#! /usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2015, EPFL Reconfigurable Robotics Laboratory, # Philip Moseley, philip.moseley@gmail.com # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np #-------------------------------------------------------------------------------- # Material model name. #-------------------------------------------------------------------------------- def name(): return 'ogden3' def pname(): return 'Ogden-3' def params(): return 'u1 a1 u2 a2 u3 a3' def descr(): return 'Ogden Model with order 3 (modified form).' # NOTE - this is the Abaqus form of the functions. Ogden2004 is similar, but they # show these functions as being multiplied by (a[i]/2.0) #-------------------------------------------------------------------------------- # Function defining the uniaxial stress given strain. #-------------------------------------------------------------------------------- def stressU(x, u1, a1, u2, a2, u3, a3): L = 1.0+x S1 = 2.0 * u1 * (np.power(L,a1-1.0) - np.power(L,-0.5*a1-1.0)) / a1 S2 = 2.0 * u2 * (np.power(L,a2-1.0) - np.power(L,-0.5*a2-1.0)) / a2 S3 = 2.0 * u3 * (np.power(L,a3-1.0) - np.power(L,-0.5*a3-1.0)) / a3 return S1+S2+S3 #-------------------------------------------------------------------------------- # Function defining the biaxial stress given strain. #-------------------------------------------------------------------------------- def stressB(x, u1, a1, u2, a2, u3, a3): L = 1.0+x S1 = 2.0 * u1 * (np.power(L,a1-1.0) - np.power(L,-2.0*a1-1.0)) / a1 S2 = 2.0 * u2 * (np.power(L,a2-1.0) - np.power(L,-2.0*a2-1.0)) / a2 S3 = 2.0 * u3 * (np.power(L,a3-1.0) - np.power(L,-2.0*a3-1.0)) / a3 return S1+S2+S3 #-------------------------------------------------------------------------------- # Function defining the planar stress given strain. #-------------------------------------------------------------------------------- def stressP(x, u1, a1, u2, a2, u3, a3): L = 1.0+x S1 = 2.0 * u1 * (np.power(L,a1-1.0) - np.power(L,-a1-1.0)) / a1 S2 = 2.0 * u2 * (np.power(L,a2-1.0) - np.power(L,-a2-1.0)) / a2 S3 = 2.0 * u3 * (np.power(L,a3-1.0) - np.power(L,-a3-1.0)) / a3 return S1+S2+S3 #-------------------------------------------------------------------------------- # Calculate the Ds #-------------------------------------------------------------------------------- def compressibility(v, u1, a1, u2, a2, u3, a3): # This sum is what's in the ABQ manual (and what ABQ calculates with the data). # We get an error message which implies that u1 is what ABQ actually expects. # I believe the error message to be incorrect; setting u0=u1 typically results # in a much less compressible material, even though the error goes away. # u0 = u1 u0 = u1+u2+u3 D1 = 3.0*(1.0-2.0*v) / (u0*(1.0+v)) return [D1,0.0,0.0]