt+ e−rtKt

[
σK
(
p(wt) + p′(wt)(β

`
t − wt)

)
dZKt + σX

(
1 + βst p

′(wt)
)
dZXt

]
,

where µG(t) ≤ 0. Due to our assumption of bounded sensitivities {βs}, {β`}, it follows that

E
(∫ t

0
e−ru

(
p(wu) + p′(wu)(β`u − wu)

)
dZKu

)
= E

(∫ t

0
e−ru

(
1 + βsup

′(wu)
)
dZXu

)
= 0,

which implies that {Gt}t≥0 follows a supermartingale. Furthermore, under Π, investors’ expected
payoff is

G̃(Π) ≡ E
[∫ τ

0
e−ru

(
dXu − C(su, `u)du

)
−
∫ τ

0
e−rudCu + e−rτRKτ

]
,

As a result, we have that

G̃(Π) = E [Gτ (Π)]

= E
[
Gτ∧t(Π) + 1{t≤τ}

(∫ τ

t
e−rs

(
dXs − dCs − C(ss, `s)ds

)
+ e−rτRKτ − e−rtP (Wt,Kt)

)]
= E [Gτ∧t(Π)]

+ e−rtE
[
1{t≤τ}Et

(∫ τ

t
e−r(s−t)

(
dXs − dCs − C(ss, `s)ds

)
+ e−r(τ−t)RKτ − P (Wt,Kt)

)]
≤ G0 + e−rtE

[
PFB(Kt)−Wt − P (Wt,Kt)

]
≤ G0 + e−rt

(
pFB −R

)
E [Kt] ,

where pFB ≡ PFB(Kt)
Kt

is the (scaled) first best value. The inequalities follow from the supermartingale
property of Gt, the fact that the value of the firm with agency is below first best, and the fact that
pFB −w− p(w) ≤ pFB −R. Since µ`max < r, it follows that limt→∞ e

−rtE [Kt] = 0. Therefore, letting
t → ∞ yields G̃(Π) ≤ G0 ≡ P (W0,K0) = p(w0)K0 for all incentive compatible contracts. For the
optimal contract Π∗, the investors’ payoff G̃(Π∗) achieves P (W0,K0) = p(w0)K0 since the above weak
inequality holds in equality when t→∞. This completes the argument.
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Proof of Proposition 2.3

B.3.3 Auxiliary results

In this section, we prove the following auxiliary Lemma, which is key for establishing the concavity of
the value function.

Lemma 2. Let p(·) the unique, twice continuously differentiable solution to the HJB equation (11) on
the interval [0, w] subject to the boundary conditions p(0) = R, p′(w) = −1 and p′′(w) = 0. Further,
assume the processes {s}, {`} are of bounded variation. Then it follows for any w1 ∈ (0, w] with
p′′(w1) = 0 that p′(w1) < 0 and that the policy functions s(·), `(·) are continuous in a neighbourhood
of w1.

Proof. We start with an important observation. Because the processes {s}, {`} are by hypothesis of
bounded variation, they can be written as the difference of two almost surely increasing processes, such
that at = a1

t − a2
t for all t ≥ 0, a ∈ {s, `} and aj(·) increases almost surely. By Froda’s theorem,20 each

of the processes {â} has no essential discontinuity and at most countably many jump-discontinuities
with probability one. Since {w} follows a Brownian semimartingale, this implies that any point of
discontinuity of a(·) can neither be an essential discontinuity nor can the set of discontinuity points of
a(·) be dense in [0, w] for all a ∈ {s, `}.

We first prove that p′(w1) < 0. Let us suppose to the contrary p′(w1) ≥ 0, hence w1 < w. Note
that for any δ > 0 exists z ∈ (w1 − δ, w1 + δ) such that s(·), `(·) are continuous in a neighbourhood of
z, because discontinuity points do not form a dense set. Since p′(·), p′′(·) are continuous, for any ε > 0
we can choose δ > 0 and z ∈ (w1 − δ, w1 + δ) such that min{p′(z), p′′(z)} > −ε. The HJB equation
(11) and the fact, that `(z) = `FB is not necessarily optimal, imply

(r − µ`FB)p(z) ≥ max
s∈[0,smax]

{
αs+ p′(z)(γ − µ`FB)z − C(s, `FB) + p′′(z)Σ(z)

}
≥ max

s∈[0,smax]

{
αs− ε

(
γ − µ`FB)z − C(s, `FB) + Σ(z)

]}
.

Sending ε, δ → 0 such that s = s(z) = smax ≥ sFB and in particular for z = w1:

αs− C(s, `FB ≥ αsFB − C(sFB, `FB) ≥ (r − µ`FB)pFB.

Hence, there exists z ∈ [0, w] such that p(z) ≥ pFB, a contradiction.

Next, let us prove that `(·) must be continuous in a neighbourhood of w1 and assume to the contrary
that there is no neighbourhood of w1, on which `(·) is continuous. Since the set of discontinuities of
`(·) must be discrete (not dense), it is immediate that

`− ≡ lim
w↑w1

`(w) 6= lim
w↓w1

`(w) ≡ `+,

i.e. `(·) has a jump discontinuity at w1 itself. Without loss of generality, we will assume that `− < `+
and w1 < w.21

Note that for all ε > 0 there exists δ > 0 such that for all z ∈ (w1, w1+δ) it holds that |`(z)−`+| < ε.

The optimality of `(z) requires that ∂p(z)
∂` |`=`(z) ≥ 0 with equality if `(z) is interior. Due to the

20Froda’s theorem states that each real valued, monotone function has at most countably many points of
discontinuity. It is clear that such a function cannot have an essential discontinuity, i.e. a point of oscillation.

21Since p(·) is extended linearly to the right of w, discontinuity to the right of w is not an issue.
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continuity of p′′(·), the limit ε→ 0 yields Γ`(w1) ≥ 0 for

Γ`(w) = p(w)− p′(w)w − C`(s, `+) with C`(s, `+) =
∂C(s, `)
∂`

|`=`+

In addition, for all ε > 0 it must be that there exists δ > 0 such that for all x ∈ (w1 − δ, w1) it holds

that |`(x) − `−| < ε. Hence, for ε > 0 sufficiently small, `(x) < `max and therefore ∂p(x)
∂` |`=`(x) = 0,

which implies together with the continuity of p′′(·) that Γ̂`(w1) = 0 for

Γ̂`(w) = p(w)− p′(w)w − C`(s, `−).

Next, observe that
0 ≤ Γ`(w1)− Γ̂`(w1) = −λ`(`+ − `−).

Then, it follows that `− ≥ `+, a contradiction.

Finally, assume that there is no neighbourhood of w1, on which s(·) is continuous. Since the set
of discontinuity points of s(·) is discrete, this is equivalent to s− ≡ limw↑w1 s(w) 6= limw↓w1 s(w) ≡ s+.
Without loss of generality, suppose s+ > s−. Then, for all ε > 0 there exists δ > 0 such that for

all z ∈ (w1, w1 + δ) it holds that |s(z) − s+| < ε. Optimality requires ∂p(z)
∂s |s=s(z) ≥ 0. Taking

the limit ε → 0, we obtain Γs(w1) ≥ 0 for Γs(w) = αs(w) − Cs(s+, `). Similarly, Γ̂s(w1) = 0 for
Γ̂s(w) = s(w) + p′(w)Cs(s−, `). Hence,

0 ≤ Γs(w1)− Γ̂s(w1) = −λs(s+ − s−).

Then, it follows that s− ≥ s+, a contradiction.

B.3.4 Concavity of the value function

Proof. Since p′′(·) is continuous on [0, w] and {s}, {`} are of bounded variation, it follows that the
mappings s(·), `(·) are continuous on [0, w] up to a discrete set with (Lebesgue-) measure zero. On the

set, where s(·), `(·) are continuous, the envelope theorem implies now that p′′′(·) exists and is given by

p′′′(w) =
(r − γ)p′(w)− p′′(w)

(
w(γ − µ`)− σ2

K(β` − w)− ρσXσKβs
)

1
2

(
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβs(β` − w)
) .

We have to show that p′′(w) < 0 for all 0 ≤ w < w.

By Lemma 2 we know that s(·), `(·) are continuous in a neighbourhood of w. Then, we observe
that p′′′(w) ∝ γ − r > 0 due to βs ≥ λss > 0 and thus p′′′(·) > 0 in a neighbourhood of w. Hence,
p′′(w) < 0 on an interval (w − ε, w) with appropriate ε > 0.

Next, suppose there exists w0 ∈ [0, w] with p′′(w0) > 0 and define w1 ≡ sup{w ∈ [0, w) : p′′(w) ≥
0}. By the previous step and continuity it follows that p′′(w1) = 0 and w1 < w. We obtain now from
Lemma 2 that s(·), `(·) are continuous in a neighbourhood of w1 and that p′(w1) < 0. However, this
implies p′′′(w1) > 0 and therefore p′′′(·) > 0 in a neighbourhood of w1. Thus, there exists w′ > w1

with p′′(w′) > 0, a contradiction to the definition of w1. This completes the proof.

Last, let us state the following corollary, which proves useful in some instances:

Corollary 1. If γ − r and σ2
K are sufficiently small, then p′′′(w) > 0 for any w ∈ [0, w).

Proof. Immediate from the above given expression of p′′′(w).
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C Proofs of Propositions 3 and 4

Proof. The expressions for s = s(w), ` = `(w) follow directly from the maximization of p(w) over
s ∈ [0, smax] and ` ∈ [0, `max] for a given w, as indicated by the HJB equation (11). Interior levels

s(w), `(w) must solve the respective first order conditions of maximization, that is ∂p(w)
∂s |s=s(w) = 0

and ∂p(w)
∂` |`=`(w) = 0. After rearranging the FOCs of the maximization, one arrives at the desired

expressions.
Due to p′′(w) < 0 for all w < w and p′′(w) = 0, it is immediate to see that s(w) ≤ sFB, with the

inequality holding as equality if and only if w = w. When γ − r and σK are sufficiently small, then
p′′′(w) > 0 (see Corollary 1) for all w and due to

sign

(
∂s(w)

∂w

)
= sign(p′′′(w))

short-run investment increases in w under these circumstances.
Evaluating the HJB equation at the boundary under the optimal controls yields:

(r − µ`)p(w) + (γ − µ`)w = αs− C(s, `).

Hence, owing to γ > r and agency-induced termination, P(τ <∞) = 1:

p(w) + w <

(
αs− C(s, `)
r − µ`

)
≤ pFB.

Since C`(sFB, `FB) = µpFB and C`(s(w), `(w)) = µ(p(w)+w), it is clear that `(w) < `FB and therefore
by continuity, that `(w) < `FB in a left-neighbourhood of w.

D Proof of Proposition 5

We prove part i) and ii) separately and start with an auxiliary Lemma.
Part i) is established by showing that either σX = 0 or σK = 0 implies `(w) < `FB.
Part ii) is established by showing that there exist parameter values, so that `(w) > `FB, once

σX , σK > 0.

D.1 Proof of Proposition 5 - Auxiliary results

Lemma 3. Under the optimal contract for an arbitrary parameter θ 6∈ {r, µ}:

∂p(w)

∂θ
= E

{∫ τ

0
e−rt+µ

∫ t
0 `sds

[
∂α

∂θ
st −

∂C(st, `t)
∂θ

+ p′(wt)wt
∂
(
γ − µ`t

)
∂θ

− p(wt)
∂
(
r − µ`t

)
∂θ

+
p′′(wt)

2

∂

∂θ

[
(βst σX)2 + σ2

K(β`t − wt)2 + 2ρσXσKβ
s
t (β

`
t − wt)

]]
dt

∣∣∣∣∣w0 = w

}
.

Proof. Let w ∈ [0, w], θ 6∈ {r, µ} and s = s(w), ` = `(w), βs = βs(w), β` = β`(w) be determined by the
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HJB equation (11).22 Then, by the envelope theorem

∂p(w)

∂s

∂s(w)

∂θ
=
∂p(w)

∂`

∂`(w)

∂θ
= 0

and therefore total differentiation of the HJB-equation wrt. θ yields:

(r − µ`)∂p(w)

∂θ
+
∂(r − µ`)

∂θ
p(w) =

∂α

∂θ
s− ∂C(s, `)

∂θ
+ p′(w)w

∂(γ − µ`)
∂θ

+ w
(
γ − µ`

) ∂
∂w

∂p(w)

∂θ

+
p′′(w)

2

∂

∂θ

[
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβ
s(β` − w)

]
+

∂2

∂w2

∂p(w)

∂θ

[
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβ
s(β` − w)

]
.

Note that we used
∂k

∂wk
∂p(w)

∂θ
=

∂

∂θ

∂kp(w)

∂wk
for k ∈ {1, 2},

i.e. we changed the order of (partial) differentiation, which is possible since p is sufficiently smooth.
The above ODE admits a unique solution subject to the boundary conditions

∂p(w)

∂θ
|w=0 = 0 and

∂p′(w)

∂θ
|w=w =

∂

∂w

∂p(w)

∂θ
|w=w = 0.

and we are able to invoke Lemma 1 to arrive at the desired expression.

D.2 Proof of Proposition 5 i) - Part I

Let us assume σX = 0 and state the following Lemma:

Lemma 4. Assume σX = 0. Hence, short-run investment s(w) is contractible and constant over time.
Then, it must be that β` > w.

Proof. The proof is split in several parts. Part i) shows that β`(w) 6= w. Part ii) shows that β`(w) 6= w
and part iii) concludes by showing β`(w) > w for all w ∈ [0, w].

i) Let us first show that β`(w) = λ``(w) 6= w. Define ` := `(w) and suppose to the contrary
λ`` = w. Then:

p(w) =
1

r − µ`

(
αs− 1

2

(
λ2
sαs+ λ``

2µ
)
− w(γ − µ`)

)
.

Let ε > 0 and consider the Taylor-expansion of p(w − ε) around p(w), given by p(w − ε) =
p(w)+ε+o(ε3). Further, define `ε := `(w−ε) and note that in optimum β`(w−ε) = λ``ε+o(ε)
by continuity. Hence:

(r − µ`ε)p(w − ε) = αs− λsαs
2

2
− 1

2
λ``

2
εµ+ p′(w − ε)

(
(γ − µ`ε)(w − ε)

)
+
σ2
K(λ``ε + o(ε)− w + ε)2

2
p′′(w − ε)

= αs− λsαs
2

2
− 1

2
λ``

2
εµ+

(
− 1 + o(ε2)

)(
(γ − µ`ε)(w − ε)

)
+
σ2
K(λ``ε − w + o(ε))2

2
p′′(w − ε),

22For convenience, we suppress the dependence of p(·), w on θ in the notation.
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where we used that p′(w − ε) = p′(w)− εp′′(w) + o(ε2).

Combining the above and utilizing the Taylor expansion for p(w − ε) around p(w) yields:

p(w − ε)µ(`ε − `) = ε(r − µ`) + (γ − µ`ε)(w − ε)− w(γ − µ`)

+
1

2
µλ`
(
`2ε − `2

)
−
σ2
K(λ``ε − w + o(ε))2

2
p′′(w − ε) + o(ε2) + o(ε3).

Next, note that ` = `ε + ε`′(w− ε) + o(ε2), in case `(·) is differentiable, which is guaranteed for
ε > 0 sufficiently small. This yields

µp(w − ε)(−ε`′(w − ε)) = ε(r − γ)− wµε`′(w − ε) + o(ε2)

⇐⇒ o(ε)− µ
(
p(w − ε) + w

)
`′(w − ε) = r − γ.

If `(w) = `max, then it must be either that `′(w − ε) = o(ε) for ε sufficiently small, which leads
to γ − r = o(ε) and thereby a contradiction, or limw↑w `

′(w) > 0.

If `(w) < `max or limw↑w `
′(w) > 0, then `(w − ε) solves the following first-order condition of

maximization, ∂p(w−ε)
∂` = 0. Moreover, `(w) < `max also solves the FOC at w = w:

µp(w) + µw − λ`µ`(w) = 0⇐⇒ p(w) + w − λ``(w) = 0.

Invoking the implicit function theorem, we can differentiate the above identity wrt. w = w, so
as to obtain `′(w) = 0 as well as `′′(w) = 0. Then, by Taylor’s theorem, which is applicable
owing to p ∈ C2, we get `′(w− ε) = o(ε2), which yields the desired contradition. This concludes
the proof.

ii) Let us assume that there exists now w < w with β` = λ``(w) = w optimal, in which case the
HJB equation under the optimal control reads:

(r − µ`(w))p(w) = αs(w)− λsαs(w)2

2
− λ`µ`(w)2

2
+ p′(w)w(γ − µ`(w)).

Due to p′(w) ≥ −1 – i.e., since scaled payouts at rate w(γ − µ`) and this way keeping wt = w
constant for all future times t is always an option but not necessarily optimal – it follows that

p(w) ≥ 1

r − µ`(w)

(
αs(w)− λsαs(w)2

2
− λ``(w)2µ

2
− w(γ − µ`(w))

)
.

Likewise, due to the fact that `(w)λ` = w is optimal, it also must hold that:

p(w) ≥ max
s,`

1

r − µ`

(
αs− λsαs

2

2
− λ``

2µ

2
− w(γ − µ`)

)
.

Then:

p(w) < p(w)− (w − w) = max
s,`

1

r − µ`

(
αs− λsαs

2

2
− λ``

2µ

2
− w(γ − r)− w(r − µ`)

)
< max

s,`

1

r − µ`

(
αs− λsαs

2

2
− λ``

2µ

2
− w(γ − r)− w(r − µ`)

)
= max

s,`

1

r − µ`

(
αs− λsαs

2

2
− λ``

2µ

2
− w(γ − µ`)

)
,
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where the first inequality is due to strict concavity and the second one due to w < w. This
yields the desired contradiction.

iii) Eventually, let us assume that to the contrary β` = `(w)λ` < w for at least one point w and
define for this sake the function χ(w) = β`(w)− w. In a neighbourhood of w = 0, i.e., on (0, ε)
for appropriate ε > 0, it is evident that χ(w) > 0 because of 0 < R = p(0)⇒ `(0) > 0.

If there is w′ such that χ(w′) < 0, then there exists also w such that χ(w) = 0 by continuity. If
χ(w) = 0 for some w > 0, then it must either be that χ(w) = 0, which contradicts part i), or
χ(w) = 0 for 0 < w < w, which contradicts part ii). Hence, β` = `(w)λ` > w for all w ∈ [0, w],
which eventually proves the Lemma.

D.3 Proof of Proposition 5 i) - Part II

Proof. Here, we prove that σK = 0 and σX > 0 imply that `(w) < `FB, provided investment is not at
the corner.

For interior levels, ` = `(w) solves the First-Order condition of maximization ∂p(w)
∂` = 0, so that

µ(p(w)− p′(w)w)− λ`µ` = 0.

Because of p(w)−wp′(w) < pFB and `FB solves µpFB−λ`µ` = 0, it is immediate to see that `(w) < `FB

for all w ∈ [0, w]. For corner levels, a similar argument applies, which readily yields `(w) ≤ `FB with
the inequality being strict, if `max > `FB.

Proof of Proposition 5 ii)

Proof. Let θ denote an arbitrary set of model parameters and denote the family of solutions to the
principal’s problem by {pθ, wθ}θ. By Berge’s Maximum Theorem, wθ is continuous wrt. (the value
of) θ, in the standard Euclidean metric space on R and pθ is continuous in θ on AB with respect to
the topology, induced by the norm ||·, ·||∞ where

||f ||∞ = sup
x∈A
|f(x)|.

Here, A, B are some compact subsets of R, that satisfy all necessary regularity conditions and possibly
depend on θ. We choose A sufficiently large, so that wθ ∈ A and 0 ∈ A for all considered θ. We may
choose B, so that pθ(w) ∈ B for all w ∈ [0, wθ] for all considered θ. For brevity, we omit a formal
introduction of the sets A,B and the associated notation in the following.

Without loss of generality, we assume throughout that the constraint ` ≤ `max is never tight. The
proof goes through, as long as the first-best level is interior, i.e., `max > `FB. Formally dealing within
the proof with corner levels would merely complicate the notation.

Let us start by considering the limit case µ→ 0, holding the remaining parameters fixed. That is,
we study the family {pµ, wµ}µ≥0 and take the limit µ→ 0. The model in the limit case µ→ 0 is well
behaved, and features a value function p0 with reflecting boundary w0 > 0. Due to continuity in µ, it
follows that pµ → p0 and wµ → w0 as µ→ 0. As a consequence,

`(w)→
−wp′′0(w)λ`σ

2
K

−p′′0(w)(λ`σK)2
=
w

λ`
∧ `max > 0 for w0 > w > 0,
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where we omit for simplicity indexing for the optimal controls, e.g., for ` = `µ. It can be verified for
w < wµ that:

V(dw) = (βsσX)2dt+ (β` − w)2σ2
Kdt = o(σ2

X)dt,

when µ → 0, because β` → λ``(w) = w. If it were `(w) = `max, then it is easy to verify that β` = w
becomes optimal.

As a consequence, the joint limit σX , µ→ 0 would lead to a solution, where {w} has no volatility
and accordingly w0 = 0. That is, limσX→0w0 = 0. Hence, σX = 0 ⇒ w0 = 0. Since the limit
case µ → 0 corresponds (effectively) to the model of DeMarzo and Sannikov (2006), we know that
σX > 0⇔ w0 > 0.

In order to take the limit limµ→0 `
FB, we have to use the rule of de L’Hopital, which yields

lim
µ→0

1

µ

[
r −
√
r2 − µα

(λsλ`)

]
= lim

µ→0

1

2
√
r2 − µα

(λsλ`

α

λsλ`
=

α

2λsλ`r
.

To avoid clutter with subscripts, we omit indexing model quantities by µ, when it does not cause
confusion.

We prove now the claim regarding γ. Let us fix all parameters except γ and consider the (contin-
uous) family of solutions {pγ , wγ}γ>r≥0. We evaluate the HJB equation at the boundary:

(r − µ`(wγ))pγ(wγ) =
α

2λs
− (γ − µ`(wγ))wγ −

λ`µ`(wγ)2

2
,

and totally differentiate wrt. γ. Using dp(wγ)/dγ = p′(wγ)∂wγ/∂γ + ∂p(wγ)/∂γ and the boundary
condition p′(wγ) = −1, we obtain that:

∂wγ
∂γ

= − 1

γ − r

(
wγ + (r − µ`(wγ))

∂pγ(wγ)

∂γ

)
,

where by Lemma 3:

∂pγ(wγ)

∂γ
= E

(∫ τ

0
e−rt+µ

∫ t
0 `udup′γ(wt)wtdt

∣∣∣∣w0 = wγ

)
≥ −E

(∫ τ

0
e−rt+µ

∫ t
0 `uduwtdt

∣∣∣∣w0 = wγ

)
,

where the inequality uses p′γ ≥ −1.

Let us assume that
∂pγ(wγ)
∂γ ≥ 0. Then:

A(γ) : = wγ + (r − µ`(wγ))
∂pγ(wγ)

∂γ

≥
wγE

(∫ τ
0 e
−rt+µ

∫ t
0 `ududt

∣∣∣∣w0 = wγ

)
E
(∫ τ

0 e
−rt+µ

∫ t
0 `ududt

∣∣∣∣w0 = wγ

) + (r − µ`max)
∂pγ(wγ)

∂γ

≥ (r − µ`max)wγE
(∫ τ

0
e−rt+µ

∫ t
0 `ududt

∣∣∣∣w0 = wγ

)
+ (r − µ`max)

∂pγ(wγ)

∂γ

≥ (r − µ`max)E
(∫ τ

0
e−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
> 0,
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where it was used that p′γ ≥ −1 as well as P(τ <∞) = 1. In case
∂pγ(wγ)
∂γ < 0, we obtain similarly:

A(γ) = wγ + (r − µ`(wγ))
∂pγ(wγ)

∂γ

≥ wγ − rE
(∫ τ

0
e−rt+µ

∫ t
0 `uduwtdt

∣∣∣∣w0 = wγ

)
≥ rE

(∫ τ

0
e−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
≥ (r − µ`max)E

(∫ τ

0
e−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
> 0,

for all γ > r.

It follows that wγ +(r−µ`(wγ))
∂pγ(wγ)
∂γ > 0, so that

∂wγ
∂γ < 0. Since the process {w} has – because

of σX > 0 and βs(w) = λss
FB – strictly positive volatility at the boundary wγ , the payout boundary

wγ cannot constitute an absorbing (or attracting) state. This holds true for any γ > r. Due to that
and the fact that the stochastic process {w} possesses strictly positive volatility almost everywhere on

(0, wγ), it cannot be that the above expectation E(γ) := E
(∫ τ

0 e
−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
tends to

zero, as γ → r, so that E(γ) 6∈ o(γ−r) and therefore limγ↓r E(γ) > 0. By continuity, the aforementioned
limit exists but possibly takes value ∞. From there it follows that

∂wγ
∂γ

=
A(γ)

−(γ − r)
≤

(r − µ`max)E
(∫ τ

0 e
−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
−(γ − r)

,

and accordingly

lim
γ↓r

∂wγ
∂γ

= lim
γ↓r

A(γ)

−(γ − r)
≤ lim

γ↓r
≤

(r − µ`max)E
(∫ τ

0 e
−rt(wγ − wt)dt

∣∣∣∣w0 = wγ

)
−(γ − r)

= −∞.

Thus, the function γ 7→ wγ – defined on [r,∞) – has a singularity (pole) at γ = r, which implies
limγ↓r wγ =∞.

By continuity, for any ε > 0 and for any µ > 0 there exists γ > r sufficiently low, so that the
payout threshold wµ,γ (dependent on µ, γ) satisfies

wµ,γ
λ`

> α
2λsλ`r

+ ε. Under these circumstances,

there is a value 0 < w̃µγ < wµ,γ with:
w̃µγ
λ`

>
α

2λsλ`r
+ ε.

Taking the limit of the above constructed sequence yields (by construction):

lim
µ→0

`(w̃µγ ) > lim
µ→0

`FB.

By continuity, there exist now µ > 0 and γ > r sufficiently low and w ∈ (0, wµ,γ), so that `(w) > `FB.
Let wH ≡ sup{w : `(w) > `FB} and wL ≡ sup{w : `(w) > `FB}. Since `(wµ,γ) < `FB for any µ >

0, γ > r, it must be that wH < wµ,γ with limµ→0,γ→r w
H = wµ,γ . In addition, limµ→0,γ→r w

L = α
2λsr

.
It follows then that in the limit µ→ 0, γ → r it must be that the set {w : `(w) = w/λ`+o(µ) ∧ `max >
`FB} is convex. By continuity, there exist µ > 0 and γ > r, ensuring the set {w : `(w) > `FB} is
convex, thereby concluding the proof.
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Proof of Proposition 5 iii)

Proof. We consider parameters are such that sup{`(w) : w ∈ [0, w]} = `FB and let µ > 0, so that
`(w) > 0 for any w ∈ (0, w]. Let us evaluate the HJB equation at the boundary:

(r − µ`(w))p(w) =
α

2λs
− (γ − µ`(w))w − λ`µ`(w)2

2
.

Differentiating this identity wrt. σi for i ∈ {X,K} leads to:

∂w

∂σi
=

r

r − γ
∂p(w)

∂σi
.

Lemma 3 then implies:

∂p(w)

∂σK
= E

(∫ τ

0
e−rt+µ

∫ t
0 `udup′′(wt)(β

`
t − wt)2σKdt

∣∣∣∣w0 = w

)
< 0,

∂p(w)

∂σX
= E

(∫ τ

0
e−rt+µ

∫ t
0 `udu

(
p′′(wt)(β

s
t )

2σX
)
dt

∣∣∣∣w0 = w

)
< 0,

so that w increases in σi for i ∈ {X,K}. The claim follows due to continuity in parameter values
{σX , σK}.

E Proof of Proposition 6 and 7

We prove the two propositions separately. In both cases claim i) is trivial, since σK = 0 precludes risk
externalities between short- and long-run incentives.

E.1 Proof of Proposition 6 ii)

Proof. The proof of Proposition 6 ii) is split in two parts. The first part of the proof shows that
there is short-termism, s(w) > sFB, for σX sufficiently small; the second one points out under which
circumstances {w : s(w) > sFB} is convex.

Let us assume that correlation ρ is negative. Let us fix all parameters and consider the family of
solution {pσX , wσX}, which is – by Berge’s Maximum Theorem – continuous in σX wrt. an appropriate
topology, already discussed before. In the limit case σX → 0, we have s(w)→ sFB for all w ∈ [0, wσX ].
In addition, for any σX ≥ 0, including the limit case σX → 0, we have p′′σX (0) < 0, as wσX > 0 due to
σK > 0. For notational convenience, we omit indexing model quantities by σX , when no confusion is
likely to arise.

We can write

s(w) =
α+ p′′(w)ρσXσKλs(λ``(w)− w)

λsα− p′′(w)(λsσX)2
=
α+ p′′(w)ρσXσKλsλ``(w)

λsα− p′′(w)(λsσX)2
+ o(w).

From there it follows immediately that:

∂s(w)

∂p′′(w)
= o(σX).
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Thus:

ds(w)

dσX
=
∂s(w)

∂σX
+

∂s(w)

∂p′′(w)

∂p′′(w)

∂σX

∝
[
λsα− p′′(w)(λsσX)2

]
p′′(w)ρσKλs(λ``(w)− w)

+ 2
[
α+ p′′(w)ρσXσKλs(λ``(w)− w)

]
p′′(w)λ2

sσX + o(σX)

= p′′(w)ρσKλ
2
s(λ``(w)− w)α+ o(σX) = p′′(w)ρσKλ

2
sλ``(w)α+ o(σX) + o(w),

where ∝ means “has the same sign as”.

Because of R > 0, we have `(0) > 0. This implies `(w) > 0 close to zero and `(w) 6∈ o(w). Hence,
it holds that λ``(w) > w in a neighbourhood of zero, implying short-run investment s(w) increases
in σX , provided σX > 0 and w are sufficiently close to zero. This follows from limσX→0 p

′′ 6≡ 0 and
p′′(0) < 0, because σK > 0 guarantees a non-trivial boundary w > 0, even in the limit σX → 0.
Because of s(w) = sFB, if σX = 0, there exists σX > 0 and w ∈ [0, w], so that s(w) > sFB, which
concludes the first part of the proof.23

The second part of the proof establishes the convexity of the set {w : s(w) > sFB} under certain
parameters conditions. Let us calculate:

∂s(w)

∂w
≡ s′(w) ∝ p′′′(w)ρσXσKλs(λ``(w)− w) + p′′(w)ρσXσKλs

∂(λ``(w)− w)

∂w
+ o(σ2

X).

If γ− r (and possibly σ2
K) is sufficiently small, then p′′′(w) ≥ 0 (see Corollary 1), so that the first term

is negative for w < λ``(w), i.e., for w close to zero. If λ` is sufficiently small, then:

∂(λ``(w)− w)

∂w
= λ``

′(w)− 1 < 0,

so that the second term is also negative. The remainder is negligible for σX sufficiently small. Under
these conditions, s′(w) < 0 for w ≤ λ``(w).

Let us conclude the proof by demonstrating {w : s(w) > sFB} must be a convex set, containing
zero, when in addition to σX also λ` and γ − r are sufficiently small, so as to ensure ∂s(w)/∂w < 0
for w < λ``(w). Wlog, assume that {w : s(w) > sFB} is non-empty. If the set is not convex, it must
be that there exists w′ ∈ [0, w] with s(w′) = sFB and s′(w′) > 0, such that w′ < w. Next, let us take
a look at:

s(w) =
α+ p′′(w)ρσXσKλs(λ``(w)− w)

λsα− p′′(w)(λsσX)2

and notice that for s(w′) ≥ sFB being optimal it is necessary that λ``(w
′) > w′, as ρ < 0 and

p′′(w′) < 0. This implies s′(w′) < 0, when λ` and γ − r are sufficiently small, a contradiction.
Next, assume the set does not contain zero, that is s(0) ≤ sFB. It follows that s′(ŵ) > 0 for

ŵ = inf{w ≥ 0 : s(w) > sFB}. By continuity s(ŵ) = sFB. However, due to s(w) = sFB it must be
that ŵ < w. For s(ŵ) = sFB being optimal it must be that λ``(ŵ) > ŵ. This implies s′(ŵ) < 0, when
λ` and γ − r are sufficiently small, a contradiction. This concludes the proof.

23If we did not have R > 0, the proof is still valid, as long as there exists a point w < w satisfying `(w) > w/λ`.
The existence of such a point can be ensured by appropriate λ`.
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E.2 Proof of Proposition 7 ii)

Proof. Fix σX > 0 and consider γ−r sufficiently small, such that there exists w < w with w > λ``(w).
This is possible as w → ∞ for γ → r and because there exists a left neighbourhood of w, where
`(w) < `FB <∞, for any γ > r.

Note that this holds for any σX > 0. Therefore, we can choose σX sufficiently small and γ − r
sufficiently small, so that there exists w < w with p′′(w) < 0 and s(w) > sFB, because of

s(w) =
α+ p′′(w)ρσXσKλs(λ``(w)− w)

λsα+ o(σX)2
.

That is, because the incentive cost of short-run investment is of order σ2
X while the incentive externality

is of order σX . Taking the limit σX → 0 is innocuous, only because σK > 0 guarantees a non-trivial
solution in this limit. To be more rigorous, one could mimick and adapt the argument of the proof of
Proposition 6 ii).

Since in the limit µ→ 0 for arbitrary σX > 0, long-term investment satisfies `(w)→ w
λ`

, it follows

that s(w) → ŝ(w) < sFB for w < w, as µ → 0. From there, it follows readily that there exist µ > 0,
γ− r and σX sufficiently small, such that {w : s(w) > sFB} is non-empty and convex with its infimum
exceeding zero and its supremum equal to w.

F Proof of Proposition 8

Proof. Claim i) is straightforward and directly follows from the HJB equation and is already explained
in the main text.

Claim ii) is implied by the proof of Proposition 5 i), where we show that λ``(w) > w for all w,
when σX = 0. The proof can be easily adjusted for linear cost (compare e.g. He (2009)).

Claim iii) relies on the premise that w increases in 1/(γ − r) with limγ↓r w = ∞ and can be
proven mimicking the argument of the proof of Proposition 5 ii). Moreover, the limit λ` → 0 leads
to a well-behaved solution with strictly positive payout threshold. Hence, it follows by continuity of
the solution {pλ` , wλ`}λ`≥0 that there exists w with β`(w) = w > λ` for 0 < w < wλ` , when λ` is
sufficiently small.

G Asymmetric performance pay with convex cost

In this section, we demonstrate that asymmetric performance-pay may also arise in our baseline model
with strictly convex adjustement cost of investment. This is the case when the bound `max becomes
relevant for the principal’s maximization problem. In general, optimal effort levels are given by:

s = s(w) =
α+ p′′(w)ρσXσKλs (λ``(w)− w)

λsα− p′′(w)(λsσX)2
∧ smax

` = `(w) =
µ (p(w)− p′(w)w) + p′′(w)ρσXσKλ`λss(w)− p′′(w)wλ`σ

2
K

λ`µ− p′′(w)(λ`σK)2
∧ `max.

The following Lemma demonstrates that asymmetric performance-pay arises when ` = `max.

Lemma 5. Let w ∈ (0, w] such that in optimum `(w) = ` = `max and s(w) = s ∈ [0, smax]. Assume
that parameters satisfy −ρσKλ``max < σXλssmax for ρ ∈ (−1, 1). Then

β` ≡ β`(w) = max
{
λ``max, w − ρ

σX
σK

λss
}

and βs ≡ βs(w) = λss.
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In particular, the short-run IC-condition is always tight under the conditions stated.

Proof. Given the optimal choice `(w) = `max, s(w) = s, the tuple (βs(w), β`(w)) must satisfy

(βs(w), β`(w)) = arg min
βs,β`

[
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβ
s(β` − w)

]
subject to β` ≥ λ``max and βs ≥ λss,

where the last inequality is tight, unless s = smax. Using standard arguments, one obtains:

β` ≡ β`(w) = max
{
λ``max, w − ρ

σX
σK

βs
}

;

βs ≡ βs(w) = max
{
λssmax, ρ

σK
σX

(w − β`)
}

if s = smax and βs = λss otherwise.

The claim is trivial if s < smax or ρ = 0.
Let us suppose s = smax, ρ 6= 0 and βs > λss. Hence, βs = ρσKσX (w − β`). If now β` > λ``,

then β` = w − ρσX/σKβs. This implies ρσK/σX(w − β`) = ρ2βs < βs and hence βs = λssmax, a
contradiction.

Next, suppose ρ < 0 and β` = λ``max. Hence, w > λ``max. Since β` = λ``max it follows that
λ``max > w − ρσX/σKβs and - using βs = ρσKσX (w − β`) - one obtains λ``max > w − ρ2(w − λ``max).
Hence, λ``max > w, a contradiction.

Finally, assume s = smax, ρ < 0 and β` = λ``max. Hence, λ``max > w and ρσK/σX(w − λ`) >
λssmax, which implies w − λ``max < λssmaxσX/(σKρ). Therefore, −ρσKλ``max > σXλssmax, which
contradicts the hypothesis.

By means of the previous Lemma it is obvious, that asymmetric performance pay always arises
when `max is sufficiently low.

Next, we state Lemma 6, which shows that asymmetric performance pay occurs generally for large
values of w and the set on which it occurs is convex. That is, there is asymmetric performance pay
exactly above some threshold w′ < w, i.e., on the set (w′, w].

Lemma 6. Assume −ρσKλ``max < σXλssmax. If there exists w′ ≥ λ``max + max{ρ, 0}σX/σKsmax

with `(w′) = `max, then `(w) = `max and β` = w − ρσX/σKs(w) for all w ≥ w′.

Proof. Let us start at the point w′ and plug-in optimal incentives

max
{
λ``max, w

′ − ρσX
σK

λss
}

= w′ − ρσX
σK

λss

into the HJB equation , so as to obtain the squared volatility Σ(w′) = (λss(w)σXs(w))2(1−ρ2), which
does not depend on ` anymore. Therefore, a necessary and sufficient condition for `(w′) = `max being
optimal reads

p(w)− wp′(w) ≥ λ``max

Owing to the concavity, the benefits of long-run investment, i.e., p(w) − wp′(w) increase in w, while
there is no agency-cost associated with long-run incentives when ` = `max. Thus, `(w) = `max is
optimal for w ≥ w′.

Corollary 2. Asymmetric performance-pay arises for λ` sufficiently low.

Proof. Clearly, the limit λ` → 0 leads to `(w) → `max for all w, while limλ`→0w > 0 owing to
σX , σK > 0. The claim follows, as β` = `maxλ`.
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H Model solution with private cost

In this section, we solve the model, when the cost of investment is private. For brevity, we only discuss
the solution under the assumption of interior first-best investment levels, i.e., kFB < kmax for k = s, `,
and zero correlation.

The agent’s continuation value {W} reads for t < τ :

Wt = Et
[∫ τ

t
e−γ(u−t)(dCu −KuC(su, `u)du

)]
,

while the principal’s continuation value under the optimal contract is given by

P (W,K) ≡ Et
[∫ τ

t
e−r(u−t)(dXu − dCu) + e−r(τ−t)RKτ

∣∣∣Wt = W,Kt = K

]
. (A5)

By the martingale representation theorem, {W} solves the SDE:

dWt + dCt = γWtdt+KtC(st, `t)dt+ βstKtσXdZ
X
t + β`tKtσKdZ

K
t

for progressively measurable processes {βs}, {β`}. The incentive conditions are derived as:

βst ≥ Cs(st, `t)⇐⇒ βst ≥ λsst
β`t ≥ C`(st, `t)⇐⇒ β`t ≥ λ``t,

where the respective inequality is strict for interior levels.
The value function scales in captial, i.e., P (W,K) = Kp(w) for w = W/K, and p(w) solves the

following HJB equation :

(r + δ)p(w) = max
s,`,βs,β`

{
αs+ p′(w)w(γ + δ − µ`) + p′(w)C(s, `) + µ`p(w)

+
p′′(w)

2

[
(βsσX)2 + σ2

K(β` − w)2 + 2ρσXσKβ
s(β` − w)

]}
,

which is solved subject to p(0)−R = p′(w)−1 = p′′(w) = 0 and the incentive compatibility conditions.
The optimal investment levels s, ` follow from the FOC of maximization:

s = s(w) =
α

−p′(w)λsα− p′′(w)(λsσX)2
∧ smax if − p′(w)λsα− p′′(w)(λsσX)2 > 0

` = `(w) =
µ(p(w)− p′(w)w)− p′′(w)wλ`σ

2
K

−p′(w)λ`µ− p′′(w)(λ`σK)2
∧ `max if − p′(w)λ`µ− p′′(w)(λ`σK)2 > 0,

and

s = s(w) = smax if − p′(w)λsα− p′′(w)(λsσX)2 ≤ 0

` = `(w) = `max if − p′(w)λ`µ− p′′(w)(λ`σK)2 ≤ 0.

Note that the direct marginal cost of investment is given by −p′(w)λssα (resp. −p′(w)λ``µ), which is
unambiguously negative for w ∈ [0, w∗], where w∗ solves p′(w∗) = 0. Hence, incentivizing investment is
beneficial since it induces a positive drift component in the agent’s continuation value w, which moves
w on average away from the liquidation boundary (and thereby relaxes the non-negativity constraint
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of wages dC).
Departing from there, we can state and prove the following Proposition.

Proposition 9 (Short- and Long-termism). The optimal investment levels s, ` satisfy:

i) s(w) = sFB and `(w) < `FB in a neighbourhood of w

ii) If σX > 0, then there exist values wL < wH < w with `(w) > `FB for w ∈ (wL, wH), provided
σK > 0 is sufficiently low and `max > `FB

iii) If σK > 0, then there exist values wL < wH < w with s(w) > sFB for w ∈ (wL, wH), provided
σX > 0 is sufficiently low and smax > sFB.

Proof. i) Utilizing the boundary conditions p′(w) − 1 = p′′(w) = 0 yields s(w) = 1/λs = sFB.
Owing to agency-induced termination, P(τ < ∞) = 1, we have that p(w) − wp′(w) < pFB.
Again invoking the boundary conditions yields:

`(w) =
p(w)− p′(w)w

λ`
<
pFB

λ`
= `FB

and by continuity the relationship holds in an appropriate left neighbourhood of w.

ii) By Berge’s maximum theorem, the solution {pσK , wσK}σK is continuous in σK > 0 and converges
to a well behaved solution with payout threshold w > 0 when σK → 0, because of σX > 0. Then,
by continuity, there exist values w′ ∈ (0, w) and σK sufficiently small, so that effective (marginal)
cost become negative, for w = w′:

−p′(w)λ`µ− p′′(w)(λ`σK)2 = −p′(w)λ`µ+ o(σ2
K) ≤ 0,

in which case clearly `(w′) = `max > `FB, thereby concluding the proof.

iii) By Berge’s maximum theorem, the solution {pσX , wσX}σX is continuous in σX > 0 and converges
to a well behaved solution with payout threshold w > 0 when σX → 0, because of σK > 0. Then,
by continuity, there exist values w′ ∈ (0, w) and σX sufficiently small, so that effective (marginal)
cost become negative, for w = w′:

−p′(w)λsα− p′′(w)(λsσX)2 = −p′(w)λsα+ o(σ2
X) ≤ 0,

in which case clearly s(w′) = smax > sFB, thereby concluding the proof.

The proof relied on exploiting the direct cost effect. While we are also able to prove short- and
long-termism in the case of private investment cost, the key differences to our results presented in the
main-text are as follows.

First, the statement is ”if” and not ”if and only if”. While a dual moral hazard problem implies
short-termism (resp. long-termism) when short-run (resp. long-run) risk is sufficiently low, it could
also be that short-termism (resp. long-termism) arises in a model with σK = 0 (resp. σX = 0). This
is due to the direct cost effect, which renders it beneficial to incur investment cost when w is low.

Second, short-termism can arise even without correlation between permanent and transitory shocks.

I Incentives contingent on stock price and earnings

Fix throughout the optimal controls {s, `} and focus on the baseline case, in which effort costs are
quadratic and effort is interior, i.e., (st, `t) ∈ (0, smax)× (0, `max).
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I.1 Step I

To start with, let us recall that the HJB equation (11) implies the relationship:

rP (Wt,Kt)dt = E[dXt −KtC(st, `t)dt+ dP (Wt,Kt)]

where the expectation is taken under the probability measure P. As illustrated in Appendix B.3.1,
the above is equivalent to:

(r − µ`t)p(wt)dt = [αst − C(st, `t)]dt+ Ẽ[dp(wt)],

where the expectation Ẽ is taken under the equivalent probability measure P̃, with its Radon-Nikodym
derivative defined through (A3). Under this probability measure, {w} follows:

dwt + dct = (γ − µ`t)wtdt+ βst σXdZ̃
X
t + (β`t − wt)σKdZ̃Kt ,

where {Z̃X} and {Z̃K} are standard Brownian Motions under P with correlation ρ.
Defining the stock-return from holding a stake within the firm over [t, t+ dt):

dRt :=
dXt −KtC(st, `t)dt+ dP (Wt,Kt)

P (Wt,Kt)
,

we can use the previous relationship to obtain:

dRt = rdt+
1 + p′(wt)λsst

p(wt)
σXdZ̃

X
t +

p(wt) + p′(wt)(λ``t − wt)
p(wt)

σKdZ̃
K
t

Next, we can readily calculate:

dPt
Pt

=
dP (Wt,Kt)

P (Wt,Kt)
= dRt −

dXt −KtC(st, `t)
P (Wt,Kt)

= rdt− [αst − C(st, `t)]dt+
p′(wt)λsst
p(wt)

σXdZ̃
X
t +

p(wt) + p′(wt)(λ``t − wt)
p(wt

σKdZ̃
K
t

=: µPt dt+ ΣX
t dZ̃

X
t + ΣK

t dZ̃
K
t .

with

µPt := r − [αst − C(st, `t)]

ΣX
t :=

p′(wt)λsst
p(wt)

σX

ΣK
t :=

p(wt) + p′(wt)(λ``t − wt)
p(wt)

σK ,

or equivalently:

dPt = µPt p(wt)Ktdt+
[
p′(wt)λsst

]
KtσXdZ̃

X
t +

[
p(wt) + p′(wt)(λ``t − wt)

]
KtσKdZ̃

K
t .

If one were to prefer to look at the expressions under the physical measure P rather than the
auxiliary measure P̃, one can derive:

dPt
Pt

= µPt dt+ ΣX
t dZ

X
t + ΣK

t dZ
K
t .
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In the following subsection, we verify this relationship by direct calculation. In case the reader is not
interested in this, there is no loss in skipping the following subsection and directly proceeding to Step
II.

I.1.1 Calculation of dPt/Pt under physical measure

First calculate:

dwt = d

(
Wt

Kt

)
=
dWt

Kt
− Wt

K2
t

dKt +
Wt

K3
t

< dKt, dKt > −
1

K2
t

< dWt, dKt >

=
[
(γ − µ`t) + (wt − λ``t)σ2

K − λsstσXσKρ
]
dt+ λsstσXdZ

X
t + (λ``t − wt)σKdZKt ,

where < ·, · > denotes the quadratic variation (e.g. < dZXt , dZ
X
t >= dt). From there it follows that:

dPt
Pt

=
dP (Wt,Kt)

P (Wt,Kt)
=
d(Ktp(wt))

Ktp(wt)

=
dKt

Kt
+
p′(wt)dwt + 0.5p′′(wt) < dwt, dwt >

p(wt)
+
p′(wt) < dKt, dwt >

Ktp(wt)

= rdt− (αst − C(st, `t))dt+

(
(wt − λ``t)σ2

K − λsstσXσKρ
p(wt)

−
(wt − λ``t)σ2

K − λsstσXσKρ
p(wt)

)
dt

+ ΣX
t dZ

X
t + ΣK

t dZ
K
t

= µPt dt+ ΣX
t dZ

X
t + ΣK

t dZ
K
t ,

where the third equality utilizes the HJB equation, evaluated under the optimal controls, {s, `}.

I.2 Step II

Finally, we can demonstrate how the optimal contract can be implemented by exposing the agent to
unexpected price and earnings changes, where:

βEt :=
dWt

dEt
and βPt :=

dWt

dPt
, (A6)

where earnings follow:
dEt = [αst − C(st, `t)]Ktdt+KtσXdZ

X
t

We set βPt such that it matches the exposure to long-run shocks dKt:

dWt

dZKt
= λ``tσKKt = βPt

[
p(wt) + p′(wt)(λ``t − wt)

]
KtσK =

dWt

dPt

dPt

dZKt
,

so that:

βPt =
λ``t

p(wt) + p′(wt)(λ``t − wt)
(A7)

Since price changes are dependent on earning changes, βPt already exposes the agent to dXt. We
set now βEt so as to match:

dWt

dZXt
= λsstσXKt = βEt σXKt + βPt [p′(wt)λsst]σXKt =

dWt

dEt

dEt

dZXt
+
dWt

dPt

dPt

dZXt
,
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which can be solved for:

βEt = λsst − βPt [p′(wt)λsst]

= λsst

[
1− p′(wt)λ``t

p(wt) + p′(wt)(λ``t − wt)

]
= λsst

[
p(wt)− p′(wt)wt

p(wt) + p′(wt)(λ``t − wt)

]
. (A8)

61



References

Abel, A., Eberly, J., 2011. How q and cash flow affect investment without frictions: An analytic

explanation. Review of Economic Studies 78, 1179–1200.

Aghion, P., Stein, J., 2008. Growth versus margins: Destabilizing consequences of giving the market

what it wants. Journla of Finance 63, 1025–1057.

Ai, H., Li, R., 2015. Investment and CEO compensation under limited commitment. Journal of Fi-

nancial Economics 116, 452–472.

Albuquerque, R., Hopenhayn, H., 2004. Optimal lending contracts and firm dynamics. Review of

Economic Studies 71, 285–315.

Asker, J., Farre-Mensa, J., Ljunqvist, A., 2015. Corporate investment and stock market listing: A

puzzle. Review of Financial Studies 28, 342–390.

Barton, D., Manyika, J., Williamson, S., 2017. The data: Where long-termism pays off. Harvard

Business Review 95, 67–68.

Bernstein, S., 2015. Does going public affect innovation? Journal of Finance 70, 1365–1403.

Bettis, J. C., Bizjak, J., Coles, J. L., Kalpathy, S., 2018. Performance-vesting provisions in executive

compensation. Journal of Accounting and Economics 66, 194–221.

Biais, B., Mariotti, T., Plantin, G., Rochet, J.-C., 2007. Dynamic security design: Convergence to

continuous time and asset pricing implications. Review of Economic Studies 74, 345–390.

Biais, B., Mariotti, T., Rochet, J.-C., Villeneuve, S., 2010. Large risks, limited liability, and dynamic

moral hazard. Econometrica 78, 73–118.

Bolton, P., Chen, H., Wang, N., 2011. A unified theory of tobin’s q, corporate investment, financing,

and risk management. Journal of Finance 66, 1545–1578.

Bolton, P., Scheinkman, J., Xiong, W., 2006. Executive compensation and short-termist behavior in

speculative markets. Review of Economic Studies 73, 577–610.

62



Bolton, P., Wang, N., Yang, J., 2019. Optimal contracting, corporate finance, and valuation with

inalienable human capital. Journal of Finance 74, 1363–1429.

Brunnermeier, M., Sannikov, Y., 2014. A macroeconomic model with a financial sector. American

Economic Review 104, 379–421.

Carlson, M., Fisher, A., Giammarino, R., 2006. Corporate investment and asset price dynamics:

Implications for SEO event-studies and long-run performance. Journal of Finance 61, 1009–1034.

Chang, X., Dasgupta, S., Wong, G., Yao, J., 2014. Cash-flow sensitivities and the allocation of internal

cash flow. Review of Financial Studies 27, 3628–3657.

Cox, J., Ingersoll, J., Ross, S., 1985. An intertemporal general equilibrium model of asset prices.

Econometrica 53, 363–384.

Décamps, J.-P., Gryglewicz, S., Morellec, E., Villeneuve, S., 2017. Corporate policies with permanent

and transitory shocks. Review of Financial Studies 30, 162–210.

DeMarzo, P., Fishman, M., He, Z., Wang, N., 2012. Dynamic agency and the q theory of investment.

Journal of Finance 67, 2295–2340.

DeMarzo, P., Sannikov, Y., 2006. Optimal security design and dynamic capital structure in a

continuous-time agency model. Journal of Finance 61, 2681–2724.

DeMarzo, P. M., Livdan, D., Tchistyi, A., 2014. Risking other people’s money: Gambling, limited

liability, and optimal incentives. Working paper, Stanford GSB.

Edmans, A., Gabaix, X., Jenter, D., 2017. Executive compensation: A survey of theory and evidence.

In: The Handbook of the Economics of Corporate Governance, Elsevier, vol. 1, pp. 383–539.

Francis, B., Iftekhar, H., Kose, J., Zenu, S., 2013. Asymmetric benchmarking of pay in firms. Journal

of Corporate Finance 23, 39–53.

Garvey, G., Milbourn, T., 2006. Asymmetric benchmarking in compensation: Executives are rewarded

for good luck but not penalized for bad. Journal of Financial Economics 82, 197–225.

63



Gertler, M., Kiyotaki, N., 2010. Financial intermediation and credit policy in business cycle analysis. In

Friedman, B., and Woodford, M. (Eds.), Handbook of Monetary Economics Elsevier, Amsterdam,

Netherlands.

Giannetti, M., Yu, X., 2018. Adapting to radical change: The benefits of short-horizon investors.

Working paper, Stockholm School of Economics.

Gryglewicz, S., Hartman-Glaser, B., 2019. Investment timing and incentive costs. Review of Financial

Studies forthcoming.

Gutierrez, G., Philippon, T., 2017. Investment-less growth: An empirical investigation. Working paper,

New York University.

Hackbarth, D., Rivera, A., Wong, T.-Y., 2018. Optimal short-termism. Working paper, Boston Uni-

versity.

He, Z., 2009. Optimal executive compensation when firm size follows geometric brownian motion.

Review of Financial Studies 22, 859–892.

He, Z., 2011. A model of dynamic compensation and capital structure. Journal of Financial Economics

100, 351–366.

Hoffmann, F., Pfeil, S., 2010. Reward for luck in a dynamic agency model. Review of Financial Studies

23, 3329–3345.

Hoffmann, F., Pfeil, S., 2018. Dynamic multitasking and managerial investment incentives. Working

paper, Erasmus University Rotterdam.

Kogan, L., 2004. Asset prices and real investment. Journal of Financial Economics 73, 411–432.

Lee, D., Shin, H., Stulz, R., 2018. Why does capital no longer flow more to the industries with the

best growth opportunities. Working paper, Ohio State University.

Leland, H., 1994. Corporate debt value, bond covenants, and optimal capital structure. Journal of

Finance 49, 1213–1252.

Malenko, A., 2018. Optimal dynamic capital budgeting. Review of Economic Studies forthcoming.

64



Marinovic, I., Varas, F., 2018. CEO horizon, optimal duration and the escalation of short-termism.

Journal of Finance forthcoming.

Miao, J., Rivera, A., 2016. Robust contracts in continuous time. Econometrica 84, 1405–1440.
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Figure 1: Numerical example of long-termism. The first two panels depict optimal in-
vestment as functions of w. The third panel at the right displays effective agency cost
A(w) = −p′′(w)(λ``(w) − w). The parameters are α = 0.25, σK = 0.25, σX = 0.2, ρ = 0,
µ = 0.025, r = 0.046, γ = 0.048, δ = 0.125, λs = λ` = 1, R = 0.25.
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Figure 2: Numerical example of short-termism. The parameters are α = 0.25, σX = 0.15,
σK = 0.5, ρ = −0.75 µ = 0.025, r = 0.046, γ = 0.047, δ = 0.125, λs = 1.15, λ` = 0.25,
R = 0.75.
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