#! /usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2015, EPFL Reconfigurable Robotics Laboratory, # Philip Moseley, philip.moseley@gmail.com # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np #-------------------------------------------------------------------------------- # Material model name. #-------------------------------------------------------------------------------- def name(): return 'vdw' def pname(): return 'Van der Waals' def params(): return 'mu lambda_m alpha beta' def descr(): return 'Van der Waals Model.' #-------------------------------------------------------------------------------- # Function defining the uniaxial stress given strain. #-------------------------------------------------------------------------------- def stressU(x, u, Lm, a, B): L = 1.0+x I1 = np.power(L,2.0) + 2.0*np.power(L,-1.0) I2 = np.power(L,-2.0) + 2.0*L I = (1.0-B)*I1 + B*I2 n = np.sqrt((I-3.0)/(np.power(Lm,2.0)-3.0)) t1 = (1.0/(1.0-n)) - a * np.sqrt(0.5*(I-3.0)) t2 = L*(1.0-B) + B return u*(1.0-np.power(L,-3.0)) * t1 * t2 #-------------------------------------------------------------------------------- # Function defining the biaxial stress given strain. #-------------------------------------------------------------------------------- def stressB(x, u, Lm, a, B): L = 1.0+x I1 = 2.0*np.power(L,2.0) + np.power(L,-4.0) I2 = 2.0*np.power(L,-2.0) + np.power(L,4.0) I = (1.0-B)*I1 + B*I2 n = np.sqrt((I-3.0)/(np.power(Lm,2.0)-3.0)) t1 = (1.0/(1.0-n)) - a * np.sqrt(0.5*(I-3.0)) t2 = 1.0 - B + B*np.power(L,2.0) return u*(L-np.power(L,-5.0)) * t1 * t2 #-------------------------------------------------------------------------------- # Function defining the planar stress given strain. #-------------------------------------------------------------------------------- def stressP(x, u, Lm, a, B): L = 1.0+x I1 = np.power(L,2.0)+np.power(L,-2.0) + 1.0 I2 = I1 I = (1.0-B)*I1 + B*I2 n = np.sqrt((I-3.0)/(np.power(Lm,2.0)-3.0)) t1 = (1.0/(1.0-n)) - a * np.sqrt(0.5*(I-3.0)) return u*(L-np.power(L,-3.0)) * t1 #-------------------------------------------------------------------------------- # Calculate the Ds #-------------------------------------------------------------------------------- def compressibility(v, u, Lm, a, B): u0 = u D1 = 3.0*(1.0-2.0*v) / (u0*(1.0+v)) return [D1]