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1 Introduction

Centralized machine learning applications require data to be stored and processed in a same central

server, which can raise concerns about data privacy, security, and scalability. Decentralized learning,

on the other hand, aims to distribute the learning process across multiple nodes. In fact, each node is

responsible for learning a part of the model and for sharing it with its neighbors in order to aggregate

and update each local model, which removes the need for a central server and allows training on larger

datasets.

In this project, we will focus on the DecentralizePy framework written in Python3 used for running

distributed Machine Learning applications. Initially, the nodes are using the Transmission Control

Protocol (TCP) to communicate and send their models to their neighbors in a reliable way. In fact,

in order to ensure a reliable delivery of data, TCP uses acknowledgements and retransmission

mechanisms of lost or corrupted packets. However, this reliability comes at the cost of potential delays

in case of packet losses. Our goal will be to study the performance of these machine learning appli-

cations when using the User Datagram Protocol (UDP) for communication in order to prioritize low

latency.

The optimization of distributed learning systems involves finding a balance between computation and

communication. This solution using UDP aims to address challenges in slower networks, more specifi-

cally, networks that present risks of packet loss - those can be networks with low bandwidth. Researches

have been working on several solution to address these issues. We can mention for instance Commu-

nication Compression techniques that aim to reduce the size of the data being exchanged between

decentralized learning nodes [3] . By compressing the data, the overall volume of data transmitted

over the network can be reduced, which can be advantageous in scenarios with limited bandwidth.

In this report, we will discuss our implementation of the UDP module and evaluate its performance

once integrated in the DecentralizePy framework. We will then compare it, under different settings,

with the initial version that uses TCP for communication.

Mainly, we will try to answer the following questions: Is the presence of a retransmission mechanism

essential for the machine learning model to learn effectively in the event of packet loss? More generally,

in which cases would we use UDP over TCP ?
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2 Background

2.1 Decentralized Machine Learning

Decentralized machine learning differs from centralized machine learning in two significant ways.

Firstly, in Decentralized Learning each node will perform training on its own data partition. There-

fore, the whole dataset does not need to be moved around. Secondly, in Decentralized Learning there

is no need for a centralized coordinator like in a parameter-server architecture. Instead, the nodes

communicate directly on their local data and work to optimize the machine learning model jointly by

sharing their model with their neighbors.

In order to train the model in a decentralized setting, we will consider in this project the Decentralized

Parallel Stochastic Gradient Descent (D-PSGD) algorithm . This algorithm is responsible for solving

the optimization problem of finding minimum loss function by updating the parameters of the model.

There are several variations that can be made to the D-PSGD. From a high level, we can say it consists

of these two main steps:

For each iteration:

1. Each node computes the stochastic gradient using its local dataset and updates its local param-

eters.

2. Each node exchanges local parameters with its neighbors and average the local parameters it

receives with its own local parameters.

We will get into the details of the implementation that we have used in this project in the following

sections.

2.2 DecentralizePy

DecentralizePy [1] is a framework written in Python 3 used for running distributed Machine Learning

applications and has been developed at EPFL’s Scalable Computing Systems Laboratory (SaCS). It

can run on several machines where each process within a machine represents a node in distributed

machine learning. This framework consists of multiple modules, with each module being responsible

for a specific part of the decentralized process. The file structure of the implementation in the src

section is shown on the diagram below 1.

In the following, we will give an overview of the two modules that were used in the scope of this

project, namely the communication and sharing classes and how it has been initially implemented.

In the next section called Implementation we will explain what we have added to these modules.

2.2.1 Communication

The Communication class is an API for communication between processes in DecentralizePy, it exposes

the communication functions to other parts of the framework. The interface consists of functions for

establishing and closing communication links with neighbors, for sending and receiving messages, and

for encrypting and decrypting data. Each instance of the communication class is initialized at the

creation of each node with the specific information about that node such as its rank and machine ID.

TCP: The TCP.py file contains an implementation of the TCP communication protocol using the

ZeroMQ messaging library [2]. The ZeroMQ library provides a high-level API for sending and receiving

messages between applications or processes. This initial implementation uses a ZMQ ROUTER socket

that we bind to each node, that will be responsible for receiving messages. It also uses a ZMQ

DEALER socket per neighbor in order to connect to them and send messages. The main functions are

the following:
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• The connect neighbors function that we find in the Node class establishes connections with all

neighbors by initiating a connection with each one of them using the init connection of the

TCP.py. It then sends a Hello message. Similarly, the disconnect neighbors method of the

Node class terminates all connections with neighbors by calling close connection of TCP.py.

• The receive method receives data from a connected neighbor, while the send method sends

data to a specific neighbor.

• The encrypt method encodes data as a Python pickle object, while the decrypt method decodes

the received pickle data.

The opening of a connection is confirmed by sending a Hello message. A node waits for Hello messages

from all its neighbors before it finishes the connecting phase. It also waits for a Bye message from all

neighbors when disconnect neighbors is called.

Figure 1: File structure of DecentralizePy
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2.2.2 Sharing

The functions for serializing and deserializing the model and sharing model parameters with other

nodes in the network are defined in the sharing class. The main functions are the following:

• serialized model(): It serializes the model from a PyTorch state dict to one single flattened

vector.

• get data to send(): It returns a Python dictionary containing all the data to be transmitted

to the neighboring nodes.

• averaging(): Averages the received model with the local model.

• deserialized model(): Converts back the updated model to a PyTorch state dict.

2.3 TCP vs UDP

In this project, the aim is to compare the performance of decentralized learning when nodes commu-

nicate over TCP and UDP protocols. In this subsection we will revisit the fundamental concepts of

these two protocols and explain the main differences.

TCP TCP stands for ”Transmission Control Protocol” and is a connection-oriented protocol that

provides reliable and ordered delivery of data packets over a network. It establishes a connection

between two devices before transferring data, ensuring that data is received accurately and in the

correct order. TCP includes mechanisms for error detection and retransmission of lost packets if

necessary. It guarantees data integrity but the main drawback is that it introduces higher latency due

to these mechanisms.

UDP UDP stands for ”User Datagram Protocol” and is a connectionless protocol that offers a

simpler and lightweight alternative to TCP. It provides a best-effort delivery mechanism without the

same reliability guarantees as TCP. UDP does not establish a connection before sending data and does

not provide features like error recovery or retransmission. It is often used in scenarios where real-time

communication, low latency, and minimal overhead are prioritized, such as streaming media or online

gaming.
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3 Implementation

In this section, we will focus on the additions we made to the initial DecentralizePy Framework to

incorporate the UDP communication module.

We created a new module called UDP.py in the communication folder with all the required functions:

• send()

• receive()

Additionally, we add 4 new functions in the Sharing.py module from the sharing folder :

• serialized model UDP()

• get data to send UDP()

• averaging UDP()

• deserialized model UDP()

3.1 Decentralized Parallel Stochastic Gradient Descent (D-PSGD)

The DPSGDNode class inherits from the Node and is used for decentralized parallel stochastic gradient

descent. The run method of the DPSGDNode object, as we will show below, will be launched by each

node to start the decentralized learning .

3.1.1 D-PSGD for TCP

The run method with the TCP communication module is shown in Algorithm 1. Within each iteration

step, each node will perform one training iteration using the given dataset by calling the train function

from the Training class (line 3). More specifically, by training over at most rounds mini-batches and

will update the local model’s parameters. After successfully initializing a connection with all the

neighboring nodes (line 4), the next step is to prepare the data that will be sent to them by calling

get data to send (line 5). We iterate over the neighboring nodes and send the data. Once the data

sent, we wait until we receive all the packets from the neighboring nodes. This is done in the While

loop at lines 8 and 9 shown in blue. Finally, we perform the averaging step by calling the sharing’s

averaging method and passing to it the received models (DPSGDNode attribute) and the current

iteration (line 10).

3.1.2 D-PSGD for UDP

The modifications we made to the run method with the UDP communication module resides in how

the receiving step is done, as shown in blue:

– Algorithm 2: In the first UDP implementation, we introduce at line 2 one receiving thread for

each node that will be responsible for listening to incoming packets during the whole training and

storing them, as we will explain shortly. For this, we use the threading library from Python.

– Algorithm 3: In the second UDP implementation, the steps are done sequentially. Before starting

the next iteration, each node will keep receiving packets until it receives at least one packet from

each one of its neighbors or a timeout occurs. This is done in the While loop at lines 8 and 9

in blue. The experiments have shown that there are rare cases where, at some iteration, a node

would not receive packets from one of its neighbors, which explains the timeout. We will discuss

in the following sections the value we have chose to set for the timeout.

We will now discuss in more details the implementation of these steps in the upcoming subsections.
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Algorithm 1 D-PSGD for TCP

1: function run

2: for iteration← 0 to iterations do

3: train(dataset) ▷ One training iteration

4: connect to neighbors()

5: to send← get data to send(degree = len(my neighbors))

6: for each neighbor in my neighbors do

7: communication.send(neighbor, to send)

8: while not received from all() do

9: communication.receive()

10: sharing. averaging(received models, iteration)

11: disconnect neighbors()

Algorithm 2 D-PSGD for UDP with Receiving Thread

1: function run

2: receiving thread ← threading.thread(target=communication.receive)

3: receiving thread.start()

4: for iteration← 0 to iterations do

5: train(dataset) ▷ One training iteration

6: my neighbors← get neighbors()

7: to send← get data to send UDP(degree = len(my neighbors))

8: for each neighbor in my neighbors do

9: communication.send(neighbor, to send)

10: sharing. averaging UDP(received models, iteration)

11: Close all sockets and threads

Algorithm 3 D-PSGD for UDP with synchronization

1: function run

2: for iteration← 0 to iterations do

3: train(dataset) ▷ One training iteration

4: my neighbors← get neighbors()

5: to send← get data to send UDP(degree = len(my neighbors))

6: for each neighbor in my neighbors do

7: communication.send(neighbor, to send)

8: while not all nodes received AND not timeout do

9: communication.receive(received models)

10: sharing. averaging UDP(received models, iteration)

11: Close all sockets

Page 8 of 25



3.2 Preparing the data to send

We introduce the get data to send UDP (Algorithm 4) and the serialized model UDP (Algorithm

5) methods in the Sharing class. In PyTorch, the model.state dict() method returns a dictionary

containing the parameters of the model. The keys of this dictionary are the names of the model’s

parameters, and the values are the corresponding parameter tensors.

The serialized model UDP function takes the model’s parameters, flattens them into 1D tensors,

concatenates them into a single 1D tensor, and returns a dictionary data with the serialized model

parameters converted to a NumPy array under the ”params” key.

In get data to send UDP we add 2 more keys to this dictionary, storing the degree of the node and the

current iteration. In fact, we will need to know the degree of parameter sender as well as the current

iteration in the receiving and averaging steps.

Algorithm 4 Get Data to Send

1: function get data to send UDP(degree)

2: data← serialized model UDP ▷ returns a dictionary

3: data[”degree”]← degree

4: data[”iteration”]← iteration

5: return data

Algorithm 5 Serialize the model parameters

1: function serialized model UDP

2: to cat← [ ]

3: for , v in model.state dict().items() do

4: t← v.flatten() ▷ Flatten the tensor

5: to cat.append(t) ▷ Append the flattened tensor

6: flat← torch.cat(to cat) ▷ Concatenate everything into a single 1D tensor

7: data← dict()

8: data[”params”]← flat.numpy() ▷ Store the flattened tensor as a NumPy array

9: return data

3.3 The send function of the UDP Module

We introduce the send and the send chunks methods (Algorithm 6) in the UDP class. We pass to

send chunks the neighbor which corresponds to its uid and the data to send which is the dictionary

returned by the get data to send UDP function. It then retrieves the specific values from it (from line

5 to 7), namely the flattened parameter array containing the trainable parameters, the degree of the

sender, and the iteration. Given a CHUNK SIZE, we chunk the 1D array into CHUNK SIZE arrays that

we store in a list chunks (line 8).

We initialize a UDP instance by creating a socket object for UDP communication over IPv4 using the

Python’s standard library socket: socket.socket(socket.AF INET, socket.SOCK DGRAM) that we

bind to each node enabling it to receive messages from other nodes.

The goal of this function is to send the parameter chunks to the neighbors so it can be able to

reconstruct the whole model. For this, each chunk will be sent along with its index, the uid of the

sender, the degree of the sender and the iteration. These information are stored in a dictionary to send

than we pickle (line 17) and send to the neighbor given its IP address and Port number (line 20).
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Algorithm 6 Send Chunks

1: function send(neighbor, data to send)

2: send chunks(neighbor, data to send)

3: function send chunks(neighbor, data to send)

4: dest host, dest port ← Get the IP and Port of neighbor

5: flattened ← data to send[”params”] ▷ The params in a 1D Numpy array

6: degree ← data to send[”degree”]

7: iteration← data to send[”iteration”]

8: chunks ← split into chunks(flattened,CHUNK SIZE) ▷ Chunking

9: index← 0

10: for all c in chunks do

11: to send← dict()

12: to send[”index”] ← index

13: to send[”param chunk”]← c ▷ params

14: to send[”uid sender”]← uid ▷ Node uid

15: to send[”degree”]← degree

16: to send[”iteration”]← iteration

17: to send bytes← pickle.dumps(to send)

18: data size ← len(to send bytes)

19: self.total bytes ← self.total bytes + data size ▷ Update total bytes

20: socket.sendto(to send bytes, (dest host, dest port)) ▷ Send to dest node

21: index ← index+ 1

3.4 The receive function of the UDP Module

We introduce the receive method (Algorithm 7) in the UDP class that will be responsible for cap-

turing and storing different packets from different neighbors for each node in its attribute dictionary

received models. The received models has been initialized for each DPSGDNode instance as a 3-level

nested dictionary:

received models = defaultdict(lambda:defaultdict(dict))

After unpickling the received data, the variables iteration, param chunk, uid sender are extracted.

The received parameter chunk is then stored in the appropriate location within the received models

data structure using the iteration, uid sender and index as keys (lines 12 and 13).

The stopping condition of the While loop at line 2 will differ depending on the version of UDP that

is used. In the case of the UDP version with receiving threads, this loop will always be running until

we reach the end of the training i.e. until it finishes the iterations. For this we use an Event() object

form the threading library that we set at the end of the training, this way allowing the thread to

terminate gracefully. In case of the version of UDP that uses synchronization, we set a timeout of few

milliseconds in order to be able to call socket.recvfrom() several times to intercept each packet.

3.5 The Averaging step

The averaging step is very important, this is where each node will finally deserialize the received

models and average it with its local model using the metro-hastings weights. For this, we introduce

the averaging UDP (Algorithm 8) and the deserialized model UDP (Algorithm 9) methods in the

sharing class.
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Algorithm 7 Receive

1: function receive(received models)

2: while condition do

3: received data ← receive packet

4: if received data then

5: data bytes, , ← received data

6: data ← pickle.loads(data bytes)

7: degree ← data[”degree”]

8: iteration ← data[”iteration”]

9: param chunk ← data[”param chunk”]

10: index ← data[”index”]

11: uid sender ← data[”uid sender”]

12: received models[iteration][uid sender ][index ] ← param chunk

13: received models[iteration][uid sender ][”degree”] ← degree

14: procedure receive packet

15: data, addr ← socket.recvfrom ▷ Returns (data, connection information)

16: return data, addr[0], addr[1] ▷ Returns data, IP ofSender, port ofSender

Until now, each node sent to its neighbors packets containing :

• Chunks of the model parameters

• The chunk index

• The uid of the sender

• An integer corresponding to the sender’s degree (number of neighbors)

• The corresponding iteration

Each node will be able to retrieve from its received models dictionary the packets associated to the

current iteration with a simple lookup in O(1). received models[curr iteration] will therefore

map to a dictionary where the uid sender is the key mapping to another dictionary that itself has

the chunk index as key to finally map to the corresponding chunk of data.

3.5.1 Deserialization

We process the data parameters sent by each neighbor by looping over each

received models[curr iteration][uid sender] entry (line 5 of Algorithm 8) and pass it to the

deserialized model UDP. In this procedure, we will reconstruct the model parameters in a PyTorch

state dictionary format (with the name of the layer as key and the actual parameter tensor as value).

For this, we will be able to get the shape of each tensor for each layer by going through the local state

dictionary. We will then transform the local parameters to one 1D array that we will chunk and store

in a temporary dictionary temp dict with the chunk index as key (line 15 of Algorithm 9) . This

operation will take O(N) where N is the size of the model.

We can now go through the received chunks of the current sender. This is done at line 19, we loop

over the keys and values of the temp dict to fill it with the neighbors chunk at index k if received,

otherwise we keep the local parameter chunk. In other words, if a chunk index has not been received,

it will be replaced by the local parameter chunk. After going through all the chunk indexes, in an

increasing order, we append each chunk to the merged flattened list that we next concatenate. We

reshape this 1D array and return the reconstructed state dictionary state dict at line 26.
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It is worth mentioning that for memory optimization purposes, every entry that have been processed

will be deleted from the received models dictionary, this operation takes O(1).

3.5.2 Averaging

The next step is the actual averaging which consists in merging the local model with its neighbors’

through a weighted average. For that, we use Metropolis-Hastings weights, where each model parame-

ter pti of node i at iteration t is computed by attributing weights to the contributions of its di neighbors

and to its own contribution using the following formula:

pt+1
i = wip

t
i +

d∑
n=1

wnp
t
n,

with

wn =
1

1 +max(dn, d)

and

wi = 1−
N∑

n=1

wn

Note that dn corresponds to the degree of neighbor n that was sent along with the parameter chunk.And

d is the number of neighbors from which the node i received at least one chunk for that current iteration.

Finally, at line 16 we update the node’s model.

Algorithm 8 Averaging (UDP)

1: function averaging UDP(received models, curr iteration)

2: if received models[curr iteration] then

3: total ← {} ▷ State dict storing model

4: weight total ← 0 ▷ Total weight of models

5: for all (i, uid sender) in enumerate(received models[curr iteration]) do

6: if len(received models[curr iteration][uid sender ]) > 0 then

7: data ← received models[curr iteration][uid sender ]

8: degree ← data[”degree”]

9: data ← deserialized model UDP(data) ▷ Deserialize and merge models

10: weight ← 1 / (max(len(received models[curr iteration]), degree) + 1)

11: weight total ← weight total + weight

12: for all (key, value) in data.items() do

13: total [key ] ← total [key ] + value × weight

14: for all (key, value) in model.state dict.items() do

15: total [key ] ← total [key ] + (1 - weight total) × value

16: model.load state dict(total) ▷ Update local model
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Algorithm 9 Deserialized Model (UDP)

1: function deserialized model UDP(m)

2: state dict ← model.state dict()

3: shapes ← [ ]

4: lens ← [ ]

5: tensors to cat ← [ ]

6: for all ( , v) in state dict do

7: shapes.append(v.shape)

8: t ← v.flatten()

9: lens.append(t.shape[0])

10: tensors to cat.append(t)

11: T ← torch.cat(tensors to cat, dim=0 ).numpy() ▷ Local model serialized in 1D array

12: chunks ← split into chunks(T ,CHUNK SIZE) ▷ Chunking local model

13: temp dict ← {}
14: index ← 0

15: for all c in chunks do ▷ Fill in the temp dict with chunks of local params

16: temp dict [index ] ← c

17: index ← index + 1

18: merged flattened ← [ ] ▷ To be concatenated and reshaped

19: for all (k, v) in temp dict do ▷ Merge local with received params

20: if k in m then

21: merged flattened.append(m[k])

22: else

23: merged flattened.append(v)

24: merged flattened concatenated ← concatenate(merged flattened)

25: start index ← 0

26: for all (i, key) in enumerate(state dict) do ▷ Start reconstructing state dict

27: end index ← start index + lens[i]

28: state dict [key ]←merged flattened concatenated [start index : end index].reshape(shapes[i])

29: start index ← end index

30: return state dict
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4 Experiments and Evaluation

In this section we conduct several experiments to test our implementation in different settings. We will

first compare our two versions of UDP (Threading vs Synchronised) and discuss relatively to the initial

TCP implementation. Secondly, we will conduct a final evaluation using the TC library to introduce

network delay and packet loss.

In each experiment, we describe its setup, followed by the results and corresponding assessment.

4.1 Dataset and Model

We use the CIFAR-10 datasets to test our implementation and evaluate the algorithms.

CIFAR-10: The CIFAR-10 dataset is a widely used dataset for image classification. It contains

60, 000 32x32 color images in 10 different classes. The 10 different classes represent airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is balanced as there are 6,000 images

of each class. The training and test datasets are loaded using the torchvision.datasets.CIFAR10()

function and contain 50,000 and 10,000 images respectively.

The model architecture that we are considering is called LeNet and is inspired by the original LeNet

network for MNIST (Figure 2). It consists of a convolutional neural network (CNN) with 3 convolu-

tional layers, each followed by a max pooling layer and a group normalization layer. The activation

function used here is the ReLU. The first convolutional layer has 32 filters of kernel 5 and takes as input

the 3-channel images and uses ”same” padding to keep the spatial dimensions unchanged. The output

is then passed through a max pooling layer, which downsamples the output by taking the maximum

value within a 2x2 window and moving by a stride of 2. And finally a group normalization layer,

which normalizes the activations. The second and third convolutional layers have a similar architec-

ture as the first - the number of filters is however of 32 and 64, respectively. Finally the output of

the third convolutional layer is passed through another max pooling layer and a group normalization

layer before being flattened to a 1× 1024 1D array and fed into a fully connected layer with 10 output

units, corresponding to the 10 classes in CIFAR-10. The output of the fully connected layer is the final

classification logits of the model.

There are 89, 578 trainable parameters in total, including biases:

1. Conv1 layer : 3× 32× 52 + 32 = 2, 432

2. Conv2 layer: 32× 32× 52 + 32 = 25, 632

3. Conv3 layer: 64× 32× 52 + 64 = 51, 264

4. FC layer: 64× 42 × 10 + 10 = 10, 250
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Figure 2: The LeNet architecture for CIFAR-10

4.2 Training Configuration

In the following sections, the models have been trained using the D-PSGD method on the IC cluster.

In order to properly compare the results, we use the same dataset, hyperparameters and seeds at every

evaluation:

• Dataset: CIFAR-10

• Model: LeNet

• Random seed: 90

• Shards: 4

• Learning rate: 0.01

• SGD batch size: 8

• rounds: 9

• Loss function: Cross entropy loss

• Machines: 1

• Total nodes: 16

• Procs per machine: 16

• Iterations: 1000

• Test after: every 20 iterations

• Initial topology: 3-regular graph with 16 vertices

• CHUNK SIZE: 4000 parameters

The CHUNK SIZE argument represents the number of parameters that will be contained in one packet.

In this case, we chose to send 4,000 parameters at a time. The total size of the model (89,578

parameters) after pickeling is about 363,216 Bytes. Note that pickeling does not just convert the data

to bytes but it also stores metadata about it. Therefore, there will be 23 packets, each of size 16,220

Bytes roughly.
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4.3 Comparing two UDP implementations

We start our evaluation by running our two versions of UDP compared to the initial framework that

uses TCP for 1000 iterations on the CIFAR10 dataset. During the training, the nodes are exchanging

their models after each iteration. Every 20 iterations, each node evaluates its current model on the test

set. At the end of the training we aggregate the results of the evaluations over all nodes by computing

the mean and the standard deviations.

Regarding the notations in the following plots:

• TCP: The framework that uses the initial TCP module.

• UDP: The framework that uses UDP with synchronization (400ms timeout).

• UDP threading: The framework that uses the version of UDP based on receiving threads.

4.3.1 Analysing results: Issues with the receiving thread

We report on the graphs below the results of the training and testing loss with respect to communication

rounds (Figure 4) as well as the testing accuracy with respect to communication rounds and with

respect to time (Figure 5).

We notice from the graphs showing the loss, that the framework using TCP and our implementation

of UDP perform very similarly. However the UDP version that uses the receiving thread, referred to

as UDP threading, is performing very poorly. If we take a look at the testing loss, we can see that,

firstly, the loss is not decreasing and secondly, the values of the losses of the nodes along the training

are highly dispersed around the mean compared to the TCP and UDP versions i.e. we notice a high

variance.

Analysis: After looking at the log files showing the timestamps of the communication between nodes,

we notice that the nodes do not follow the same speed of execution. With the receiving thread setting,

the nodes do not wait for neighbors to receive their models in order to begin the next iteration. In other

words, whenever a node finishes an iteration, it directly sends its model to its neighbors regardless

of their training stage, and pursues training. The ’fastest’ nodes will never get the updates from

their neighbors, and will therefore train the model based on their local updates uniquely, leading to

overfitting, thus to a relatively high testing loss.

Additionally, with looking into more details in the topology of the graph, we identified an independent

set (i.e. a set of nodes that are not adjacent to each other) of maximum size of 5 nodes within this

3-regular graph (Figure 3) that always receive the models of their 3 neighbors. The issue for these

’slow’ nodes comes from the fact that they are receiving overfitted models from neighbors that are

faster. Slow nodes will update their local model and produce models with a high training loss thus a

high testing loss.

As a result, all of the nodes will perform poorly overall, which explains the behavior of the training

and testing loss. We are showing in Figure 3 below the 3-regular graph with 16 nodes that we used

to run this experiment. The slowest nodes are colored in red. At the end of the 1000 iterations, we

computed the difference in time at which they finished the training with respect to their 3 neighbors.

These are the statistics of the aggregated results:

• mean: 14.29 sec

• std: 13.95 sec

• median: 8.21 sec

• max: 44.05 sec / min: 2.47 sec
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Based on these observations, it can be concluded that the varying rates at which the nodes operate

have a detrimental effect on the overall training process. This is an issue that we should consider using

UDP. To mitigate this, we introduced a synchronisation mechanism between the nodes in our second

implementation of UDP.

Figure 3: 3-regular Graph with 16 nodes. Slowest nodes are colored in red.
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(a) Training Loss with respect to communication rounds

(b) Testing Loss with respect to communication rounds

Figure 4: 1000 iterations on CIFAR-10
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(a) Testing Accuracy with respect to communication rounds

(b) Testing Accuracy with respect to time

Figure 5: 1000 iterations on CIFAR-10
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4.3.2 Analysing results: Better results with the synchronized version of UDP

In our second implementation for UDP, we removed the receiving thread, and introduced instead a

while loop that takes on the responsibility of waiting for the neighboring nodes to send their model.

Choosing the Timeout Value: By running some experiments, we noticed that there are rare

cases where a given node would not receive packets from one of its neighbors at some point during

the training. We therefore introduced a timeout for that matter. As a reminder, as explained in the

D-PSGD for UDP with synchronization (Algorithm 3), the main stopping condition of the while loop

is when a node receives packets from all its neighbors.

In the graphs below (Figure 6), we run 500 iterations on the CIFAR-10 dataset with different timeout

values for UDP in order to see which value gives the best results. The 5 timeout values that we con-

sidered are the following: 1200, 800, 400, 200 and 100 Milliseconds. We referred to the duration of 1

iteration over TCP that is on average 263 ms. In terms of notation, UDP Xs refers to the experiment

with a timeout of X seconds.

(a) Testing Loss with respect to communication rounds (b) Testing Accuracy with respect to time

Figure 6: 500 iterations on CIFAR-10

Analysis: As we can see from the two graphs, The testing loss is decreasing for all timeout values

except for the timeout of 100 milliseconds. Which is predictable as this timeout value is less than 1

TCP iteration step. In other words, we are not giving enough time for the nodes to receive the models

from their neighbors, which is also reflected in terms of accuracy - which is below 30%. On the other

hand, the other experiments behave similarly overall. More specifically, with both timeout values of

1200ms and 800ms the model reaches a level of accuracy of 54%. A 400ms timeout induces a 52%

accuracy. A 200ms timeout however performs significantly less better with a 48% accuracy.

More importantly, the difference that we are interested in lies in the runtime. We will keep a 400ms

timeout for the following experiments as it performs well and faster.

The UDP experiment that we showed in the previous subsection uses, as we mentioned, the 400 ms

timeout version. We logged for each node the number of timeout events that occurred during the 1000

iteration training on CIFAR-10. As a reminder, a timeout occurs when a given node, at a given iteration

didn’t receive packets from one of his three neighbors. Each of the 16 nodes, on average, encounters

approximately 51.2 timeouts out of a total of 1000 iterations, which corresponds to a relatively low

rate of 5.12%.
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Comparing to TCP: Now that we have discussed the details of the two UDP versions, we will

now proceed to evaluate and compare them relative to TCP.

As expected, the testing loss and accuracy (Figures 4 & 5 ) obtained from the evaluation of UDP closely

resemble the model’s performance when operating over TCP. However, we can still notice that TCP

demonstrates better overall performance in terms of accuracy and testing loss. This can be explained

by the fact that running over this UDP implementation still presents risks for packet loss.

Additionally, the main goal of this project was to see if we can train faster with UDP. From these

observations, we conclude that the TCP implementation performs faster and slightly

better than UDP in the case where the network is not prone to packet loss. In fact, we can

see from Figure 5, as we plot the testing accuracy with respect to time, that the TCP implementation

reaches an accuracy of 63% within 23 minutes, while the UDP implementation takes about 26 minutes

to reach a 60% accuracy.

For each of the communication protocols, we run for 100 iterations the CIFAR10 model and compute

the statistics of the duration of 1 iteration. The measure of 1 iteration includes the steps from preparing

the data, sending the data to each neighbor, receiving and storing the received models and averaging.

On Figure 7 we show the box plots of the measurements for each of the three protocols and we report

on the table below the corresponding statistics. The TCP and UDP threading implementations behave

similarly as 1 iterations takes 263 ms and 272 ms respectively. The UDP implementation with a 400ms

timeout shows an average duration of 487 seconds, which is consistent with our setting.

Communication

Module

Mean Median Standard Deviation

TCP 263 ms 258 ms 37 ms

UDP threading 272 ms 272 ms 12 ms

UDP 487 ms 423 ms 201 ms

Figure 7: Box plots for the duration of 1 iteration step over TCP, UDP and UDP threading. Measured

by running 100 iterations on CIFAR10.
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4.4 Evaluating with TC Library

In this section, we evaluate our model using the Linux traffic control TC to introduce network delay

and packet loss. We will run the experiments with different delay and loss configurations:

– Delay: For all of the experiments, we set the average delay to 200ms (close to the duration of

one TCP iteration step ) with a standard deviation of 50ms .

– Loss: We use different values for the loss rate, with a fixed correlation between consecutive

packet losses of 25%. In terms of notation, TCP TCX% refers to an experiment run over TCP with

X% of loss rate.

The results of the experiments are reported on Figure 8. We train on the CIFAR10 over 1000 iterations.

We make two main observations from this experiment:

• UDP implementation:

We run this experiment with a packet loss rate of 10%, 20%, 40% and 70%. A 10% packet loss

gives naturally less better results than no packet loss, it induces a drop in the accuracy from

59% to 56% . A 40% packet loss induces a 6% drop of accuracy while a 70% packet loss induces

a 15% drop of accuracy. A 20% packet loss performs similarly as the 10% packet loss.

• TCP implementation with respect to UDP’s performance:

Packet loss over TCP makes the whole process slower as it uses a retransmission mechanism.

TCP TC10% and TCP TC20% finished 1000 iterations within 40 minutes and 1h 36 minutes respec-

tively. A 20% packet loss over TCP have caused a significant delay of approximatively 1 hour to

finish 1000 iterations with respect to UDP.

TCP TC20% reached an accuracy of 62% within 1h 36 minutes while UDP reached 59% accu-

racy within 26 minutes only. It is also worth noting that UDP TC40% still behaves better than

TCP TC20%.

We report on Figure 9 a box plot of the measurements of the duration of 1 iteration step of TCP TC20%.

The average duration is of 4.185 seconds with a standard deviation of 3.702 seconds. In the scenario

of a network configuration with 20% packet loss, the use of TCP makes the training slower than UDP

with a factor of 4185ms
487ms = 8.4 for an improvement in the accuracy of just 6% (TCP TC20% with 62% vs

UDP TC20% with 56% accuracy). This makes the UDP implementation significantly faster.
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Figure 8: Testing accuracy with respect to time - 1000 iterations on CIFAR-10 using TC

Figure 9: Box Plot for the duration of 1 iteration step over TCP under 20% packet loss - 20 iterations

on CIFAR10
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5 Conclusion

The aim of this project was to implement the UDP communication protocol and to integrate it into

the existing DecetralizePy framework, which initially uses TCP. Our goal was to investigate if it

would be possible for Machine Learning models to effectively learn in a decentralized setting while

communicating over an unreliable protocol like UDP. This way, prioritizing low latency.

The first observation we made was that in a decentralized setting, nodes operate at different rates.

Therefore training in a fully asynchronous fashion can have a detrimental effect on the overall training

process as we saw earlier. This issue should be taken into account in the UDP implementation and is

in favour of TCP.

After addressing this issue, we were able to compare the performances of these two communication

protocols. Our findings indicate that in scenarios with no packet loss, TCP performs slightly better

and faster. However, in networks where there is a chance of packet loss, specifically starting from a

packet loss rate of 20%, UDP demonstrates significantly faster performance.

Overall, this project has provided us with valuable insights into the capabilities and trade-offs between

UDP and TCP when applied to decentralized Machine Learning environments.

5.1 Future Work

For future work, we can think of the following:

– Running similar experiments on datasets other than CIFAR-10 to see if the results generalizes

or not.

– Running similar experiments on different graph topologies.

– Communication Compression techniques have demonstrated good performance when the under-

lying communication networks has both high latency and low bandwidth. It can be interesting

to see how these approaches ( DCD-PSGD / ECD-PSGD) [3] behave when using UDP.
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