
A Performance Evaluation of a Hybrid Approach to Collaborative
Learning

Mathis Randl

June, 2022

Abstract

Machine learning based on distributed systems has gained traction as a way to help solve the
problems of privacy, data transfers and computing power of traditional centralized methods.
Two main methods have emerged out of this approach: federated and decentralized learning. In
this report, we introduce a timeout-based approach to collaborative learning systems that lies
between these two methods. We evaluate the influence of several network parameters over its
convergence time, and then compare its performance against that of the other two in various
network conditions. We discover that the algorithm is particularly sensitive to the packet loss
rate of the network. It also outperforms both alternatives in terms of time taken by iteration
when the network is in a particularly difficult configuration. However, its testing accuracy grows
at a slower pace per iteration than its counterparts, leading to a performance trade-off when
designing collaborative systems in difficult network configurations.

1. Introduction

Recent years have seen a rapid increase of the
collection of massive amounts of data, through
the popularization of IoT devices and end-user
data collection in general. This, in turn, proved
to be a challenge for centralized machine learn-
ing pipelines and recommendation systems, for
several reasons: data privacy concerns legally
prevent the unrestricted sharing of user pri-
vate data, and the growth in available com-
puting power in a single system did not man-
age to follow that of the size of the available
datasets. This led to the promotion of alterna-
tive systems based on collaborative learn-
ing, which make use of distributed systems
to avoid sharing data across the network. In
this configuration, nodes that want to partic-
ipate in model training need not share their
own dataset with the rest of the system. This
solves both of the main issues of data central-
ization. These collaborative learning systems
are organized in two main types, depending on
whether they make use of a central server to
collect and distribute weights.

While one (federated learning) expects
that a central server be available to aggre-

gate the progress of worker nodes, the other
(decentralized learning) does not, at the
cost of putting the responsibility of propaga-
tion to the worker nodes. More details about
these two classes of algorithms can be found
in the Background section.

In this paper, we propose an alternative to
these two classes by designing a hybrid algo-
rithm that attempts to share progress with a
federating server whenever the underlying net-
work conditions allow for it, but falls back to
a decentralized mode of functioning when the
conditions are too harsh. We expect this to
bring several benefits: whenever possible, this
algorithm profits from the fast communication
of work to all nodes through the main server,
but still offers a possibility of learning in a col-
laborative manner when that server becomes
unavailable. The problem of overwhelming ei-
ther the network interface or computing power
of the centralized server is then entirely elim-
inated.

1.1. Objectives of research

The research we will then conduct is the fol-
lowing: First, we will design an algorithm



that combines the strengths of both de-
centralized and federated learning using
timeouts to make a decision about which tech-
nique to use (we will call that algorithm Time-
out). Then, we will measure the influence
of several network parameters on this al-
gorithm. Finally, we will benchmark the
algorithm against standard implemen-
tations of decentralized and federated
learning to understand its strengths and weak-
nesses when compared to more standard col-
laborative learning algorithms.

2. Background

2.1. Federated learning

The first algorithm we will present here is Fed-
erated learning. The federated worker algo-
rithm consists of three main steps: first, it
awaits receiving parameters from server. Then,
it locally trains on received parameters, and
finally send updated weights to server. It re-
peats this for a set number of iterations. The
server algorithm is the dual of the worker one:
it handles the distribution of weights and re-
ceives the updated weights from the workers.
When it has received messages from all work-
ers, it aggregates the received weights into one
model, typically by averaging neural network
weights and biases.

There are several variations to this algo-
rithm: averaging is only one of the available
ways to reduce several models into one, and
workers can send the gradient instead of the
updated weights, which leaves the weight up-
date to be done by the federating server. In
this report, we will work with the version we
initially presented, as it is the one already im-
plemented in the Decentralizepy framework.
An important fact about this implementation
is that none of the server and worker nodes
ever timeout on their respective waiting steps.
This means that the classification or regression
performance of the final model is independent
of network quality, but poor network condi-
tions may have a large negative impact on the
amount of training iterations accomplished by
unit of time.

In general, this approach suffers from the
centrality of the server, notably if the federat-

ing server fails or becomes unreachable for a
part of the nodes. This is a problem that the
second algorithm addresses.

2.2. Decentralized learning

The second algorithm of interest here is Decen-
tralized learning. It solved the problem of hav-
ing a single point of failure by scrapping the
asymmetry in the roles played by the nodes,
opting for a peer-to-peer approach where all
of them have access to their own dataset, and
are responsible for both model training and
weight sharing with their peers. The algo-
rithm follows three steps: first, the nodes train
on their private data and send the updated
model to their neighbors. Then, they receive
the model from their neighbor and aggregate
it with theirs. They repeat this for a fixed
number of iterations.

By having the nodes only share their weights
with a set of neighbors (which may be static
or dynamic), the nodes are not overloaded in
their exchange, avoiding the main pitfall of
federated learning. However, it may suffer from
the lack of communication between nodes that
are not close neighbors, as it will take sev-
eral iteration steps for the training informa-
tion of a node to reach another one that’s
far away in terms of neighbor hop distance.
Conversely, federated learning guarantees that
training progress is transmitted to every node
at every iteration.

3. Method

3.1. Tooling

The performance evaluation of the algorithm
we propose will make use of two main tools:
Decentralizepy and Kollaps.

3.1.1. Decentralizepy

Decentralizepy[1] is a Python framework de-
signed to run decentralized machine learning
applications. It was built to analyze several
aspects of collaborative learning, from mea-
suring the time it takes to run a decentralized
learning round to evaluating the performance
of a model that was trained in a decentralized
fashion.

2



It is written in a way that abstracts away
several key concepts of decentralized learning.
For example, it automatically manages the com-
munication setups with peers, the network com-
munication protocols and the machine learn-
ing training. The part of this high-level frame-
work that is of most interest to this report
is its implementation of the decentralized and
federated learning algorithms. We used these
as templates to create our timeout-based algo-
rithm that is inspired by both.

In order to understand how the network
quality influences how the algorithms manage
to learn, however, the framework alone is not
enough: it offers little control over the un-
derlying network. We cannot, for example,
control the maximum I/O throughput from
within the application. This is why we in-
troduce another tool that enables fine-tuning
of these low-level parameters independently of
Decentralizepy.

3.1.2. Kollaps

Kollaps[2] is a network simulation tool that
can run any distributed application on a sin-
gle computer or computing cluster. Every in-
stance of the application runs in its own Docker
container, and may run arbitrary code from
an arbitrary language. The containers run at
the maximal speed allowed by the underlying
hardware, which Kollaps does not control, but
it then enables fine-tuning the quality of the
connection that join containers together.

To describe experiments to Kollaps, one
must provide a pre-compiled topology file con-
taining a list of containers, along with the com-
mand to run and its dependencies in the form
of a Docker image. This topology file also in-
cludes a description of the network to emulate:
switches, links and timed events like artificial
crashes. When declared, links are given a cer-
tain capacity, throughput and delay that are
the main tools to simulate physical network
limitations.

In this project, Kollaps was used in the fol-
lowing way: several containers were spawned
to run Decentralizepy-based applications, and
each ran its own instance of the framework, us-
ing the others as peers. By modifying the net-
work quality joining the containers, we could

Figure 1: Screenshot from the Kollaps dash-
board, showing a star network with five members
linked by a switch. One of the workers is a federat-
ing server. Link characteristics (max. throughput
/ packet delay) are shown on the links.

then extract meaningful information about how
network quality influences the convergence time
of the algorithms. More specifically, we varied
the maximum throughput, delay and packet
loss of all the links joining the containers, while
benchmarking several distributed algorithms
to gain insight into their differences and simi-
larities.

For most experiments, the main setup was
the same: we used four worker containers in a
star-network centered around a switch. Occa-
sionally, a fifth container was needed to serve
the role of a federating server if one was re-
quired by the algorithm. We then placed a
link between each container and the switch,
as described in Figure 1.

3.2. Benchmarks

We ran three benchmarks on Decentralizepy
using Kollaps. The first one aims at under-
standing which network characteristic is the
most harmful to performance in the timeout-
based algorithm we introduce in this report.
The second one compares the convergence speed
of the three algorithms (decentralized, feder-
ated, timeout-based) in the wild over several
network configurations. The third one is a
sidenote on the accuracy of the classifiers pro-
duced in these experiments.

3



3.2.1. First benchmark: behavior of Timeout

We first tried to isolate the effect of three net-
work characteristics on the Timeout algorithm:
bandwidth, delay and drop rate. To achieve
this, we ran the exact same Decentralizepy
experiment on twenty-seven different network
setups, where we varied between all combina-
tions of what is considered a low, mid and high
value for a given network characteristic. Here,
the algorithm ran for 80 training iterations,
which proved sufficient to reliably observe dif-
ferences in running time. Table 1 shows the
values used in this benchmark.

Characteristic Best Avg. Worst

Throughput (Mbps) 400 210 20

Delay (ms) 4 200 400

Drop rate 0% 2.5% 5%

Table 1: Network characteristics used for the first
benchmark

These values mostly come from the Dia-
blo[3] paper, which also benchmarks decen-
tralized applications using connection speeds
and delays between computers located around
the world. In particular, a value of 20 and
400Mbps both are a rounded approximation
of the lowest and highest connection through-
put found in the pair of cities listed in the
Diablo paper. The same goes for the worst
delay, which is the worst possible in the list.
The best delay of 4ms is due to simulation lim-
its: Kollaps does not simulate sub-millisecond
ping, and we need four hops to go from one
node to the other and back through a switch.
Finally, the worst value for the drop rate was
chosen arbitrarily, as we found no academic
source on typical packet drop rates over the
Internet. However, we claim that a 5% drop
rate is largely sufficient to understand the ef-
fect of drop rate on the experiments we run.
For all characteristics, we also included the av-
erage value between the two extremes, which
provides a good idea of whether the influence
of a network characteristic over the running
time is linear.

Name Throughput Delay

Good-net 400Mbps 2ms

Mid-net 50Mbps 150ms

Bad-net 10Mbps 250ms

World-net Mixed Mixed

Table 2: Network characteristics used for the sec-
ond benchmark

3.2.2. Second benchmark: speed of convergence
comparison

We then wished to understand how fast these
three algorithms converged relative to each other.
For this, we designed a series of experiments
on a list of different networks, varying again
the three components of network quality. We
then ran the three algorithms on these vary-
ing networks and measured the time of conver-
gence and iterations per unit of time. Again,
we deemed 80 training iterations to be suffi-
cient.

The network parameters are similar to that
of the first benchmarks, with some modifica-
tions. Since this benchmark runs several algo-
rithms, we reduced the number of experiments
per algorithms to avoid a combinatorial explo-
sion of the amount of experiments to run. This
is why the throughput and delay are merged
together in the notion of network setup (good-
, mid-, and bad-net). Table 2 summarizes the
different qualities of networks used in the sec-
ond benchmark.

This benchmark however introduces a new
concept, that of world-net. This is a network
simulation with asymmetrical links: nodes are
connected by links whose quality is meant to
simulate computers located around the world,
connected through the Internet. This implies
that link quality is not the same across pairs of
nodes, and we picked them to be as geograph-
ically apart as possible. The cities picked for
the simulation are Milan (Italy), São Paulo
(Brazil), Cape Town (South Africa), and Tokyo
(Japan). When a federating server is required,
it is simulated as being located in Stockholm
(Sweden). The source for the quality of con-
nection between pairs of cities is again the Di-
ablo paper, which specifies the values copied
in Table 3.

4



Cities Throughput Delay

Stockholm - Milan 404Mbps 30ms

Stockholm - Tokyo 42Mbps 241ms

Stockholm - C. Town 60Mbps 179ms

Stockholm - São Paulo 48Mbps 214ms

Milan - Tokyo 48Mbps 214ms

Milan - Cape Town 67Mbps 162ms

Milan - São Paulo 49Mbps 211ms

Tokyo - Cape Town 26Mbps 354ms

Tokyo - São Paulo 39Mbps 256ms

C. Town - São Paulo 27Mbps 340ms

Table 3: World-net characteristics, from the Di-
ablo paper

3.2.3. Sidenote: performance in terms of test-
ing accuracy

Since training is done in a synchronous man-
ner in both traditional algorithms, network
connection quality is of little importance for
the final performance of the trained classifier.
That’s why this metric is of small importance
to this report, which studies the influence of
network parameters over the running time of
algorithms. Nonetheless, we also included a
small benchmark of the testing accuracy of the
model per iteration produced. This will enable
studying the degree to which algorithm itera-
tions improve the training accuracy.

For this, we ran all three algorithms on
good-net with high packet drops for 200 iter-
ations (as opposed to the previous 80), while
measuring their testing accuracy at every iter-
ation. Since measuring the performance over
the testing set at every iteration is fairly time-
consuming, we will only run one such experi-
ment.

4. Obtained Design and Results

4.1. Algorithm design

The Timeout algorithm which we propose has
two parts: the aggregating server (in the same
line as federated learning), along with worker
nodes that first attempt to contact the feder-
ating server, in order to obtain the model of
the current iteration. Depending on whether
they succeed in getting the model, they share
it with their neighbors or attempt to retrieve

the model from their neighbors. Finally, they
train on it and attempt to send the model
back to the federating server. The Timeout
server essentially does the same thing as the
server in federated learning: it sends its own
model, waits for the worker nodes to update
it, and aggregates the updated models. It has
a small difference from its federated counter-
part: if it waits for a message for too long, it
will time out and skip to the next iteration, so
that it can follow fast-working nodes if one of
the other workers is too slow.

The pseudocode for the worker nodes we
programmed goes as follows:

repeat for a fixed amount of iterations:

- attempt model retrieval from server

- if retrieved (without timeout):

| set local model to server model

| broadcast model to neighbors

- else:

| broadcast model to neighbors

| await neigbor models with timeout

| aggregate local model with answers

- train on the new local model

- send to server

and the server runs the following code:

initialize model at random

repeat for a fixed amount of iterations:

- send model to every worker

- await their answer for a certain time

- aggregate all received answers

with the current model

The full Python implementation is available
on GitLab1.

The point of this algorithm is to be an
extension to federated learning that handles
poor network connectivity properly. Indeed,
if the network behaves ideally, the model re-
trieval will systematically succeed, as well as
the last step where the worker node sends back
the updated model to the server. This means
that the steps executed will be the exact same
as those executed by federated learning. How-
ever, it has a defined fallback behavior when

1https://gitlab.epfl.ch/randl/decentralizepy/-
/tree/timeout

5



the network behaves improperly: it starts de-
centralizing the learning process.

Since it re-evaluates the network connec-
tivity at every iteration, it can also handle
variation in network conditions. For example,
networks with high jitter (Wi-Fi[4], ...) will
create cases where some iterations are able to
connect to the federating server, and others
not. In this case, the algorithm attempts to
remain as close as possible to federated learn-
ing, and falls back to decentralized learning
only when reaching the server is not possible
at this iteration.

A consequence of this fact is that different
nodes might be running different kinds of iter-
ations at the same time: some nodes may have
managed to connect to the server, while others
could not. This is why even in case of success-
ful model retrieval from the server, Timeout
still broadcasts the received weights, to help
the convergence of the model of neighbors that
might have failed to receive the current feder-
ated model.

This alternative behavior on bad network
conditions eliminates the risk of learning slow-
down caused by the server being heavily con-
gested, because a lack of answer from the server
will not prevent the nodes from learning to-
gether. Since for each node, the amount of
neighbors is significantly lower than the amount
of nodes in the experiment, the risk of network
congestion at the working nodes is much lower.

Finally, the algorithm also defines ”for free”
the behavior for nodes that cannot reach any
other node. Since awaiting the models from
neighbors times out whenever neighbors are
unreachable within a given amount of time,
the node will simply receive no model. In
this case, the aggregation step becomes triv-
ial by simply returning the current model of
the node. The model then keeps on learning
locally and attempts communication again at
the next round.

4.2. Results of the first benchmark

The first benchmark was run on a computer
with a Ryzen 9 5950X processor with 16 phys-
ical cores and 2-to-1 SMT enabled. As a re-
minder, we ran the Timeout algorithm on 27
network setups (3 values for drop rate, 3 for

throughput, 3 for delay) and we observed the
time to run through 80 iterations. Figures
2-4 show the time elapsed between the first
and last iterations as a function of RTT delay
(x-axis) and maximum throughput (y-axis).
Color is a function of height for better visual
clarity. From these figures, we can observe
some preliminary results.

Figure 2: Benchmark 1: 0% drop rate

Figure 3: Benchmark 1: 2.5% drop rate

6



Figure 4: Benchmark 1: 5% drop rate

The largest influence on the running time
of the Timeout algorithm clearly seems to be
the packet drop rate. Losing 5% of the packets
gives an average of 581 seconds to converge to
the end of 80 iterations, while the same aver-
age computed over experiments with no drop
rate gives an average running time of 137s, re-
sulting in a reduction factor of 4.25. There
may be several explanations for this phenomenon:
the fact that some packets are dropped will
clearly influence the running time, but this
is exacerbated by the TCP congestion con-
trol algorithms that detect packet losses and
attempt reducing the transmission rate to re-
duce load on the network. We did not exper-
iment further with other transmission mecha-
nisms, such as custom re-transmitting proto-
cols based on UDP that do not suffer from an
overly conservative congestion control mecha-
nism, but it could be an interesting addition.

The second influence on the running time
of the algorithm seems to be the round-trip
time between two given nodes. By increas-
ing the delay of a packet, we can delay iter-
ations as they depend on sequential commu-
nication between nodes. We can however ex-
pect that the influence of this parameter has
a lesser impact on the final running-time of
the algorithm, since congestion algorithms are
mostly unaffected by reasonable RTTs, and all
values of delay were smaller than the time-
out value used in the algorithm. To quantify
this effect, we can observe that with a 400ms
RTT, the average of experiments runtime was
496s, while in the same experiments with a
2ms RTT, the average runtime was 210s. This

makes for a 2.36 reduction factor, which is ob-
servable on the graphs.

Perhaps surprisingly, throughput had less
of an impact than the other two parameters.
In particular, the difference in the execution
time of the 210Mbps and 400Mbps experiments
is hardly noticeable, which suggests that net-
work throughput is no longer a bottleneck when
it is higher than 210Mbps in this setup. Sec-
ondly, the reduction factor between the aver-
age of experiments with the highest and lowest
value for throughput was only 1.19. This sug-
gests that transfers made over the network are
small, as small transfers (that fit in a few pack-
ets) tend to much more influenced by packet
delay than by throughput, which matters more
for large transfers. That explanation is reason-
able, considering that information transmitted
over the network mostly consists of neural net-
work weights transfers, each having a size of a
few hundred kilobytes.

These hints can be made more rigorous us-
ing a simple OLS regression. We used the 27
experiments as data points: The running time
of the algorithm was modelled as the response
variable, and the explanatory variables used
for regression were the parameters of the net-
work after standardization. The coefficients
obtained are summarized in the following ta-
ble:

Standardized Parameter Coefficient

Drop rate 181.3530

Delay 116.9961

Throughput -26.7155

Constant 375.8079

This tends to confirm our initial observations.
With an R2 value of 0.864, we can argue that
the model fits well in the sense of least-squares,
and corresponds to the prior visual analysis.
It is also expected that the coefficient be neg-
ative for the throughput and positive for the
others, as a high throughput is expected to re-
duce the running time, whereas high RTT and
drop rate tend to augment it.

4.3. Second benchmark: the three algorithms

The second benchmark was run on the EPFL
cluster. The results are therefore not directly
comparable to those of the first benchmark.

7



4.3.1. No packet drops

Figure 5 shows the time elapsed of all three
algorithms after each iteration, out of a total
of 80. This first part of the benchmark had
a packet drop rate of zero. It shows multiple
important results:

In the world-net network setup, decentral-
ized learning fared better than its peers by a
large factor. We may explain this by remind-
ing that decentralized learning is the only algo-
rithm of the three that does not need the inter-
vention of a federating server. In this scenario,
that server is simulated as being located in
Stockholm, meaning it might have been hard
to reach for nodes simulating far-away cities.

In the bad-net network setup, we get sim-
ilar results, except for the fact that the Time-
out algorithm seems to behave more like the
timeout one. This is likely due to the fact bad-
net has a worse connectivity than world-net,
worsening the capacity to reach the federating
server. The fallback mechanism of the Time-
out algorithm made the algorithm behave like
its decentralized cousin. The same behavior
happens in the mid-net experiment.

Finally, the best scenario shows a fairly
similar time taken by all algorithms. Decen-
tralized still behaves slightly better due to the
lack of communication with the federated server,
but the others have a comparable performance
within a few seconds.

4.3.2. What about drop rate ?

The natural continuation of the previous set of
experiments is to increase the drop rate to lev-
els considered high (5%). Figure 6 describes
the time elapsed when by each of the 80 itera-
tions began. We then observe a fairly different
behavior:

In the world-net setup, we see that the fed-
erated algorithm is outperformed by the de-
centralized one, in the same way as the 0%
drop experiment. Still, Timeout becomes the
best performer. This suggests that in the case
of a particularly bad iteration where no com-
munication is possible at all, Timeout skips
both sharing the weights with the federating
server and with its neighbors. It trains locally
and retries communicating results at the next
iteration, making it gain large amounts of time Figure 5: The time taken by all three algorithms

to run 80 iterations without drops. Y-scale is log-
arithmic.8



Figure 6: The time taken by all three algorithms
to run 80 iterations with 5% drops. Y-scale is log-
arithmic.

in the process.
This is even more visible in the mid-net

and good-net setup, where Timeout converges
significantly faster than its peers. Again, this
is due to its flexibility in handling situations
when weight sharing is difficult. This does not
mean that the algorithm only converges be-
cause it times out: in mid-net, about 74.4% of
iterations successfully reached the federating
server.

4.3.3. Massive drop rate

For the final part of this benchmark, we also
recreated the same experiments with a 15%
drop rate. The results are way simpler to in-
terpret: within a running time of one hour,
none of the decentralized and federated algo-
rithm managed to run for a single iteration
in any of the network setups, including good-
net. This dramatic behavior is surprising, as a
drop in 15% of the packets is not expected to
cause a slowdown of training by a factor of well
over 100 compared to the experiment with no
packet drop. We blame this behavior on the
TCP congestion control which was not built to
withstand such a high packet drop rate, and
severely limits the throughput of the outgoing
link to attempt to ease the load over the net-
work. While this phenomenon also occurs for
Timeout, its non-blocking nature enabled it to
ignore the network issues and keep learning.
Figure 7 shows the time taken by Timeout in
the four network setups.

Occasionally, in the world-net configura-
tion, some weights reached their destination,
still enabling the sharing of model informa-
tion. Accounting for all four nodes, about
16.8% of iterations still managed to reach the
federated server, enabling a reasonable amount
of communication and learning.

Still, in the other setups, no node man-
aged to contact another node, meaning that
the training was done fully autonomously on
every one of them. This explains the exact
same graph repeated three times: the algo-
rithm timed out on every single iteration, mak-
ing the time taken per iteration constant.

The difference between the synthetic se-
tups (good-, mid-, bad-net) and world-net is
difficult to explain. While the curves look sim-

9



Figure 7: The time taken by Timeout to run 80
iterations with 15% drops. Y-scale is logarithmic.

ilar, some world-net iterations still reached the
federating server and no good-net ones did,
even though world-net has worse character-
istics by every metric. A possible explana-
tion for this behavior would be the fact that
since world-net is asymmetrical, packets ar-
rived at different time intervals at the feder-
ating server, which could respond faster as it
was not processing other requests. Therefore,
it may have avoided triggering the congestion
control of worker nodes as much.

We can extract from this last experiment
that a 15% packet drop rate is too high for
regular algorithms to function properly. Non-
blocking algorithms have a way better chance
of running properly, assuming any kind of com-
munication is possible in the first place.

4.4. Side note on accuracy

We ran the three algorithms on good-net with
5% packet drops for 200 iterations. We mea-
sured their accuracy at every iteration, obtain-
ing the results described in Figure 8.

Figure 8: Accuracy per iteration in good-net with
5% packet drop

A (noisy) trend appears: all algorithms ob-
tain an accuracy that grows over time, but
that of Timeout grows at a slower pace. We
believe this is due to the asynchronous imple-
mentation of the nodes. Since they are allowed
to time out and enter new iterations with-
out having received the information from other
nodes (or at least not all of them), it follows

10



that they have to use models that have been
trained on fewer data points. Another similar
phenomenon might also occur: when the node
receives late information from the federating
server (in the sense that it has already timed
out for that iteration), all the training that
the worker node has performed is lost, as it
will overwrite its own model with the old one
received from the federating server. This leads
to learning iterations that are completely lost
in terms of training, as they are overwritten
by older information from the server.

This experiment therefore suggests that one
should pick carefully the kind of algorithm that
one uses for decentralized learning: while the
speed of execution of Timeout is especially at-
tractive in hard network conditions, its accu-
racy is slower to grow than traditional algo-
rithms because some data it deals with is ei-
ther missing or stale. In poor network condi-
tions, Timeout runs several times more iter-
ations per unit of time than its counterparts,
while also learning less per iteration. If the ob-
jective is to obtain the highest accuracy possi-
ble in the shortest amount of time, both philoso-
phies may be viable and both must be evalu-
ated.

5. Future work

There are several steps that may improve this
study. We propose the following trails of re-
search:

A good start would be to study why syn-
chronous algorithms block so hard when ex-
posed to very high amounts of packet drops.
We blamed this on TCP congestion control
systems, and that could be confirmed by in-
vestigating whether communication protocols
with congestion control disabled perform bet-
ter in these situations. The project of Emna
Fendri comes to mind.

On another note, while we evaluated over
several network parameters, there is one we
left out: jitter. One could also evaluate whether
this parameter has a measurable influence over
the speed of convergence. This would add to
the realism of simulations, but finding sources
on typical values for Internet jitter might be
hard.

6. Conclusion

In this paper, we hope to have established
three things.

It is possible to implement an algorithm
that combines federated and decentralized learn-
ing in a way that does not differ significantly
from traditional collaborative learning meth-
ods, for example by reusing the abstractions
implemented in tools like Decentralizepy.

We also found that the implementation we
provide to this algorithm suffers the most when
being exposed to a bad connection drop rate,
as could be expected from the fact that it in-
ternally uses TCP, which artificially decreases
network performance in the case of recurrent
packet loss.

Finally, we found that its running time
is similar to that of the implementations of
decentralized and federated learning in high-
quality networks, and especially outperforms
them in hard network conditions that tend to
favor non-blocking algorithms. In more rea-
sonable setups, it mostly behaves like feder-
ated learning, which corresponds to what we
expected. This must be put in perspective
with the fact that in hard network conditions,
Timeout deals with incomplete and stale in-
formation, which implies a lower classification
performance compared to algorithms that would
rather block until they have received the fully
up-to-date models. Ultimately, the choice be-
tween both is up to the developer of the sys-
tem.

Acknowledgements

The author would like to thank Rishi Sharma
and Rafael Pires for supervising this research
project. Their advice was of crucial impor-
tance. This work was conducted at the Scal-
able Computing Systems Laboratory, under
the direction of Anne-Marie Kermarrec.

11



References

1A. Dhasade, A.-M. Kermarrec, R. Pires, R.
Sharma, and M. Vujasinovic, ≪Decentralized
learning made easy with decentralizepy≫, in
Proceedings of the 3rd workshop on machine
learning and systems (2023), pp. 34–41.

2P. Gouveia, J. Neves, C. Segarra, L. Liechti,
S. Issa, V. Schiavoni, and M. Matos, ≪Kol-
laps: decentralized and dynamic topology em-
ulation≫, in Proceedings of the fifteenth eu-
ropean conference on computer systems, Eu-
roSys ’20 (2020), isbn: 9781450368827, 10.
1145/3342195.3387540.

3V. Gramoli, R. Guerraoui, A. Lebedev, C.
Natoli, and G. Voron, ≪Diablo: a benchmark
suite for blockchains≫, in Proceedings of the
eighteenth european conference on computer
systems (2023), pp. 540–556.

4H. Zhang, A. Elmokashfi, and P. Mohapatra,
≪Wifi and multiple interfaces: adequate for
virtual reality?≫, in 2018 ieee 24th interna-
tional conference on parallel and distributed
systems (icpads) (IEEE, 2018), pp. 220–227.

12

https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540

	Introduction
	Objectives of research

	Background
	Federated learning
	Decentralized learning

	Method
	Tooling
	Decentralizepy
	Kollaps

	Benchmarks
	First benchmark: behavior of Timeout
	Second benchmark: speed of convergence comparison
	Sidenote: performance in terms of testing accuracy


	Obtained Design and Results
	Algorithm design
	Results of the first benchmark
	Second benchmark: the three algorithms
	No packet drops
	What about drop rate ?
	Massive drop rate

	Side note on accuracy

	Future work
	Conclusion

