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Abstract

A k-Nearest-Neighbors graph is a widely-used data-structure in Ma-
chine Learning for recommendation systems. In a decentralized col-
laborative filtering system, every node computes its distance to other
nodes based on some similarity metric between their profiles. Since
these profiles correspond to the tastes of the users, this is obviously
an enormous privacy threat. We propose an implementation of a pri-
vacy preserving k-NN graph construction for decentralized recom-
mender systems by applying private set intersection and union cardi-
nality for computing the Jaccard similarity metric between user profiles
and study its impact in terms of privacy, communication overhead and
computational costs. We also propose ways to improve our system in
terms of performance and security.
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Chapter 1

Introduction

Recommender systems have significantly transformed the digital experi-
ence, using complex algorithms to curate personalized content based on
individual user behaviors and preferences. They have found application in
a multitude of platforms, from Netflix to Amazon, enhancing user engage-
ment and satisfaction by aiding users in navigating the vast array of choices
available.

As these systems continue to expand and accommodate a growing user base,
the need for scalability becomes imperative. Traditional, centralized recom-
mender systems can struggle to handle vast amounts of data and users,
leading to efficiency bottlenecks. As a result, the concept of decentralized
collaborative filtering has gained traction.

This is where the role of the k-Nearest-Neighbors (k-NN) graph becomes
particularly significant. Serving as a popular data structure in machine
learning and especially within recommendation systems, the k-NN graph
is integral to the operation of decentralized collaborative filtering. In such a
system, each individual node computes its proximity to others by employ-
ing a similarity metric based on their profiles, i.e., past interactions with
various items. The nodes then identify their k nearest neighbors who have
exhibited similar past preferences.

However, the disclosure of these profiles, which inherently reflect users’
tastes, introduces an enormous privacy risk. Given the increasing internet
usage and the consequent surge in data collection, exposing such informa-
tion to other users amplifies the potential for privacy breaches, as it enables
the inference of personal attributes, preferences, and potentially sensitive
data. Therefore, the need to safeguard the personal data of users becomes a
critical concern amidst the move towards more scalable, decentralized sys-
tems.

The main objective of this project is to develop a system capable of con-
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1. Introduction

structing k-NN graphs without compromising user privacy and integrate it
into the decentralizepy framework. We leverage the private set intersection
cardinality (PSI-CA) protocol to privately compute the jaccard similarity be-
tween users. Additionally, we examine the costs associated with such a
system, which includes both computational overheads and communication
expenses. The overarching aim is to strike a balance between ensuring ro-
bust user privacy protection and maintaining efficient system performance.
The main artifacts are a high performance C++/Python library for PSI-CA
and an extension of decentralizepy with both a normal and private k-NN
nodes.

Firstly, In chapter 2 we give a brief presentation of the PSI-CA protocol,
followed by a decentralized k-NN graph construction algorithm and an
overview of the decentralizepy framework. Then, in chapter 3 we present
our serverless PSI-CA protocol and the corresponding threat model. It also
introduces our dedicated library for PSI-CA and outlines its core imple-
mentation details, followed by a detailed explanation of our extensions to
decentralizepy. Next, Chapter 4 shows an evaluation of the performance of
our library and presents a detailed analysis of the costs associated with the
private construction of a k-NN graph.
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Chapter 2

Background

2.1 PSI-CA Protocol

Private set intersection cardinality (PSI-CA) protocols enable two parties
having Sets S1 and S2 to compute the size of the intersection of their sets
|S1 ∩ S2| without revealing any specific details about the elements each party
possesses. in the following paragraph we introduce a PSI-CA protocol by
De Cristofaro et al [1]

The protocols requires a group G0 of prime order p, a subgroup (G ⩽ G0)
of prime order q such that q|p − 1 and 2 hash functions H : {0, 1}∗ →
G and H′ : {0, 1}∗ → {0, 1}2ϵ given some security parameter ϵ that can
be determined to match the security requirements of the system.

Before the start of the message exchange, both parties map their inputs ci
and sj to elements of G by applying the first hash function H(.) resulting in
the sets hci and hsj. At the start of the protocol, the client exponentiates its
set items hci with a random exponent Rc and sends resulting values ai to the
server, which exponentiates them with its own random value Rs then shuf-
fles the resulting values a′s and sends them to client. Then, the server sends
the output of a one-way function, H′(.), computed over the exponentiations
of server’s items hsj raised to Rs. Finally, client tries to match H′(.) outputs
received from the server with H′(.) outputs computed over the shuffled a′i
values raised to the exponent (1/Rc) to strip them from the initial mask.
Client learns the set intersection cardinality by counting the number of such
matches. The computational complexity and communication overhead are
linear in the sizes of the two input sets. A more detailed overview of the
protocol is given in the following figure 2.1.
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2. Background

Client Server

C = {c1, . . . , cv} S = {s1, . . . , sw}
Rc←$ Zq (s̃1, . . . , ˜sw)←∏(S)
∀i 1 ≤ i ≤ v : ∀j 1 ≤ j ≤ w : hsj = H(s̃j)

hci = H(ci)

ai = (hci)
Rc

{a1, . . . , av}

Rs←$ Zq

∀i 1 ≤ i ≤ v : a′i = (ai)
Rs

(a′l1 , . . . , a′lv) = ∏
′
(a′1, . . . , a′v)

∀j 1 ≤ j ≤ w : bsj = (hsj)
Rs

∀j 1 ≤ j ≤ w : tsj = H′(bsj)

{a′l1 , . . . , a′lv}, {ts1, . . . , tsw}

∀i 1 ≤ i ≤ v :

bci = (a′li )
1/Rc mod q

∀i 1 ≤ i ≤ v :

tci = H′(bci)

Output = |{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}|

Figure 2.1: PSI-CA protocol by De Cristofaro et al

2.2 Decentralized k-NN Graph construction

Many methods have been proposed to construct k-NN graphs in decentral-
ized systems. A typical approach in such a system [2] is for every node to
start from a few initial neighbors then use a P2P epidemic protocol to con-
verge towards a neighborhood containing the k most-similar other nodes
in the system according to some similarity metric. An example of such an
algorithm is presented in the following algorithm [1].

Starting from a random neighborhood, nodes repeatedly select a random
neighbor and exchange their current neighborhood with them of then use
the gained information to select more similar neighbors. Similarly, when
receiving a new neighborhood pushed to them, nodes update their neigh-
borhood with the new nodes they have just heard of. The intuition behind
this greedy procedure is that if A is similar to B, and B to C, C is likely to be
similar to A as well. To avoid local minima, this greedy procedure is often
complemented with a few random peers.
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2.3. Decentralizepy Framework

Algorithm 1 Greedy decentralized k-NN algorithm executing at node p

Require: graph G, number of rounds n, number of nearest neighbors k
1: Γ(p)← rand(k, G)
2: while round ≤ n do
3: q← one random neighbor from Γ(p)
4: send ⟨push, Γ(p) ∪ {p}⟩ to q ; request Γ(q) from q
5: cand← Γ(p) ∪ Γ(q) ∪ {r random nodes} \ {p}
6: Γ(p)← argtopk

g∈cand(sim(p, g))
7: end while
8: procedure On Receiving(⟨push, Γ′⟩)
9: cand← Γ(p) ∪ Γ′ \ {p}

10: Γ(p)← argtopk
g∈cand(sim(p, g))

11: end procedure

2.3 Decentralizepy Framework

Decentralizepy [3] is a distributed framework designed for decentralized ma-
chine learning. It facilitates the development and emulation of large-scale
networks across various topologies. The framework comprises numerous
modules such as communication, models, datasets, sharing, among others.
The focus of our work, however, is on the node module. We augment this
module with two implementations: one for regular k-NN node and the other
for PSI-CA k-NN node enriching its functionality to enable simulating k-NN
graph construction.
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Chapter 3

Implementation

3.1 Serverless PSI-CA

3.1.1 Overview

In the previous chapter, we presented a PSI-CA protocol between a client
and a server where only the client learns the set intersection cardinality.
However, our system operates in a decentralized manner. Consequently, we
had to adapt this protocol into a peer-to-peer (P2P) protocol where every
node can play both roles of client and server based on who started the mes-
sage exchange and reacts according to the nature of the received message.

If node 1 wants to start a PSI-CA protocol with node 2, it will mask its ele-
ments with a random exponent exactly like in the first phase of the original
protocol then sends the masked elements to node 2 along with the Request
flag. Upon receiving a message with the Request flag, node 2 will proceed
to the second stage of the protocol and responds with a message contain-
ing its hashed randomized items, the values received previously from the
other peer raised to the random exponent and the Response flag. When a
Response message is received, the first node completes the final stage of the
protocol, computes the intersection cardinality and sends the result to node
2. After the protocol, both parties learn the intersection cardinality of their
sets. The protocol is presented in 3.1.

Public Parameters

The public parameter remain the same as the original protocol: a group G0
of prime order p, a subgroup (G ⩽ G0) of prime order q such that q|p− 1
and 2 hash functions H : {0, 1}∗ → G and H′ : {0, 1}∗ → {0, 1}2ϵ given
some security parameter ϵ that can be determined to match the security
requirements of the system.
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3. Implementation

Node 1 Node 2

C = {c1, . . . , cv} D = {d1, . . . , dw}
Rc←$ Zq (d̃1, . . . , d̃w)←∏(D)

∀i 1 ≤ i ≤ v : ∀j 1 ≤ j ≤ w : hdj = H(d̃j)

hci = H(ci)

ai = (hci)
Rc

Request : {a1, . . . , av}

Rd←$ Zq

∀i 1 ≤ i ≤ v : a′i = (ai)
Rd

(a′l1 , . . . , a′lv) = ∏
′
(a′1, . . . , a′v)

∀j 1 ≤ j ≤ w : bdj = (hdj)
Rd

∀j 1 ≤ j ≤ w : tdj = H′(bdj)

Response : {a′l1 , . . . , a′lv}, {td1, . . . , tdw}

∀i 1 ≤ i ≤ v :

bci = (a′li )
1/Rc mod q

∀i 1 ≤ i ≤ v :

tci = H′(bci)

R = |{td1, . . . , tdw} ∩ {tc1, . . . , tcv}|

Result : R

Figure 3.1: Serverless PSI-CA

3.1.2 Complexity

Computation

The computational complexity is linear in the sizes of the two input sets.
Let n = |C| and m = |D|.The first node performs n hashing operations
and n exponentiations modulo p with an exponent of |q| bits in the first
phase of the protocol and the repeats the same number of operations in
the final stage. The second party performs m hashing operations and m +
n exponentiations modulo p with an exponent of |q| bits. This results in
O(m + n) = O(|C|+ |D|) operations in group with order p, O(m + n) H(.)
hashes and O(m + n) H′(.) hashes.

Communication

Let n = |C| and m = |D|. The protocol requires 3 messages in total:

• Request : with a size of n · |p| bits.

• Response : with a size of n · |p|+ m · ϵ bits.

• Result : constant size.

The total communication overhead is O(n · |p|+ m · ϵ).
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3.2. PSI-CA Implementation

3.1.3 Threat Model

Honest but curious adversaries

We claim that With semi-honest adversaries, our protocol ensures both cor-
rectness and privacy of the involved parties. The intuition behind this claim
is that for a party to infer information about the other parties inputs or the
elements in the intersection it would require breaking the Discrete Loga-
rithm (DL) and Decisional Diffie-Hellman (DDH) assumptions, as well as
inverting the Hash function H′. Furthermore, the permutations ∏ and ∏′

guarantee that there is no disclosure of information about the elements of
the intersecting set based on their location in the Request/Response mes-
sages. You can refer to [1] for a formal proof of these assumptions.

Malicious adversaries

Malicious adversaries can supply malicious inputs to the protocol leading
the other parties to compute an incorrect intersection. However, based on
the same assumptions in the previous paragraph, the malicious nodes can-
not gain any information about the other sets.

3.2 PSI-CA Implementation

3.2.1 Fpsica Library Overview

To properly be able to study the effect of PSI-CA on k-NN graph construc-
tion, it was necessary for us to develop an efficient implementation of the
protocol from the ground up. We decided to separate the protocol imple-
mentation from the decentralizepy framework to allow more flexibility in the
development and enable the implementation to be used outside the frame-
work for other projects. Our goal was to strike a balance between perfor-
mance and ease of use. As a result, we chose to implement the core op-
erations of the protocol in C++ for its speed, and then provided bindings
to a Python interface using pybind. Based on this architecture, we have
constructed a high-performance Python module called fpsica (fast private
set intersection cardinality) that offers PSI-CA functionality. It has been de-
signed for easy installation on your system via the Python package man-
ager, pip. This approach ensures that our implementation not only delivers
superior performance, but is also easy for developers to use in a variety of
contexts, meeting the needs of both speed and accessibility.

Required Functionalities and Workflow Description

Based on section 3.1, we can divide the Serverless PSI-CA protocol into three
main phases presented in the scheme below:

9



3. Implementation

Node 1 Node 2

REQUEST = Create_Request()

RESPONSE = Process_Request(REQUEST)

REQUEST

RESULT = Process_Response(RESPONSE)
RES

PON
SE

RESULT

Every node should be able to perform all three operations: Create Request(),
Process Request(req) and Process Response(resp) which will constitute
the main interface exposed by our library. In addition, we require the fol-
lowing message types: REQUEST, RESPONSE and RESULT.

Security Specifications

We the decision to utilize Elliptic Curve Cryptography (ECC) over alter-
native finite field cryptography methods. ECC has been chosen due to its
superior performance characteristics and greater efficiency. Unlike other
methods such as RSA, ECC can achieve the same level of security with sig-
nificantly smaller key sizes. This feature allows for faster computations and
less resource-intensive operations.
We adopted the widely used NIST P-256 curve, also known as the prime256v1.
This specific curve was chosen as it provides 128 bits of security, balancing
robust security with computational efficiency.
For the hashing algorithm, we adopted SHA-256 (Secure Hash Algorithm
256-bit). SHA-256 was selected due to its widespread adoption, robustness,
and strong security properties. It offers 128-bit collision resistance and 256-
bit preimage resistance.

10



3.2. PSI-CA Implementation

Code Organization

PSI-CA

cpp

psi node.cpp

psi node.h

util

crypto.h

set operations.h

status matchers.hproto psi.proto

python

bindings.cpp

init .py

psi ca.py

fpsica
fpsica

init .py

psi ca.py

psi ca.so

psi pb2.py

version.py

setup.py

# error handling

# generated from build

# generated from build

Figure 3.2: package architecture

The PSI-CA package is organized into four main directories, each with a
distinct purpose and role in the library.

The cpp directory, highlighted in green, houses the core functionality of
the package written in C++. The files psi node.cpp contain Serverless PSI-
CA node implementation and and psi node.h defines the public interface
of the class. The util sub-directory consists of utility files like crypto.h
where the sha256 hashing procedure is implemented, set operations.h, and
status matchers.h that provides helpers for error handling.

The proto directory, in red, contains the file psi.proto. This is the protocol
buffer file defining the structure of data to be serialized and de-serialized
during the interaction between different parts of the system.

The python directory, colored in yellow, hosts the Python bindings and util-
ity functions. These allow users to interact with the C++ core from Python.

Lastly, the fpsica directory, depicted in blue, contains both the main Python
module of the library and the setup script. Within the fpsica sub-directory,
there are several files, including init .py which defines the modules fpsica
exposes, psi ca.py which defines the psi ca module, psi ca.so (the compiled
C++ module), psi pb2.py (generated from the proto file for Python usage),
and version.py (versioning information).
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3. Implementation

Setup and Build System

Our choice of build system fell on Bazel version 6, owing to its performance
advantages. Its user-friendly interface encourages a more streamlined de-
velopment process, making it a reliable choice for our implementation.

In terms of functionality, we provide a setup script for Bazel, ensuring a
hassle-free setup process for developers intending to build upon or modify
our work. Moreover, we automated the build procedure in order to generate
the fpsica package in a straight forward manner.

3.2.2 C++ Implementation

Dependencies

In our C++ development, we primarily depended on the Google Abseil
(ABSL) and Google Private Join and Compute libraries.

The Google Abseil (ABSL) library is a collection of C++ code that includes
a variety of types, synchronization primitives, and utilities drawn. These
augment the existing C++ standard library and fill in gaps in functionality
and performance.

On the other hand, the Google Private Join and Compute library is an im-
plementation of the Private Join and Compute functionality. This library
exposes a performant and easy to use interface for ECC which we used to
implement our protocol.

API

Our C++ module primarily exposes the PsiNode class, which represents a
node in the Private Set Intersection Cardinality (PSI-CA) protocol. The key
methods included in this class are:

• CreateWithNewKey() and CreateFromKey(): Generate a PsiNode, ei-
ther with a new key or from an existing one.

• CreateRequest(): Begins the PSI-CA protocol by creating a request
from a given input set.

• ProcessRequest(): Handles a received request and generates a re-
sponse based on the input set of the node.

• ProcessResponse(): Interprets a received response and calculates the
cardinality of the set intersection.

12
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3.2. PSI-CA Implementation

� �
class PsiNode {

public:

// Create a new node with a new key

static StatusOr <unique_ptr <PsiNode >>

CreateWithNewKey ();

// Create a new node from a given key (used for

test puposes)

static StatusOr <unique_ptr <PsiNode >> CreateFromKey

(const string& key_bytes);

// Stage 1 of PSI -CA

StatusOr <Request > CreateRequest(Span <const string >

inputs) const;

// Stage 2 of PSI -CA

StatusOr <Response > ProcessRequest(const Request&

request , Span <const string > inputs) const;

// Stage 3 of PSI -CA

StatusOr <int64_t > ProcessResponse(const Response&

response) const;

};� �
Code Listing 3.1: Node API

3.2.3 Serialization

In our system, we employed Protocol Buffers (protobuf) version 3 for the se-
rialization of messages. We defined three message types: Request, Response,
and Result. This allowed us to define the structure and fields of each mes-
sage in a language-agnostic manner benefiting from efficient serialization
and de-serialization of messages. A more precise description is presented
below.� �
// Request : {a_1 ,... , a_v }

message Request {

repeated bytes elements = 1;

}

// Response : {a’_1 ,... , a’_v }, {td_1 , ..., td_w}

message Response {

message Masked {

repeated bytes elements = 1;

}

message Hashed {

repeated bytes elements = 1;

}

13



3. Implementation

Masked masked = 1;

Hashed hashed = 2;

}

// Result : R

message Result{

int32 intersection_size = 1;

}� �
Code Listing 3.2: message definitions

3.2.4 Python Implementation

fpsica Python Modules and API

As previously noted, the Python API of our library mirrors the C++ API in
terms of functionality. It provides the same set of operations necessary for
executing the PSI-CA protocol.
Along with the core PSI-CA operations, our API also includes functions
to control the serialization and de-serialization of messages exchanged be-
tween the nodes.

� �
class Node:

@classmethod

def CreateWithNewKey(cls) -> Node

@classmethod

def CreateFromKey(cls , key_bytes: bytes) -> Node

def CreateRequest(self , inputs: List[str]) -> Request

def ProcessRequest(self , request: Request , inputs:

List[str]) -> Response

def ProcessResponse(self , response: Response) -> int

class Request:

def ParseFromString(self , request: str) -> None

def SerializeToString(self) -> str

class Response:

def ParseFromString(self , response: str) -> None

def SerializeToString(self) -> str

class Result:

def ParseFromString(self , result: str) -> None

def SerializeToString(self) -> str� �
Code Listing 3.3: fpsica API
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3.3. PSI-CA KNN

bindings

We used pybind11, an open-source library specifically designed for creating
Python bindings from C++ code. In the ”bindings.cpp” file, we defined the
necessary bindings that connect our Python classes and methods to their
corresponding components in C++ and Protocol Buffers. A simple repre-
sentation of the bindings is given in the following figure 3.3.

Python

Node

CreateWithNewKey()

CreateFromKey (bytes)

CreateRequest (inputs)

ProcessRequest (request,inputs)

ProcessResponse (response)

Request

Response

Result

C++

PsiNode

Proto

Request

Response

Result

Figure 3.3: Overview of Python to C++/Proto bindings

3.3 PSI-CA KNN

The main goal of our project was to investigate the cost of PSI-CA protocol
on the construction of k-NN graphs. For this purpose, we used our library
to extend the decentralizepy framework with a PSICAKNN node class. In the
following section, we are going to explain more in depth our implementa-
tion.

15



3. Implementation

3.3.1 Initial Configuration

Parameters

To instantiate the new class, it necessitates the specification of two additional
parameters: the number of iterations in the graph construction procedure
knn rounds, and the number of neighbors k. These parameters are supplied
by the user before the start of the program.

Supported topologies

The architecture of our system requires that every node is able to commu-
nicate with every other node in the network. This necessity underscores the
requirement for a fully connected graph as the underlying topology. It is im-
portant to mention that this requirement is imposed by the communication
module of decentralizepy.

Datasets

The current implementation supports only the MovieLens [4] ml-latest-small
dataset.

3.3.2 User Profile Construction

In our system, we utilize the Jaccard similarity as our metric to measure the
similarity between users. It is defined as the size of the intersection divided
by the size of the union of the sample sets.
This metric requires each user to have a profile that reflects his preferences.
These profiles are constructed from the individual ratings given by each user
to different movies by including the movies ids for which the user has given
a rating above a certain threshold. This ensures that the profile reflects
the movies that the user has a strong preference for, allowing the Jaccard
similarity metric to provide meaningful comparisons between users.

3.3.3 Graph Construction Procedure

Intuition

We build upon the p2p greedy algorithm presented in the background chap-
ter to design our graph construction procedure:
At the beginning, each node in the network starts the procedure with a ran-
dom set of neighbors. At the end of every round, the node selects a new
set of candidates by asking one of its neighbors for its neighbors and com-
plements this set with a number of random peers. At the start of the next
round, the node runs the PSI-CA protocol with its set of candidates and up-
dates its neighborhood based on the obtained similarities. The algorithm is

16



3.3. PSI-CA KNN

given in 2.
In the proposed procedure, nodes exchange only the identifiers of their
neighbors. This strategy allows nodes to determine which other peers might
be similar, making them suitable candidates for running the PSI-CA protocol
and maintaining the privacy of their profiles in the same time.

Algorithm 2 PSI Cardinality KNN algorithm executing at node p

Require: graph G, number of rounds n, number of nearest neighbors k
1: Γ(p)← rand(k, G)
2: cand← Γ(p)

3: while round ≤ n do
4: for all c in cand do
5: run psi ca with node c
6: end for
7: Γ(p)← argtopk

g∈cand ∩ Γ(p)(sim(p, g))
8: q← one random neighbor from Γ(p)
9: send ⟨push, Γ(p)⟩ to q ; request Γ(q) from q

10: cand← Γ(q) ∪ {r random nodes} \ {p}
11: end while

12: procedure On Receiving(⟨push, Γ′⟩)
13: cand← cand ∪ Γ′ \ {p}
14: end procedure

Concurrency and Optimisations

Performance optimization is a central focus of our project. Executing the
PSI-CA protocol sequentially, where we wait for every candidate node to
respond before moving on to the next would incur a huge overhead. Rec-
ognizing this potential bottleneck, we chose to adopt a highly concurrent
implementation strategy. This allows us to run multiple instances of the
protocol in parallel, substantially reducing the time required for each k-NN
round to end.
We made the choice to have 3 parallel threads where each thread is respon-
sible for some aspect of the program: a main thread, a sender and receiver.
The main thread is responsible for creating the initial requests to send to the
neighbors, updating the set of candidates and the organizing the rest of the
procedure. In addition, it controls the other threads through synchroniza-
tion primitives. The receiver thread waits for message and reacts according
to the nature of received message by either updating the node’s informa-
tion or creating some response to send. The sender thread polls a queue

17



3. Implementation

(which is a thread safe structure) and sends the popped messages to the
other nodes. In the following pages, we provide an overview of the design
as well as the set of algorithms (3, 4, 5) used for each thread.

Main Thread

Controls the
flow of graph

construction and
the other threads

Receiver

Waits for received
messages and

reacts accordingly

Sender

Polls Send Queue

Send Queue

put

put

p
o
p

Common data
structures

accesssed via
synchronization
mechanisms

controls program flow

Figure 3.4: PSI Cardinality node design

We try to further optimise our implementation by reducing the communi-
cation overhead in the following manner: every node keeps a small state
of previously engaged nodes and adds only new peers to the set of fresh
candidates. This allows us to run the protocol once for every pair of nodes.
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Algorithm 3 Main Thread

1: Γ(p)← k random neighbors from G
2: current cand← Γ(p)
3: next cand← Set()
4: round← 0

5: start(receiver thread)
6: start(sender thread)

7: while round ≤ knn rounds do
8: for all c in current cand do
9: psi request ← create request( )

10: send queue.put⟨ c , psi request ⟩
11: end for

12: q← one random neighbor from Γ(p)
13: send queue.put⟨ q , random discovery request( ) ⟩

14: wait for knn round to end

15: next cand← Γ(q) ∪ {r random nodes} \ {p}
16: Γ(p)← argtopk

g∈(current cand ∪ Γ(p))(sim(p, g))
17: current cand← next cand
18: next cand← Set()
19: end while

20: for all n in G do
21: send queue.put⟨ n, knn bye ⟩
22: end for

23: join(sender thread)
24: join(receiver thread)

25: return
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Algorithm 4 Receiver Thread

1: knn byes ← Set()
2: On Receiving psi request from q:
3: response ← process request(request)
4: send queue.put⟨ q , response ⟩

5: On Receiving psi response from q:
6: result ← process response(response)
7: sim ← result/(|response.masked|+ |response.hashed| − result)
8: send queue.put⟨ q , sim ⟩
9: Γ(p)← argtopk

g∈(q ∪ Γ(p))(sim(p, g))

10: On Receiving psi result from q:
11: Γ(p)← argtopk

g∈(q ∪ Γ(p))(sim(p, g))
12:
13: On Receiving random discovery request from q:
14: next cand ← next cand ∪ Γ(q)
15: rd response ← Γ(p)
16: send queue.put⟨ q , rd response ⟩

17: On Receiving random discovery response from q:
18: next cand ← next cand ∪ Γ(q)

19: On Receiving knn bye from q:
20: knn byes ← knn byes ∪ {q}

21: if |knn byes| = |G| − 1 then
22: exit sender← true
23: return
24: end if

3.3.4 Regular KNN

In order to examine the cost of privacy preserving graph construction, we
implement a KNN class that runs a similar procedure to the PSICAKNN but
without running the 3 steps PSI-CA. We replace it by a 2 steps message
exchange where a node sends its profile to the peer that responds with the
similarity measure of their 2 profiles.
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Algorithm 5 Sender Thread

1: knn byes ← Set()
2: while True do
3: q,m ← send queue.pop⟨ ⟩
4: if send queue not empty then
5: send(q,m)
6: if m is knn bye then
7: knn byes ← knn byes ∪ {q}
8: end if
9: else

10: if |knn byes| = |G| − 1 and exit sender then
11: return
12: end if
13: end if
14: end while
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Chapter 4

Evaluation

In this section, we provide a comprehensive evaluation of our system based
on several metrics. We specifically focus on the quality of the k-NN graph,
the communication overhead, and the execution time. To evaluate the cost
of the PSI-CA protocol, we compare our privacy preserving implementation
to the regular k-NN node. Apart from what we discussed above, we also
benchmark the PSI-CA C++ and Python APIs to provide a well-rounded
evaluation of implementation.
We use the machines sacs002-sacs005@iccluster. All the machines have the
same specifications with processor Intel(R) Xeon(R) E-2288G CPU @ 3.70GHz
and 64GB of memory running Ubuntu 22.04.2 LTS with linux kernel 5.11.0.
We run every experiments a total of 5 times and report the mean and the
standard deviation of every studied metric.

4.1 Performance Evaluation of PSI-CA API

In this section, we examine the performance of our PSI-CA API indepen-
dently from the decentralizepy framework. The key metric evaluated is the
execution time required for each operation, which we measure as we pro-
gressively increase the size of the input set.

C++ API

From the graph presented below, a clear linear relationship is evident be-
tween the size of the input set and the execution time for all three operations.
This pattern is consistent with our prior theoretical analysis.

Even when the input set size reaches 10,000 elements, a size far exceeding
the usual requirements of our system, the execution time remains less than
one second. In practical use cases, our profiles are constituted of fewer than
100 elements. Under these conditions, our system performs remarkably
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well, with a combined execution time for all three operations of less than 30
milliseconds.

These findings corroborate the efficiency of our PSI-CA API, even under
highly demanding conditions.

Figure 4.1: microbenchmarking the C++ API

Python API

From the figure 4.2, we can see that the python API behaves in a similar way
to the C++ API. The execution time is linear in the size of the input set and
the 3 operations take an execution time smaller than 20 ms for a set size of
100 and between 60 ms (ProcessResponse) and 160 ms (ProcessRequest)
for an input size of 1000 elements which is more than enough performance
for our application.

4.2 PSI-CA k-NN Evaluation

4.2.1 k-NN Quality

In this section, we provide a convergence analysis of our graph construc-
tion algorithm by studying the quality of the graph in terms of the number
of performed rounds. The quality of a k-nearest neighbors graph is evalu-
ated by determining its average similarity and comparing it to the average
similarity of the ideal graph quality(G) = avgsim(G)

avgsim(Gideal)
.

For every pair of ( graph size , # of neighbors k), we log the average similarity
for every iteration in the graph construction procedure and divide it by the
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Figure 4.2: microbenchmarking the Python API

average similarity of the ideal k-NN which we have previously constructed.
We present the results of our experiments in 4.3.

The plots in figure 4.3, show that in all the tested cases our system reaches
more than 80 % quality after log2(graph size) iterations which confirms the
claims in [2] that the convergence time of the greedy construction algorithm
is O(log2(graph size)). In addition, we can clearly see that we reach a near
ideal graph with a number of iterations smaller than graph size/2 in all our
runs.

4.2.2 Communication Overhead

The communication overhead is measured by comparing the total number
of exchanged bytes with the standard KNN class across varying graph sizes
and k values. Our findings 4.4 reveal that the PSI-CA version necessitates
3.2 to 4.0 times more communicated bytes. This significant overhead mainly
results from two factors.

First, the PSI-CA protocol demands an additional message exchange Response.
From Figure 3.1, this Response appears to be approximately twice as large as
the initial message. This is due to the inclusion of both sets, which undergo
a process of hashing and masking, thereby increasing the message size.

Second, the protocol involves the serialization of elliptic curve elements.
These elements are more complex to represent compared to integers and
consequently, require more bits. This complexity translates into a higher cost
when these elements are transmitted over the network, further contributing
to the communication overhead.
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(a) 8 nodes (b) 16 nodes

(c) 32 nodes (d) 64 nodes

(e) 128 nodes

Figure 4.3: PSI-CA k-NN graph quality per round
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(a) 8 nodes (b) 16 nodes

(c) 32 nodes (d) 64 nodes

(e) 128 nodes

Figure 4.4: Total number of exchanged bytes for regular and PSI-CA k-NN

Despite the increased communication overhead, the PSI-CA protocol still
demonstrates reasonable performance. In fact, the overhead is closely aligned
with the theoretical limit as dictated by the design of the protocol. This in-
dicates the efficiency of the protocol, ensuring that while there may be an
increase in communication overhead compared to the standard KNN class,
it is not beyond what would be expected given its design parameters.
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4.2.3 Computation Overhead

We assess the computational overhead of PSI-CA by measuring the average
time taken per round during the graph construction procedure. Our results
indicate that a round in a PSI-CA node is between three to four times slower
than a regular node round, while maintaining an average of less than 0.1
seconds. This overhead is attributable to the PSI-CA computation itself, as
the node needs to conduct the computation for the ProcessResponse phase
for the candidates it selects, in addition to the ProcessRequest step for the
requests it receives from other nodes. Additionally, PSI-CA requires more
message exchanges than the regular procedure, resulting in more congestion
in the send queue and increased wait time for messages from other peers,
leading to additional latency.

It is important to note that these benchmarks were performed in a cluster
setting where communication latency is negligible and the computation la-
tency is the dominant factor which doesn’t represent the realistic settings
for such a system.
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(a) 8 nodes

(b) 16 nodes

(c) 32 nodes

Figure 4.5: Average time per k-NN round for regular and PSI-CA k-NN
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Chapter 5

Conclusion & Future Works

In conclusion, the system we have implemented successfully achieves privacy-
preserving k-nearest neighbor graph construction, providing privacy and
correctness against semi-honest adversaries while not leaking information
in the malicious adversaries model. However, it is important to acknowl-
edge that our system introduces a non-negligible overhead in terms of com-
munication and computation.

Despite the inevitable overhead, the performance of our system remains
reasonable even when scaling the number of nodes. The time and com-
munication costs are still comparable to the base case and do not increase
exponentially. Thus, it is justifiable to accept the small compromise in per-
formance to ensure user privacy.

Furthermore, it is worth noting that there is still room for improvement
in both performance and security aspects of our system. In the upcoming
paragraphs, we will explore potential enhancements and advancements that
can be made to address these areas.

Authorized PSI-CA

Our current implementation of PSI-CA doesn’t include any authorization
mechanisms which can lead to impersonation attacks. One interesting solu-
tion to this issue is the use of Authorized PSI-CA [1].

Size Hiding PSI-CA

The PSI-CA protocol we built upon to design our system by default reveals
the sizes of the sets of the 2 parties. This can be a security concern as an
adversary may use this information to gain knowledge about the users [5].
There are some works that address this specific problem by introducing Size
Hiding private set intersection.
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Homomorphic Encryption

In this project we explored only one privacy enhancing technology which
is private set intersection cardinality. A possible alternative approach is the
use of homomorphic encryption. There has been some works about PSI
from homomorphic encryption [6] that claim reducing the communication
overhead compared to other PSI protocols.

Improving fpsica Performance

There is still room for improvement in our library implementation as our
current C++ code doesn’t involve any parallelization. A possible optimiza-
tion would be to have multiple threads perform the computationally ex-
pensive cryptographic operations on disjoint chunks of the input/received
sets which would significantly reduce the execution time especially for large
sets.
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