On the Efficiency of Sharing Distilled Data in Federated Learning

Pascal Epple
Department of Computer Science, EPF Lausanne, Switzerland

Figure 1.

Abstract—In this semester project, we explore the efficiency
of sharing distilled data in the context of Federated Learning
(FL). We assess the local performance of a distillation tech-
nique based on matching trajectories and evaluate a global
model trained on the aggregated distilled dataset. Our results
demonstrate that training a model on the aggregated synthetic
data leads to significantly better performance than a model
trained on the base, non-distilled subset of data. During the
generation of synthetic data, we face challenges related to
ill training behavior that are difficult to address due to the
high computational cost of the distillation technique. Despite
these limitations, our approach shows potential for reducing
communication cost and for enhancing data privacy in FL.

I. INTRODUCTION

Federated Learning has emerged as a promising approach
for collaborative learning in large-scale distributed systems
with a huge number of networked clients. Due to the
limited bandwidth between clients , previous research
attempts to improve communication efficiency and to speed
up convergence. This communication bottleneck becomes

Example of distilled images generated from a subset of 50 base images of CIFAR-10 using the distillation technique presented by Cazenavette
et al. [T]. Training a standard CNN using these distilled images yields a trained model capable of test accuracy significantly better than the same model
trained on the base images. (Can you guess which classes these distilled images represent? From top to bottom: Airplane, Automobile, Deer, Horse, Truck)

even more important today as modern neural network have
over hundreds of million parameters, and thereby hinders
the large-scale deployment for federated learning models.

What alternative to sending model weights exist in order
to share knowledge with other clients? Motivated by this
question, we go back to the essence of what neural networks
learn from: data. However, due to privacy reasons, we cannot
simply send raw data to other clients. This is where dataset
distillation comes into play. Dataset distillation reduces the
train dataset to a much smaller synthetic dataset such that
a model trained on it has similar performance to a model
trained on the whole, real data. By sharing distilled data
instead of model weights directly, we address both the
communication cost and data privacy concerns inherent in
federated learning. Indeed, sharing way less data opens the
door to encrypted computation and secure communication
between clients.

In this work, we examine the efficiency of sharing dis-
tilled data within the context of Federated Learning. To

accomplish this, we first examine the local performance of
a distillation technique proposed by Cazenavette et al. [1].
Then, we compare the performance of a global model trained
on the distilled datasets generated by each client to a model
collaboratively trained via a classical federated averaging
approach.

II. BACKGROUND AND RELATED WORK

Federated Learning. Federated Learning was first intro-
duced by McMabhan et al. [3]], where models can be learned
collaboratively from decentralized data through model ex-
change between clients and a central server. The proposed
federated learning scheme FedAvg [3|] updates the global
model by averaging the parameters of the received models.
In comparison to distributed learning, federated learning
addresses more practical challenges such as communication
efficiency [4], data heterogeneity [5] and privacy protec-
tion [|6].

In a federated learning scenario, each client k trains a
machine learning models with weights wy, on a local datasets
Dy = {(z;)]i = 1,2, ...,ny}, where z; refers to a data point
with its associated label y;. The number of local data points
ng can be different across clients and the distribution can
also be Non-IID. The goal of client k is to locally train a
machine learning model in order to minimize

Fi(w) = %Zﬂ(w) (1)
i=1

n

where f;(w) is the loss function on one data point x; with
corresponding label y;. The final goal is to minimize the
aggregated local goals Fj(w) that were computed in (I)):

flw) = ;Fk(w))

k=

—

Most federated learning techniques exchange the weights of
the model or gradients for learning updates. This may cause
an increase in communication cost as model size increases.
This bottleneck can make it difficult for clients to frequently
upload the newly trained models or the gradients to the
server.

Dataset Distillation. Dataset distillation was first intro-
duced by Wang et al. [7]. The authors expressed the pa-
rameters of the model as a function of the images to be
distilled and optimized them using gradient-based hyper-
parameter optimization [8]]. The goal of the method is to
extract knowledge from the complete dataset and to derive
a much smaller synthetic dataset such that a model trained
on it can have comparable performance with a model trained
on the real dataset. Figure [2] illustrates data distillation.

Full training dataset (size = 50k)

ZEd e

he |1 PRl
E%%%; Dataset
!.’ki’! ﬂ/ﬁ Distillation

Distilled dataset (size = 10)
\ MR

ra I
Py o gane

Train

Similar Test Performance

Figure 2. Dataset distillation aims to generate a small synthetic dataset
for which a model trained on it can achieve a similar test performance as a
model trained on whole, complete train set. Figure and caption taken from
Cazenavette et al. [1]]

There are multiple approaches to data distillation. Out-

standing results have been achieved by methods based on
matching outputs or gradients [1|], [9], [10]. Nguyen et
al. [[11] perform Kernel Inducing Points (KIP) and Label
Solve (LS) to find the optimal synthetic dataset. We refer
the reader to the work of Yu et. al [12] for more detailed
descriptions of the different dataset distillation methods that
are in use.
Dataset Distillation in Federated Learning. Some pre-
vious works in dataset distillation, such as Zhao et al. [9],
have mentioned the potential benefit of dataset distillation
in a federated setting. However, they did not pursue a
detailed analysis on the matter. In recent research, Song
et al. [13]] claim to be the first to introduce a decen-
tralized dataset distillation scheme in a federated learning
systems, where distilled data instead of models are uploaded
to the server”. They considered distillation methods that
are coreset-based [14] and KIP-based [11]. Their method
enhances more robust training performance on Non-IID data
and significantly reduces communication costs.

III. METHOD

To explore the effectiveness of dataset distillation in a
federated scenario, we make use of DecentralizePy [15] to
set up a joint learning task with k participating clients, to
whom we refer to as nodes.

Every node owns a local dataset Dy, of size nj and distills
it in into a much smaller dataset S, of size my, referred
to as the local synthetic dataset. The end goal of the local
distillation process is to ensure that a model trained on
Sk matches the performance of a model trained using the
complete local dataset Dy.

First, we discuss in section [[II=A] the local data distillation
method employed at the node level. Then, in section [[TI-B]

we detail the data aggregation and training procedure done
by the server.

A. Dataset Distillation by Matching Training Trajectories

We use the dataset distillation by matching training tra-
jectories presented in Cazenavette et al. [[1]. This technique
produces outstanding synthetic datasets and significantly
outperforms modern techniques such as KIP and LS. As
described by the authors, this method explicitly encourages
the distilled dataset to induce similar long-range network
parameter trajectories as the real dataset, resulting in a
synthetically-trained network that performs similarly to a
network trained on real data. The distillation method can
be boiled down into two separate parts. The first one is re-
sponsible for generating expert trajectories and is presented
in section The second part consists of the actual
dataset distillation phase of the algorithm. Cazenavette el
al. 1] refer to it as the long-range parameter matching phase
and it is discussed in section Algorithm [T] illustrates
the complete local distillation process.

1) Expert Trajectories: As described in Cazenavette et
al. [1]], the core of the method involves using expert trajec-
tories T* to guide the distillation of the synthetic dataset.
Expert trajectories represent the temporal progression of
parameters {0 }I" stored during the training of a neural
network using the complete, real local dataset. To generate
these expert trajectories, a straightforward approach is used:
a large number of networks are trained on the real dataset
and the parameters after every training epoch are saved.
The resulting sequences of parameters are named “expert
trajectories” due to the fact that they represent a theoretical
upper bound for the network trained on the synthetic data.
The latter is defined as the student network, whose snapshot
parameters 0, at training step ¢ are referred to as student
parameters. During the distillation process, the goal is to
shape the synthetic dataset in such a way that it will induce
a similar trajectory to the parameters of the student network
as the one taken by the expert parameters, given that the
student network is initialized with the same parameters as
the expert at a particular epoch. Notice that generating these
expert trajectories is a complete orthogonal task to the actual
data distillation. The trajectories can hence be pre-computed
before the actual distillation phase.

2) Long-Range Parameter Matching: After generating
the expert trajectories {0;}Z, we now present how the
distillation process learns from the sequences of parameters.

At each distillation step, the student parameters 6, are
initialized to a random timestep 0; of one of the previously
generated expert trajectories. As the parameters of the expert
models more change that much in the late stages of training,
an upper bound 7" on ¢ is defined. This lets us ignore
the less informative later parts of the expert trajectories.
With the student network initialized, the parameters of the
student network get updated for N gradient descent steps

with respect to the classification loss of the synthetic data:
ét+n+1 = ét+n — a VI(A(Sk; ét+n), 3)

where A denotes some differentiable augmentation tech-
nique [9], and «y is the (trainable) learning rate of the
student network of each node. These same differentiable
augmentation techniques are also used in order to augment
the data while generating the expert trajectories. We put
emphasis on the fact that the augmentation techniques need
to be differentiable as this ensures the ability to back-
propagate gradients up until the input that gets distilled.
There are numerous examples of such differentiable aug-
mentation techniques for images: random cropping, random
rotating, adding Gaussian noise, etc. From this point, the
(previously generated) expert parameters 67, ,, are retrieved.
They are the parameters of the expert model M training
updates after the ones used to initialize the student network.
Finally, the distilled images are updated according to the
weight matching loss which is defined as the normalized
squared Lo error between the updated student parameters
é;" v and the known future expert parameters 6},

. ||9t+N - 9?+M||§

167 = 07y 113
Normalization is done by the distance traveled by the expert,
such that there will still be a strong signal when taking
expert parameters from later stages of training which tend
to be closer to one another. This loss function is then
minimized and the pixels of the distilled dataset, along with
the trainable learning, get updated by back-propagating the
gradient through all IV updates that were done on the student
network.

Algorithm 1 Dataset Distillation via Trajectory Matching

Input: {7;"}: set of expert parameter trajectories trained on Dy
Input: M: # of updates between starting and target expert params.
Input: N: # of updates to student network per distillation step
Input: A: Differentiable augmentation function
Input: 7+ < T: Maximum start epoch

1: Initialize distilled data S ~ Dy

2: Initialize trainable learning rate oy, = v,

3: for each distillation step... do

4 > Sample expert trajectory with a lot of params
5: > Choose random start epoch

6: > Initialize student network with expert params:
7: 0:=0;

8: forn=0— N —1do

9: > Sample a mini-batch of distilled images:
10: bt+n ~ Sk

11: > Update student network w.r.t. classification loss:
12: 9t+n+1 = 0t+n - Oéle(.A(bt+n, 6t+n))
13: end for

14: > Compute loss between ending student:

15: L= 0ern — 0 ll3/110F — 074 arl3

16: > Update Sy and ax with respect to £

17: end for

Output: distilled data Sx and learning rate oy

Dsyn
[teration 1

Train on real data
lteration t

Figure 3.

Network Optimization Trajectory

% Train on real data (expert)
Train on distilled data

[teration N <« M

Constraint: Similar weights
) ! Loss(Ds,) := Distance(d; , n,0;, 11)

lteration t+M

Ilustration of long-range parameter matching between training on real data and training on distilled data as done by Cazenavette et al. [1].

Given the same starting parameters sampled from one expert trajectory, the distilled data Dsyy is trained such that N on it matches the same result (in
parameter space) from much more M steps on the real data. Figure and caption are taken from [1]].

B. Data aggregation and global model training

In federated learning, the goal is to learn a collaboratively
learn a global model. We adapt the setting such that data
instead of model weights are shared.

Each node % sends the synthetic dataset S that it gener-
ated from its own local dataset D;, to the central server. This
central server will simply combine and stack the distilled
datasets into one single dataset S = S; U Sy--+ U Sy
The resulting synthetic dataset is then used to train a global
model from scratch.

Notice that the nodes do not send the learned learning rate
oy, to the server. Instead, the server independently conducts
a hyper-parameter search to identify the optimal learning
rate and optimizer for the global model.

IV. EXPERIMENTS

In section [IV-Al we focus on the performance of the
distillation technique presented by Cazenavette et al. [1]] in
a decentralized setting. Then, in section we study the
efficiency of the global network trained on the aggregated
distilled datasets that were generated by every single node.
Experimental Settings. Our experiments are conducted
using the DecentralizePy framework. We consider a setting
of 1 server and 10 participating nodes where each node
initially receives an equal share (i.e. 10% of the trainset) of
the complete original train data. The local datasets are split
into a train set and a validation set. By setting the number
of shards, one can decide on the the number of classes that
are sent to every node. The partitioning of the data is done
using the already implemented KShardPartitioner, which
splits the data on each node in an IID-way. Consequently,
every node will roughly have the same number of data points
for each class it received for the training and the validation
set. The testset of the complete dataset is kept on the server
and serves the later purpose of evaluating the global model
trained on the aggregated distilled datasets of each node. As
no communication is needed between the different nodes

during distillation, the structure of the graph connecting the
nodes is not important. What simply matters is that every
node has a direct communication channel with the central
server. Each node will use this connection to keep the server
updated about its distillation progress and to send the final
best performing set of distilled images it generated.

We evaluate our method on CIFAR-10 [16].

A. Efficiency of Data Distillation on Single Nodes

On every node, we want to employ the distillation tech-
nique described in Algorithm [I] to generate the distilled
images. However, Cazenavette et al. 1] do not mention any
evaluation of their technique on subsets of CIFAR-10. It is
thus crucial to ensure that each node is able to properly
distill the local dataset it has been given.

If not mentioned otherwise, the hyper-parameters used for
each setting are the same as Cazenavette et al. [If] used
to distill the whole, complete CIFAR-10 trainset (available
here. We also use the same differentiable augmentations
as proposed by Cazenavette et al. [1]. We do not employ
ZCA-whitening. For each setting, we pre-compute 30 expert
trajectories.

Baseline. As a reminder, the distillation task of each node &
is to generate a distilled data set S; from a much larger data
set Dy. As presented in Algorithm [I] the distilled images
are initially sampled from D;. We refer to this small subset
of images as the base images B; of node k. To assess the
efficiency of the distillation technique on each node k, we
train randomly initialized neural networks from scratch on
the distilled data S; and on the corresponding base images
Bi. We then evaluate the performance of the trained models
on the validation set of each node.

Network architecture. We consistently employ a sim-
ple ConvNet architecture designed by Gidaris and Ko-
modakis [17]]. The architecture consists of several convolu-
tional blocks, each made out of a 3 x 3 convolution layer with
128 filters, Instance normalization [18] , RELU, and 2 x 2

https://github.com/GeorgeCazenavette/mtt-distillation

average pooling with a stride of 2. After the convolutional
blocks, the logits are produced by one single linear layer.

1) Distillation for Different Shards: We focus on the per-
formance of the distillation technique for different numbers
of shards. We vary the number of shards between 2, 5
and 10. Using this approach, we can assess the method’s
robustness to data heterogeneity. For each selected number
of shards, we decide on a number of images per class that
every node distills. As an example, given a setup where
the dataset is partitioned with 2 shards and the number of
images per class equals 10, each node distills 20 images. The
number of images per class that each node distills is either
1 or 10 (except for 10 shards, where we only set it to 1).
These numbers are chosen such that that the final distilled
dataset is always much smaller than the original, complete
local dataset. In the most extreme scenario (10 images per
class and 5 shards), the distilled dataset size is still only 1%
the size of the original, complete local dataset.

In every setting, we run the distillation for 2000 iterations
(with our computational resources, this is the best possible).
Every 200 iterations, we compute the mean accuracy of three
randomly initialized neural network trained from scratch on
the distilled images. The final synthetic dataset consists of
the images that led to the best performance during this
evaluation phase. We present and discuss the computed
results for each setting.

To save time and resources, for a fixed number of shards
and varying number of images per class, we distill on the
same sets of expert trajectory.

2 Shards. The distilled images generated by the nodes
significantly outperform the baseline. The update parameter
of the learnable learning rate is set to le — 7.

For 1 image per class, the mean improvement on the re-
spective validation accuracy is of 16.49%. When 10 images
per class are distilled, it slightly reduces to 13.29%.

In Figure [we plot the results of the distillation process
on the node with rank 3. On this node, we notice that
training on 2 distilled images outperforms training on 10
non-distilled images. This phenomenon is not unique and is
in fact observed on a total of 7 nodes.

We notice that the validation accuracy increases for all
except one node when increasing the number of distilled
images per class. Interestingly, for the node of rank 4, there
is a drop of 2.5% in validation accuracy when training on 10
times the amount of synthetic data. This unexpected result
is discussed in section [V} Excluding this particular node, the
mean improvement equals 11.75%. When including the ill-
behaving node, the mean improvement decreases to 10.31%.
5 Shards. On each node, we notice that distilled images
always lead to significantly better performance than their
non-distilled counterparts. Hence, the distillation technique
is working efficiently. The update parameter of the learnable
learning rate is set to le — 6.

When 1 image per class is distilled, we observe a mean

2 Shards: Evaluation of distillation technique on node with rank 3
L]

BN Base
mmm Distilled

o o o
» o o

Validation accuracy

o
~

0.0+

Images per class

Figure 4. Effectiveness of the distillation technique with 2 shards on node
of rank 3. For 1 image per class, the validation accuracy improves from
69.80% to 77.43%. For 10 images per class, we notice an increase from
75.03% to 91.40%. It is remarkable that 2 distilled images outperform 20
non-distilled images by 2.40%. Standard errors are computed by training 3
neural networks from scratch for every setting.

increase of 21.6% in validation accuracy with respect to the
performance on the 5 base images. We also notice a mean
increase of 20.38% when 10 images per class are distilled.
Figure [5] showcases the results of the distillation process
on the node with rank 0. Similarly to what we previously
noticed for 2 shards, we see that 5 distilled images slightly
outperform 50 non-distilled images. This remarkable phe-
nomenon actually happens on all except one node.

5 Shards: Evaluation of distillation techniqgue on node with rank 0
0

BN Base
B Distilled

o
@

o
o

Validation accuracy
o
>

o
¥

0.0

Images per class

Figure 5. Effectiveness of the distillation technique with 5 shards on node
of rank 0. For every setting, 3 neural networks are trained from scratch.
For 1 image per class, the validation accuracy improves from 22.13% to
49.53%. For 10 images per class, we notice an increase from 49.00% to
70.03%. We also notice that 5 distilled images slightly outperform 50 base
images, namely by 0.53%. Standard errors are computed by training 3
neural networks from scratch for every setting.

When increasing the number of distilled images per class

from 1 to 10, we notice a mean increase in performance of
15.12%.
10 Shards. The mean improvement on the nodes’ respective
validation accuracy is of 16.40% and the distilled images
generated by the nodes always significantly outperform the
baseline. The update parameter of the learnable learning rate
is set to le — 6.

Table T

THE PREDICTION ACCURACY COMPARSON BETWEEN OUR FL SCHEME BASED ON DATASET DISTILLATION
AND FEDAVG ON CIFAR-10 DISTRIBUTED IN 10 NODES

Shards 1 IPC Base 1 IPC Distilled 10 IPC Base 10 IPC Distilled FedAvg
2 16.54 £ 0.21% 28.43 £ 0.32% 40.06 £ 0.27 % | 44.57 £ 0.38% 56.62 £+ 0.42%
5 21.57 £ 0.14% | 40.95 £ 0.25% 45.60 £ 0.33 % | 53.43+=0.19 % 66.26 £+ 0.49%
10 31.36 £ 026 % | 37.61 £ 0.16 % - - 69.08 £+ 0.38%

We run FedAvg 3 times for 20 iterations and the number of rounds is set to 2. For the other settings, we train
three randomly initialized models from scratch on the aggregated datasets.

In Figure [6] we present the evaluation of the distillation
distilled images for node with rank 9.

o 10 Shards: Evaluation of distillation technique on node with rank 9

N Base
Distilled

o e o
S o @

Validation accuracy

o
[N

1
Images per class

Figure 6. Effectiveness of the distillation technique with 10 shards on
node of rank 9. The validation accuracy improves from 16.07% to 34.63%
when distilling 1 image per class. Standard errors are computed by training
3 neural networks from scratch for every setting.

Resources and Training Time. We use Google Colab [19]
which is a cloud-based Jupyter notebook [20] environment.
It offers free but not unlimited access to GPUs to users with
a Google account. We sequentially distill the local dataset of
every node for every setting presented in section The
computations are done with a Tesla T4. The local training
time for every setting is reported in table [[I}

Table 11
LOCAL TRAINING TIME OF THE DISTILLATION METHOD

Shards IPC | 2k Iterations (in min.)
2 2
> 110 ég
10 110 2_5

B. Evaluation on Aggregated Distilled Datasets

We explore the performance of one global model trained
on the aggregated distilled datasets such as explained
in [III-B| This model has exactly the same architecture as

described in section The data augmentation technique
is identical to the one used on the nodes.

In Algorithm[] the learning rate vy, of the student network
is optimized along the distillation process to capture the
full potential of the network. Finding the optimal hyper-
parameters is thus an extremely important task to assess
the performance of the aggregated distillated images. To
ease this hyper-parameter search, we use the open source
framework Optuna [21]. Optuna is a python library that
enables automatic fine-tuning of neural networks. In addition
to the learning rate, we also decide to determine the best
possible optimizer between SGD [22] and Adam [23].

We compare the performance of our method to a model
trained on the base images of the distilled data and to
FedAvg. The results of the best performing models are
summarized in Table [V-ATl

Looking at Table [[V-A1] we observe that across all the
settings we considered, a model trained on the aggregated
distilled dataset consistently outperforms a model trained on
the aggregated base dataset.

Furthermore, the local effect we observed in section
where one single distilled image outperformed 10 base im-
ages, disappears when aggregating the datasets. Additionally,
we notice that the setting with 5 shards outperforms the
setting with 10 shards when distilling 1 image per class. We
have two possible interpretations for this disparity. First, it
could be attributed to a trade-off between the number of data
samples used for distillation and the number of classes on a
node. Indeed, the distilled images in the setting of 5 shards
are a condensation of a larger number of samples per class
than in the setting of 10 shards. One other interpretation
is discussed in section [V] and concerns the detection of ill-
behaving nodes during training. In all cases, based on the
results, our method seems to be robust to data heterogeneity
among nodes, which aligns with the findings of [[13].

Lastly, it is worth to mention that the results we obtain are
still far off a more traditional federated learning technique
such as FedAvg. However, FedAvg comes with a high
cost of communication between the nodes, which for some
distributed settings might become a serious bottleneck. In
contrast, our method comes with a great advantage as it
strongly reduces the communication cost between the clients

Train loss (top row) and node validation accuracy (bottom row) in every setting for all nodes

2 shards and 1 ipc 2 shards and 10 ipc

=
)

5 shards and 1 ipc

5 shards and 10 ipc 10 shards and 1 ipc

TR

o
o

| \?L\%wi» '5“'1'3‘:‘5".?% "

Averaged Train Loss

0.6 Py 0.6 1 0.6 1 0.6
0.4 4 0.4 0.4 4 0.4 4
0.2 021+ ; . ‘ A ezl 021~

1.0 1.0 7
e - L

2 shards and 1 ipc 2 shards and 10 ipc

5 shards and 1 ipc

oD

01 /ﬁ"‘/:’ 0s |
0\ . 0.8, Romne 0.4+
0.6 4

K
A

;
:

o
o

o
n

0.7 {

0.6

0.5 1

0.4 4

Local Validation Accuracy

iterations iterations

—— Node 0 Node1 —— Node 2

|
T T T T T T T T T T T T
o 500 1000 1500 2000 o 500 1000 1500 2000 0 500

—— Node 3

0.1

T T T T T T T T T T T T
1000 1500 2000 o 500 1000 1500 2000) 500 1000 1500 2000
iterations

iterations iterations

—— Node4 —— Node5 Node 6§ —— Node 7 Node 8 —— Node 9

Figure 7. Training phase of data distillation. In the first row, we plot the averaged train loss for every setting across all nodes. The train loss is averaged
using a sliding window of 30 epochs to reduce noise due to the randomly sampled starting epochs for the expert trajectories. In the second row, we plot
the evolution of the validation accuracy on the respective validation sets during the training process for every setting.

and the nodes. In fact, communication is done in one single
shot. On the other hand, the drawback of our method is that
it comes with a very high computation cost, which may pose
challenges considering the typically limited computation
abilities of distributed devices.

V. DISCUSSION AND LIMITATIONS

In section [[V-A] we evaluate the local performance of
the distillation technique of Cazenavette et al. on each
node. In all studied configurations, the approach significantly
outperforms the baseline method that we consider. While the
obtained results are promising, we want to acknowledge one
limitation of the distillation process.

As can be seen in Algorithm [T} the distillation technique
employed in this study relies on several initialization pa-
rameters. In their work, Cazenavette et al. conducted an
ablation study to determine the optimal parameters on the
complete CIFAR-10 dataset. However, due to computational
constraints and limited resources, we were unable to perform
a similar study on subsets of CIFAR-10. Instead, we re-used
the initialization parameters determined by the authors and
only made slight adjustments to them. This approach does
not seem optimal as we detected instances of ill-training on
certain nodes.

Figure [7] illustrates two key metrics for each setting
and node: the averagecﬂ training loss (top) and validation
accuracy (bottom) across iterations. These metrics serve as
indicators of proper training during the distillation process.
For instance, let us consider the setting with 2 shards and 10
images per class. In this case, we clearly observe evidence
of ill training in 5 out of the 10 participating nodes. For
these nodes, the train loss does not properly decrease and

ITrain loss averaged using a sliding window of 30 epochs to reduce noise
due to different starting epochs for expert trajectories.

the validation accuracy does not increase. We also notice
similar instances of ill training, although to a lesser extent,
in the settings with 2 shards and 1 image per class, as well
as for 5 shards and 10 images per class.

Resolving the observed ill training behavior is challenging
since, in all the examined setting, at least half of the
participating nodes do not exhibit such issues. It remains
to be explored whether it is possible to identify a set of
hyper-parameters specific to each setting that would ensure
proper training across all nodes. Alternatively, it might also
be that an individual ablation study needs to be conducted for
every subset of the dataset. In this case, the method would
induce even more computational costs. Another possible
explanation to this behaviour is simply that some base
images are better suited for the distillation process. However,
this explanation seems in contradiction with the setting with
5 shards and 1 image per class, for which the training
behaviour is consistent across all nodes.

This limitation does not seem to have a direct negative
impact the results we compute in table Indeed, the
distillation process in the settings with 2 shards and 10
images per class, for which local training seems to be the
most ill, does not yield worse results than other settings.
Still, we believe that our method has not reached its full
potential and that the results we computed can be further
improved.

VI. CONCLUSION

In this work, we conducted an evaluation of a Feder-
ated Learning setting where distilled data instead of model
weights are shared. We considered different data distribu-
tions among the nodes and different numbers of distilled
images per class. First, we assessed the local performance of
the distillation technique of Cazenavette et. al [1]]. Then, we

trained a global model on the aggregated distilled datasets
and evaluated its performance. While the outcomes obtained
from our method show promise, they still fall short of
competing with conventional FL techniques such as FedAvg.
During the distillation process, we encountered instances
of ill training behaviour which we think that if properly
addressed, have the potential to improve the results we
computed. The main advantage of our technique is that
it provides a significant reduction in communication costs
between nodes and servers. This opens up doors in term of
data privacy, and distilled data exchange using encrypted
channels can be considered. Further work is required to
address the observed training issues and to evaluate the
efficiency of the method across even more different data
distributions. Moreover, it is necessary to compare the
efficiency of our method against other existing distillation
techniques.

ACKNOWLEDGEMENTS

I would like to thank Akash Dhasade and Rafael Pires for
their continuous supervision throughout this project. Their
expertise was of immense help to me and I am grateful for
the time they have given me.

REFERENCES

[1] G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J.-Y.
Zhu, “Dataset distillation by matching training trajectories,”’
2022.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” 2023.

[3] H. B. McMahan, E. Moore, D. Ramage, and B. A.
y Arcas, “Federated learning of deep networks using model
averaging,” CoRR, vol. abs/1602.05629, 2016. [Online].
Available: http://arxiv.org/abs/1602.05629

[4] R. Pathak and M. J. Wainwright, “Fedsplit: An algorithmic
framework for fast federated optimization,” 2020.

[5] S.P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, “Scaffold: Stochastic controlled averaging
for federated learning,” 2021.

[6] A. Reisizadeh, F. Farnia, R. Pedarsani, and A. Jadbabaie,
“Robust federated learning: The case of affine distribution
shifts,” 2020.

[7] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros, “Dataset
distillation,” 2020.

[8] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based
hyperparameter optimization through reversible learning,”
in Proceedings of the 32nd International Conference on
Machine Learning, ser. Proceedings of Machine Learning
Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France:
PMLR, 07-09 Jul 2015, pp. 2113-2122. [Online]. Available:
https://proceedings.mlr.press/v37/maclaurinl5.html

91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

B. Zhao, K. R. Mopuri, and H. Bilen, “Dataset condensation
with gradient matching,” 2021.

K. Wang, B. Zhao, X. Peng, Z. Zhu, S. Yang, S. Wang,
G. Huang, H. Bilen, X. Wang, and Y. You, “Cafe: Learning
to condense dataset by aligning features,” 2022.

T. Nguyen, R. Novak, L. Xiao, and J. Lee, “Dataset distilla-
tion with infinitely wide convolutional networks,” 2022.

R. Yu, S. Liu, and X. Wang, “Dataset distillation: A compre-
hensive review,” 2023.

R. Song, D. Liu, D. Z. Chen, A. Festag, C. Trinitis, M. Schulz,
and A. Knoll, “Federated learning via decentralized dataset
distillation in resource-constrained edge environments,” 2023.

T. Nguyen, Z. Chen, and J. Lee, “Dataset meta-learning from
kernel ridge-regression,” 2021.

A. Dhasade, A.-M. Kermarrec, R. Pires, R. Sharma, and
M. Vujasinovic, “Decentralized learning made easy with
DecentralizePy,” in Proceedings of the 3rd Workshop on
Machine Learning and Systems. ACM, may 2023. [Online].
Available: https://doi.org/10.11452F3578356.3592587

A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” University of Toronto, Toronto,
Ontario, Tech. Rep. 0, 2009.

S. Gidaris and N. Komodakis, “Dynamic few-shot visual
learning without forgetting,” CoRR, vol. abs/1804.09458,
2018. [Online]. Available: http://arxiv.org/abs/1804.09458

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normal-
ization: The missing ingredient for fast stylization,” 2017.

“Colaboratory,” |https://research.google.com/colaboratory/faq.
html. Verified: 2022-03-24.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay,
P. Ivanov, D. Avila, S. Abdalla, and C. Willing, “Jupyter
notebooks — a publishing format for reproducible compu-
tational workflows,” in Positioning and Power in Academic
Publishing: Players, Agents and Agendas, F. Loizides and
B. Schmidt, Eds. 10OS Press, 2016, pp. 87 — 90.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Op-
tuna: A next-generation hyperparameter optimization frame-
work,” 2019.

S. Ruder, “An overview of gradient descent optimization
algorithms,” arXiv preprint arXiv:1609.04747, 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017.

http://arxiv.org/abs/1602.05629
https://proceedings.mlr.press/v37/maclaurin15.html
https://doi.org/10.11452F3578356.3592587
http://arxiv.org/abs/1804.09458
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html

	Introduction
	Background and Related Work
	Method
	Dataset Distillation by Matching Training Trajectories
	Expert Trajectories
	Long-Range Parameter Matching

	Data aggregation and global model training

	Experiments
	Efficiency of Data Distillation on Single Nodes
	Distillation for Different Shards

	Evaluation on Aggregated Distilled Datasets

	Discussion and Limitations
	Conclusion
	References

