#! /usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2015, EPFL Reconfigurable Robotics Laboratory, # Philip Moseley, philip.moseley@gmail.com # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np #-------------------------------------------------------------------------------- # Material model name. #-------------------------------------------------------------------------------- def name(): return 'ab' def pname(): return 'Arruda-Boyce' def params(): return 'mu lambda_m' def descr(): return 'Arruda-Boyce Model.' #-------------------------------------------------------------------------------- # Function defining the uniaxial stress given strain. #-------------------------------------------------------------------------------- def stressU(x, u, Lm): L = 1.0+x I1 = np.power(L,2.0) + 2.0*np.power(L,-1.0) C = [0.5, 0.05, 11.0/1050.0, 19.0/7000.0, 519.0/673750.0] s = C[0] / Lm s += I1 * 2.0*C[1] / np.power(Lm,2.0) s += np.power(I1,2) * 3.0*C[2] / np.power(Lm,4.0) s += np.power(I1,3) * 4.0*C[3] / np.power(Lm,6.0) s += np.power(I1,4) * 5.0*C[4] / np.power(Lm,8.0) return 2.0*u*(L-np.power(L,-2.0)) * s #-------------------------------------------------------------------------------- # Function defining the biaxial stress given strain. #-------------------------------------------------------------------------------- def stressB(x, u, Lm): L = 1.0+x I1 = 2.0*np.power(L,2.0) + np.power(L,-4.0) C = [0.5, 0.05, 11.0/1050.0, 19.0/7000.0, 519.0/673750.0] s = C[0] / Lm s += I1 * 2.0*C[1] / np.power(Lm,2.0) s += np.power(I1,2) * 3.0*C[2] / np.power(Lm,4.0) s += np.power(I1,3) * 4.0*C[3] / np.power(Lm,6.0) s += np.power(I1,4) * 5.0*C[4] / np.power(Lm,8.0) return 2.0*u*(L-np.power(L,-5.0)) * s #-------------------------------------------------------------------------------- # Function defining the planar stress given strain. #-------------------------------------------------------------------------------- def stressP(x, u, Lm): L = 1.0+x I1 = np.power(L,2.0)+np.power(L,-2.0) + 1.0 C = [0.5, 0.05, 11.0/1050.0, 19.0/7000.0, 519.0/673750.0] s = C[0] / Lm s += I1 * 2.0*C[1] / np.power(Lm,2.0) s += np.power(I1,2) * 3.0*C[2] / np.power(Lm,4.0) s += np.power(I1,3) * 4.0*C[3] / np.power(Lm,6.0) s += np.power(I1,4) * 5.0*C[4] / np.power(Lm,8.0) return 2.0*u*(L-np.power(L,-3.0)) * s #-------------------------------------------------------------------------------- # Calculate the Ds #-------------------------------------------------------------------------------- def compressibility(v, u, Lm): u0 = u * (1.0 + 3.0/(5.0*Lm**2) + 99.0/(175.0*Lm**4) + 513.0/(875.0*Lm**6) + 42039.0/(67375.0*Lm**8)) D1 = 3.0*(1.0-2.0*v) / (u0*(1.0+v)) return [D1]