Large Scale & Distributed Optimization

Angelia Nedić,

January 14, 2022

 ${\tt contact:}\ \ Angelia. Nedich@asu.edu;\ \ angelianedich@gmail.com$

Lecture 1:

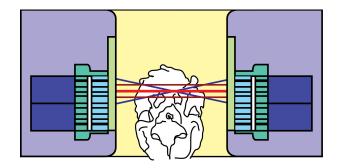
Introduction and Convex Optimization Basics

Large Scale Optimization Problems: Sources

- ► Automatic Control Systems:
 - Energy Systems
 - Envisioned Smart Grids and Smart Cities
- ▶ Signal and Image Processing (Image Reconstruction, Pattern Recognition)
- ▶ Bio-science (DNA Sequencing, Protein Sequencing)
- ▶ Data Science (Learning from Data)

Image Reconstruction Example

Image Reconstruction in PET-scan [Ben-Tal, 2005]



▶ Maximum Likelihood Model results in convex optimization

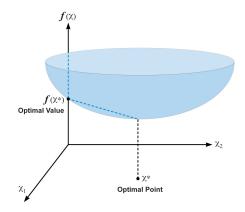
$$\min_{x \ge 0, \ e'x \le 1} \left\{ -\sum_{i=1}^m y_i \ln \left(\sum_{j=1}^n p_{ij} x_j \right) \right\}$$

- $x = (x_1, \ldots, x_n)$ is a decision vector
- $y = (y_1, \dots, y_m)$ models measured data (by PET detectors; parameter)
- p_{ij} probabilities modeling detections of emitted positrons (problem parameters)
- Depending on the number of pixels in the image, the size of n, m can be in the order of hundreds of thousands.

Least-Squares

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2$$

where $\|\cdot\|$ is the Euclidean norm, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.



▶ Using Least-Squares

• In regression analysis, optimal control, parameter estimation

▶ Solving Least-Squares Problems

- Analytical solution: $x^* = (A'A)^{-1}A'b$, where A' denotes the transpose of A
- Reliable and efficient algorithms and software; a mature technology
- Computation time proportional to n^2m $(A \in \mathbb{R}^{m \times n})$; less if structured
- ightharpoonup The existing software does not work when n is large!

Machine Learning Problem

- ► Consider a prototype problem arising in the supervised learning, where a machine (or neural net) is trained from a large data set.
- ➤ The problem typically consists of minimizing some objective cost subject to a large number of constraints of the following form:

minimize
$$\rho(x)$$

subject to $g(x; y_i, z_i) \leq 0, \qquad i = 1, \dots, m, \quad x \in \mathbb{R}^n,$ (1)

where p is the number of data points $(m \gg 1)$, $x \in \mathbb{R}^n$ is a decision vector (the vector of weights in neural-nets), and the function $\rho(\cdot)$ is used to promote certain properties of the solutions, such as sparsity or robustness.

- ▶ The function $g(x; y_i, z_i)$ represents a constraint imposed by the data point $(y_i, z_i) \in \mathbb{R}^{n+1}$, where y_i is a measurement and z_i is the label associated with the measurement.
- For example, for linear classifiers, each data constraint is linear, i.e.,

$$g(x; y_i, z_i) = 1 - z_i \langle y_i, x \rangle$$

while the labels z_i are binary.

 \blacktriangleright The difficulty in solving problem (1) lies in the large number m of constraints.

Strategies

- ➤ The existing methods developed prior to the emergence of such large problems could not cope with such a large scale.
- ➤ To cope with the large number of constraints, there are two main conceptual approaches related to problem (1)
 - Penalty-Based Reformulation, which essentially replaces problem (1) with an unconstrained problem obtained by penalizing the constraints to form a new objective function. The resulting unconstrained problem is not necessarily equivalent to the original constrained problem (1).
 - Sampled-Constraint Approximation, where the problem is addressed directly by sampling the constraints "on-the-go" (within an algorithm).
- ▶ We will explore both options in the course.
- Problems with a large number of decision variables, i.e., large n for the decision vector $x \in \mathbb{R}^n$, are not considered. These are typically addressed by block-coordinate approaches, where x is decomposed in blocks of variables (updated in a cyclic or random block-coordinate manner for a given algorithm).

Penalty-Based Reformulation

Original constrained problem

minimize
$$\rho(x)$$
 subject to $g(x; y_i, z_i) \leq 0, \quad i = 1, ..., m, \quad x \in \mathbb{R}^n$,

Introducing a loss function $\ell(\cdot)$ (associated with the quality of data-fitting) and a regularization parameter r > 0, the problem is re-formulated as an unconstrained problem:

minimize
$$r\rho(x) + \frac{1}{m} \sum_{i=1}^{m} \ell(x; y_i, z_i),$$
 (2)

where the loss function penalizes the violation of constraints $g(x; y_i, z_i) \leq 0$, i = 1, ..., m.

- ▶ For example, for linear classifiers, common choices include:
 - The $logistic \ regression$ loss given by $\ell(x;y,z) = \log \left(1 + e^{-z\langle x,y\rangle}\right)$
 - The hinge loss $\ell(x; y, z) = \max\{0, 1 z\langle x, y\rangle\}.$
- By scaling the objective function in (2) with a regularization parameter r > 0, we can interpret 1/r as the penalty parameter.
- The resulting penalized problem balances the regularizing function $\rho(\cdot)$ and the average sum of the loss functions, where the balance is controlled by the parameter r > 0.

Minimizing the Average Sum of Loss-Functions

▶ We will now consider a general form of the problem in (2):

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m f_i(x), \tag{3}$$

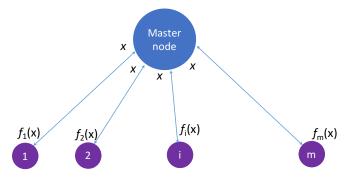
- There is a vast body of work that offers $\sqrt[n]{a}$ ious gradient methods for solving such an unconstrained problems with an additive-type objective function.
- ▶ The random incremental gradient method, often referred to as *stochastic gradient descent* in some of the machine learning community, has been the most successful due to its simplicity, and it has a long tradition starting with Kibardin 1980* (see Bertsekas 2012[†] for an in-depth survey on these methods).
- ▶ A renewed interest driven by a desire to improve its convergence rate, which can be unfavorable due to the stochastic errors induced by the sampling of the objective function gradients.
- ▶ The development of several efficient variance-reduction methods, such as stochastic variance reduced gradient (SVRG), SAG, SAGA, Katyusha.

^{*}V. M. Kibardin *Decomposition into Functions in the Minimization Problem*, Automation and Remote Control, 40 (9) 1311–1323, 1980

[†]D. P. Bertsekas *Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey*, in a book on Optimization for Machine Learning, pp. 85–119, MIT Press, Cambridge, MA, 2012

Distributed but Centralized Computational Architecture

► The existing the random incremental gradient methods (aka stochastic gradient descent) can be distributed within a master-slave architecture

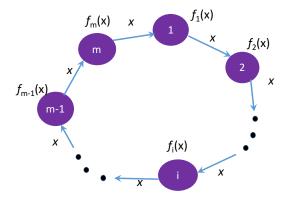


Solving $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m f_i(x)$ in a master-slave architecture with a master node and m workers. The master node is responsible for maintaining the decision vector x, Each worker i is responsible for processing the function f_i given the state x (typically computes the gradient $\nabla f(x)$).

- Such an architecture is not fully distributed (i.e., decentralized) as it requires a central entity to coordinate the computations of the slaves (workers).
- \blacktriangleright This architecture inherently requires the knowledge of the number m of workers.
- \blacktriangleright Communication with the central entity (master node) is intense when m is large.
- Fast methods (SVRG, SAG, SAGA, etc.) also require master-node with memory of the size $m \times n$ to store past gradients for each $f_i, i = 1, ..., m$

Distributed & Decentralized Computational Architecture

► The information processing (iterate updates) of a cyclic incremental gradient method can be interpreted as computations in a cyclic directed graph



Solving $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m f_i(x)$ with a cyclic incremental method. Each iteration consists of an update of x along a cyclic directed graph over the nodes $1, 2, \ldots, m$. A node i receives x from its up-stream neighbor i-1, updates x based on $\nabla f_i(x)$, and sends the updated x to its down-stream neighbor i+1.

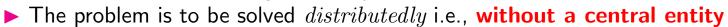
- ▶ Information processing (algorithm) along such a cycle has two shortcomings:
 - ullet Takes long time for a full iteration update when m is large
 - Failure of one node, or a link, breaks the computations.

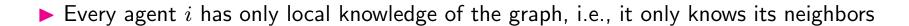
General Distributed & Decentralized Model We consider a (machine learning) problem

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x)$$

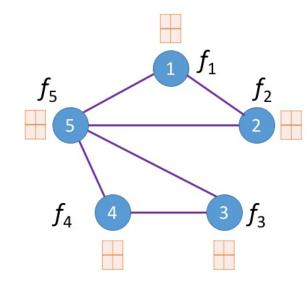
in a system consisting of m agents that are embedded in a communication network.

- ▶ Function f_i is privately known only to agent i.
- ▶ Agents do not share their functions $f_i(\cdot)$'s.
- ► Agents communicate some limited information with their immediate neighbors only





- \blacktriangleright No agent knows even the total number m of the agents in the system
- ▶ **Note:** The problems $\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x)$ and $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m f_i(x)$ are equivalent in the sense that their sets of optimal solutions coincide



- ▶ The lack of central authority is compensated by agent collaboration and communication
 - DeGroot consensus model [DeGroot 1974] also referred to as agreement model
 - A variant of this problem, using consensus model, has been studied in the 80's:
 Borkar & Varaya 1982, Tsitsiklis 1984, Tsitsiklis, Bertsekas & Athens 1986,

 Bertsekas & Tsitsiklis book
 - "Parallel and Distributed Computations: Numerical Methods" 1989
- ► We will develop distributed methods by employing gradient methods and DeGroot and Push-sum consensus protocols. To do so we will utilize:
 - Basic graph concepts
 - Row-stochastic and column stochastic matrices (properties of averaging, convergence)
- ▶ To address the convex problems we review some basics of Convex Optimization Theory:
 - Basic properties of convex sets and functions
 - Optimality principle

Optimization Theory: Minkowski Sum, Scaling of Sets

▶ Given a set $X \subset \mathbb{R}^n$ and a scalar $t \in \mathbb{R}$, the scaled set tX is defined by

$$tX = \{tx \mid x \in X\}.$$

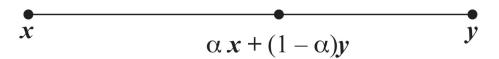
- \blacktriangleright Example: when t=0 and X is not empty, tX=? What if X is empty?
- ▶ Given two sets $X,Y \subset \mathbb{R}^n$, the (Minkowski) sum set X+Y is defined by $X+Y=\{x+y\mid x\in X,\ y\in Y\}.$
- Example: $X = \{x \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, \ x_2 = 0\}$ and $Y = \{x \in \mathbb{R}^2 \mid x_1 = 0, \ x_2 \in \mathbb{R}\}$. Then, X + Y coincides with the whole space, i.e., $X + Y = \mathbb{R}^2$
- Question:

Let
$$C_1 = \{x \in \mathbb{R}^2 \mid x_1 = 0, \ x_2 \in \mathbb{R}\}, \ C_2 = \{x \in \mathbb{R}^2 \mid x_1 x_2 \ge 1, \ x_1 \ge 0\}.$$

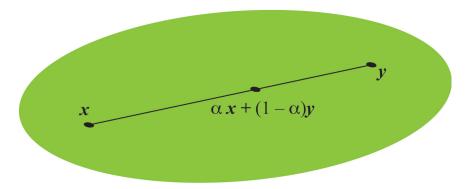
What is $C_1 + C_2$?

Convex Set

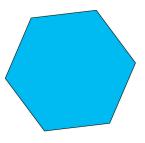
▶ A line segment defined by vectors x and y is the set of points of the form $\alpha x + (1 - \alpha)y$ for $\alpha \in [0, 1]$

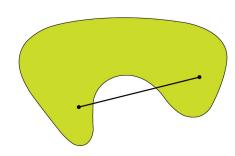


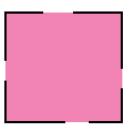
▶ A set $C \subset \mathbb{R}^n$ is convex when, with any two vectors x and y that belong to the set C, the line segment connecting x and y also belongs to C



Examples







Which of the following sets are convex?

- ightharpoonup The space \mathbb{R}^n
- ightharpoonup A line through two given vectors x and y

$$l(x,y) = \{z \mid z = x + t(y - x), t \in \mathbb{R}\}\$$

► A ray defined by a vector x

$$\{z \mid z = \lambda x, \ \lambda \ge 0\}$$

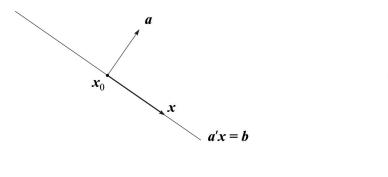
- ▶ The positive orthant $\{x \in \mathbb{R}^n \mid x \succeq 0\}$ (\succeq componentwise inequality)
- ▶ The set $\{x \in \mathbb{R}^2 \mid x_1 > 0, \ x_2 \ge 0\}$
- ▶ The set $\{x \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$

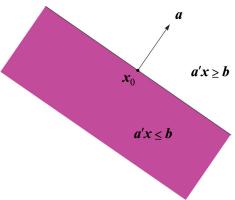
Affine Set

- ▶ **Def.** A set $C \subset \mathbb{R}^n$ is a *affine* when, with every two distinct vectors $x, y \in C$, the line $\{x + t(y x) \mid t \in \mathbb{R}\}$ belongs to the set C
 - An affine set is always convex
 - A *subspace* is an affine set
- A set C is affine if and only if C is a translated subspace, i.e., $C = S + x_0$ for some subspace S and some $x_0 \in C$ (representation does not depend on our choice of x_0)
- ightharpoonup Dimension of an affine set C is the dimension of the subspace S
- ▶ Affine sets are used to define the dimension of a convex set X: The dimension of a convex set X is the minimal dimension of all affine sets containing the set X.

Hyperplanes and Half-spaces

Hyperplane is a set of the form $\{x \mid \langle a, x \rangle = b\}$ for a nonzero vector a





 $\mathit{Half\text{-}space}$ is a set of the form $\{x \mid \langle a, x \rangle \leq b\}$ with a nonzero vector a. The vector a is referred to as the $\mathit{normal\ vector}$

ightharpoonup A hyperplane in \mathbb{R}^n divides the space into two half-spaces

$$\{x \mid \langle a, x \rangle \leq b\} \quad \text{and} \quad \{x \mid \langle a, x \rangle \geq b\}$$

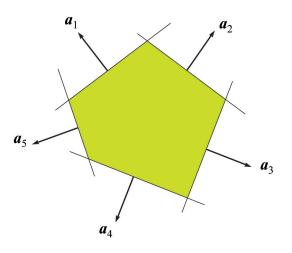
- ► Half-spaces are convex sets
- ► Hyperplanes are convex and affine sets

Polyhedral Sets

► A *polyhedral* set is given by finitely many linear inequalities

$$C = \{x \mid Ax \le b\}$$

where A is an $m \times n$ matrix, $b \in \mathbb{R}^m$, and $Ax \leq b$ is to be understood component-wise.



► Every polyhedral set is convex

Operations Preserving Convexity of Sets

- ▶ Given an arbitrary collection of convex sets $\{C_{\alpha}, \alpha \in calA\} \subseteq \mathbb{R}^n$, the $set\ intersection$ $\cap_{\alpha \in \mathcal{A}} C_{\alpha}$ is convex.
- ▶ Given a convex set $C \subseteq \mathbb{R}^n$, the scaled set $tC = \{tx \mid x \in C\}$ is convex for any $t \in \mathbb{R}$
- ▶ Given two convex sets $C_1 \subseteq \mathbb{R}^n$ and $C_2 \subseteq \mathbb{R}^n$, we have that
 - Their $Minkowski \ sum \ C_1 + C_2$ is a convex set.
 - Their Cartesian product $C_1 \times C_2 = \{(x_1, x_2) \mid x_1 \in C_1, x_2 \in C_2\}$ is convex
- ▶ Given a convex set $C \subseteq \mathbb{R}^n$ and a partition $x = (x,x_2) \in \mathbb{R}^{n_1+n_2}$, the *coordinate* projection $\{x_1 \in \mathbb{R}^{n_1} \mid (x_1,x_2) \in C \text{ for some } x_2\}$ is a convex set
- ▶ Given a convex set $C \subseteq \mathbb{R}^n$, its $image\ AC$ under a linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ is convex, where

$$AC = \{ y \in \mathbb{R}^m \mid y = Ax \text{ for some } x \in C \}$$

▶ Given a convex set $K \subseteq \mathbb{R}^m$, its $inverse \ image^{\ddagger} \ A^{-1}K$ under a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^m$ is convex, where

$$\underline{A^{-1}K} = \{ x \in \mathbb{R}^n \mid Ax \in K \}$$

 $^{^{\}ddagger}$ Here, A^{-1} does not denote the inverse of a matrix; its an inverse image of a set K under mapping A

Convex Functions

- Informally: f is convex when for every segment $[x_1, x_2]$, as $x_\alpha = \alpha x_1 + (1 \alpha)x_2$ varies over the line segment $[x_1, x_2]$, the points $(x_\alpha, f(x_\alpha))$ lie below the segment connecting $(x_1, f(x_1))$ and $(x_2, f(x_2))$
- ▶ Let f be a function from \mathbb{R}^n to \mathbb{R} , $f: \mathbb{R}^n \to \mathbb{R}$
- ▶ The domain of f is a set in \mathbb{R}^n defined by $dom(f) = \{x \in \mathbb{R}^n \mid f(x) \text{ is well defined (finite)}\}$
- **Def.** A function f is convex if
 - (1) Its domain $\mathrm{dom}(f)$ is a convex set in \mathbb{R}^n and
 - (2) For all $x_1, x_2 \in \text{dom}(f)$ and $\alpha \in [0, 1]$ $f(\alpha x_1 + (1 \alpha)x_2) \le \alpha f(x_1) + (1 \alpha)f(x_2)$

Examples: Affine Functions and Norms

- ► Affine functions are convex
- ► Norms are convex
- **Examples on** \mathbb{R}^n
 - Affine function is of the form: $f(x) = \langle a, x \rangle + b$ with $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$
 - ullet Euclidean, l_1 , and l_∞ norms
 - General l_p norms

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for $p \ge 1$

Some Operations Preserving Convexity; Continuity

- Convexity is preserved under:
 - Positive Scaling: $f(\cdot)$ convex and c > 0, then $cf(\cdot)$ is convex
 - Sum: $f_1(\cdot)$ and $f_2(\cdot)$ convex, then $(f_1 + f_2)(\cdot)$ is convex
 - Composition with Affine Mapping: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, then g(x) = f(Ax + b) is convex
- ▶ If $f: \mathbb{R}^n \to \mathbb{R}$ (means its domain is entire \mathbb{R}^n), then $f(\cdot)$ is continuous on \mathbb{R}^n !
- ▶ If $f(\cdot)$ is a convex function, then for any $\gamma \in \mathbb{R}$ the lower-level set $L\gamma(f)$ of f,

 $L\gamma(f) = \{x \in \text{dom}(f) \mid f(x) \le \gamma\}$

is convex.

Closed Sets

- ▶ A set $X \subset \mathbb{R}^n$ is **closed** if for any sequence $\{x_k\} \subseteq X$ converging to some point $\widehat{x} \in \mathbb{R}^n$, the limit point \widehat{x} belongs to the set X.
- In simple words, any point \hat{x} that is asymptotically reachable through a sequence of points in X must lie in X.
- ▶ If h is a continuous function, then its lower-level set $L_{\gamma}(h)$ is closed for any $\gamma \in \mathbb{R}$
- ▶ Consequence of Convexity: When $f : \mathbb{R}^n \to \mathbb{R}$ is convex (its domain is the entire \mathbb{R}^n), then its lower-level set $L_{\gamma}(f)$ is closed and convex set for any $\gamma \in \mathbb{R}$.
- ► Throughout the rest of course, we will assume that the functions we work with are defined everywhere; unless clearly stated otherwise.

Optimality Principle

- ▶ Consider the constrained convex problem of minimizing a convex function $f: \mathbb{R}^n \to \mathbb{R}$ over a closed and convex set $X \subseteq \mathbb{R}^n$.
- ▶ Optimal Solution: A point $x^* \in X$ is an optimal solution of the problem if

$$f(x^*) \le f(x)$$
 for all $x \in X$

▶ Optimality Principle: When $f(\cdot)$ is continuously differentiable, an optimal point can be characterized as follows: $x^* \in X$ is optimal solution for $\min_{x \in X} f(x)$ if and only if

$$\langle \nabla f(x^*), x - x^* \rangle \ge 0$$
 for all $x \in X$

In the absence of convexity, the preceding condition is necessary but not sufficient, i.e., if $x^* \in X$ is optimal solution for $\min_{x \in X} f(x)$, then the condition holds.

▶ Optimality Principle for Affine X: Assume that the set X is a (nonempty) affine set, $\{X = \{x \in \mathbb{R}^n \mid Ax = b\}$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, the optimality principle is equivalent to the following statement: $x^* \in X$ is optimal solution for $\min_{Ax=b} f(x)$ if and only if there exists a vector $\lambda \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + A'\lambda = 0$$

i.e., $\nabla f(x^*)$ lies in the range of A'.

Convex Optimization Literature

- ▶ S. Boyd and L. Vandenberghe Convex Optimization, available free online
- ▶ D.P. Bertsekas, A. Nedić, A.E. Ozdaglar, Vandenberghe *Convex Analysis* and *Optimization*, Athena Scientific, Belmont, MA, 2003

Graphs

- A graph over $m \ge 2$ nodes is denoted by $\mathbb{G} = ([m], \mathcal{E})$, where $[m] = \{1, 2, ..., m\}$ and $\mathcal{E} \subseteq [m] \times [m]$ is the set of edges.
- When a graph $\mathbb{G} = ([m], \mathcal{E})$ is undirected (bidirectional), the graph edges are specified by unordered pairs of distinct nodes $\{i, j\} \in \mathcal{E}$.
- ▶ When a graph $\mathbb{G} = ([m], \mathcal{E})$ is directed, the graph edges are specified by ordered pair of distinct nodes $(i, j) \in \mathcal{E}$.
- In what follows, graphs will be used to represent the information flow among a set of m agents (also referred to as nodes) communicating over a network with following interpretation of the graph edges:
 - An undirected edge (or a link) $\{i, j\}$ indicates that i can receive from and send information to j, and j can receive from and send the information to i;
 - A directed edge (or a link) (i, j) indicates that i can send information to agent j.
- \blacktriangleright An undirected graph \mathbb{G} is **connected** if there is a path connecting every two distinct nodes in the graph.
- ▶ A directed graph G is **strongly connected** if there is a directed path connecting each node to every other node in the graph.

