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Lecture 1

Introduction

1.1 Presentation of the course

Our goal in this course is to build towards a mostly self-contained presentation of two recent papers in
quantum computing:

(a) Classical verification of quantum computations, by Mahadev [Mah18]. This paper addresses the
question of verification of quantum computation: given classical data that is obtained from a quantum
device that claims to have the ability to execute arbitrary quantum circuits (of polynomial size), how
can a classical “verifier” ensure that the reported data indicates the correct outcome of the computa-
tion? For problems that have a natural classical certificate of correctness this is a simple task. For
example, if the problem is to determine, given as input an integer n, if n has a prime factor larger than
(say) n1/4, then a positive answer can be certified by providing such a factor when it exists (and a
negative answer can be certified by providing a complete prime decomposition of n). Such a factor, or
more generally the prime decomposition of n, can be determined in quantum polynomial time using
Shor’s factoring algorithm; verifying it can be done in classical polynomial time.

However, not all problems that can be solved in quantum polynomial time are believed to lie in the
class NP, i.e. not all quantum computations have outcomes that can be certified using an easily
verifiable classical “witness”. The well-known complexity-theoretic inclusion BQP ⊆ IP, that we
discuss later in the course, implies that all problems in BQP have a classical randomized polynomial-
time interactive verification procedure; however, in this procedure the prover may be asked to perform
computations that are harder than BQP.

What Mahadev shows in her breakthrough result is that every polynomial time quantum computation
can nevertheless be verified in classical randomized polynomial time by interacting with a quantum
polynomial time device as long as one can ascertain (or believes) that the quantum device does not
have the power to break a natural “post-quantum” cryptographic assumption (namely, the “Learning
with Errors” (LWE) assumption).

(b) MIP∗ = RE, by Ji, Natarajan, Vidick, Wright and Yuen [JNV+20a]. The equality that gives this pa-
per its title is an equality between complexity classes, i.e. computational problems that have a similar
level of “difficulty” in a given model of computation (e.g. BQP and NP are complexity classes). Here,
MIP∗ designates all those computational problems that can be decided efficiently in classical random-
ized polynomial time (similar to the verification in the previous item) by asking (classical) questions
to two infinitely powerful quantum provers sharing entanglement. Here the provers have unbounded
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computational capabilities and can hence solve any computational problem they like, including the
one that the verifier is concerned with. However, it is assumed that the provers are not trusted: they
will always try to convince the verifier that the answer to the problem in question is “yes” (e.g. “yes,
this graph does have a valid 3-coloring”). The verifier has to employ certain tricks, or “tests”, to detect
any malicious behavior by the provers, so as never to make the wrong decision. The class RE denotes
all problems for which there is an algorithm, running in any amount of time, that always eventually
halts with the answer “yes” when this is the case (the algorithm does not need to halt in other cases).
RE is a mind-boglingly large class of problems; it contains any decidable problem and even some
undecidable ones such as the halting problem, which is complete for the class.

The equality MIP∗ = RE is surprising in that it shows that access to untrusted quantum provers
grants exceedingly large verification power to the polynomial-time verifier. In contrast, it is known
that the same class without entanglement between the provers, denoted MIP, is much smaller, MIP =
NEXP. Other motivations for the result tie it to questions in the foundations of quantum non-locality
(“Tsirelson’s problem”) and the theory of operator algebras (“Connes’ embedding problem”) which
we will discuss in due time.

There is a deep connection between the two papers mentioned above (as well as the many works that led
to them—although the course is not meant to be a comprehensive survey, we will review the most relevant
references in due course). Indeed, at their heart both works identify means by which a classical procedure
is able to certify an appropriate “quantum computation workspace” within one (or two) quantum devices,
using only a classical interaction with it. In this sense, and to borrow the title of one of the important earlier
papers in this area [RUV13], both works provide techniques to tie a “classical leash” around a quantum
system. In order to achieve this, both works ultimately have to tackle the same fundamental problem: what
are classical signatures of quantum processes that can be leveraged to certify an entire computation? Very
informally, we will see that in the case of (a) this signature is provided by the uncertainty principle: the fact
that certain measurements in quantum mechanics are intrinsically incompatible; in the case of (b) it will be
provided by quantum non-locality: the fact that entanglement allows distant parties to generate correlations
that have no classical equivalent.

We have motivated our choice of topics by arguing that they tackle a fundamental problem, that of clas-
sically testing a quantum system. This is a problem of practical relevance (given an experimental quantum
device, does it really do anything quantum?) as well as one that reaches deep to the power and limitations of
the scientific method (for a discussion from an epistemological point of view, I recommend the great presen-
tation by Aharonov and Vazirani [AV12]). It is also a problem that has turned out to stimulate many recent
advances in quantum cryptography and complexity. For example, early works in delegated computation en-
couraged the development of quantum authentication codes, such as the Clifford code, that have found wide
uses in cryptography; the study of quantum entangled-prover interactive proof systems has brought many
discoveries in the foundations of quantum non-locality, such as dimension witnesses. The topics are con-
nected through the common framework of interactive proof systems and share many techniques. Throughout
the course we will make an effort to highlight the many open questions that stimulate research in this area
and hope that our choice of results will provide a compelling entry point to it.

Having set the stage, let us discuss the structure of the course. We will start by tackling arguably the
most fundamental question in this line of work: what is a qubit? How to define it mathematically, and
how does one “certify” its existence? What does it mean to “test a qubit,” and how can it be done? This
question will occupy us for the coming four lectures. Exploring it will give us the opportunity to lay common
foundations for the discussion of results (a) and (b) above. The remaining 6 lectures will be equally divided
in two sets of 3 lectures each. The first set will examine the problem of delegation of polynomial-time
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quantum computations in general, and then focus on a presentation of Mahadev’s result. The second set will
discuss the theory of multi-prover interactive proof systems and build towards an understanding of the main
ingredients in the result by Ji et al.

We will start the course slowly, so that the first few lectures are accessible to as broad a public as
possible. The content will be mathematically precise and as self-contained as can be, so that it is possible
to follow starting with only an elementary background in quantum computing at the level of the Nielsen &
Chuang textbook [NC02]. Later lectures will be more involved and may require a somewhat more advanced
knowledge of certain topics in cryptography or in complexity theory; I will aim to keep the presentation as
self-contained as possible. My goal is that by the end of the course an assiduous participant may dive into
either paper with a solid understanding of the main steps and key techniques in mind.

1.2 What is a qubit?

Let’s start with the basics; as we will see shortly the simplest questions are not always the least interesting.
According to Wikipedia, “The qubit is the basic unit of information for quantum computers.” The

associated entry goes on to declare that “A qubit is a two-state (or two-level) quantum-mechanical system,”
the latter being defined as “a quantum system that can exist in any quantum superposition of two independent
(physically distinguishable) quantum states.” So a qubit is some kind of “system” whose state space has two
fundamental states, and moreover such that the system can be in any “superposition” of these two states.
Note that the definition makes an important distinction between the system (qubit) itself and its state. The
latter is easier to define, and indeed it is through its state space that the “qubit” is generally introduced in
quantum computing courses: the state space of a qubit is the set of unit vectors in the complex vector space
C2; we denote this space as S(C2).1 Thus the state of a qubit can be represented by a unit vector in C2; for
example,

|0〉 =
(

1
0

)
and |+〉 = 1√

2

(
1
1

)
are both valid states for a qubit.2

So we all know how to recognize a valid state for a qubit. But what about the qubit itself ? We would like
a precise definition that captures the intuition given in the Wikipedia entry: a qubit is a “two-state system”
that can be in any “independent superposition” of its two states. In particular, we would like our definition
to clearly distinguish this notion from that of a classical “probabilistic bit”, which could also be considered
a two-level system that can be in any “superposition” of its two states, p 0 + (1− p) 1 for any p ∈ [0, 1].
What distinguishes the real, “1-dimensional” degree of freedom p ∈ [0, 1] of the probabilistic bit from the
complex, “2-dimensional” degree of freedom of the qubit?

As we will soon see, for our purposes it turns out to be most meaningful to attempt a definition in terms
of the “Heisenberg representation” of quantum mechanics, that places observable quantities at a forefront.
Informally, we will distinguish a quantum degree of freedom from a classical one by requiring that the
quantum degree of freedom can be measured (observed) in two mutually incompatible ways. In order to
make this precise we make a small detour to introduce the formalism associated with observable quantities
in quantum mechanics.

1To be consistent with standard mathematical terminology we’d call this the complex projective space and denote it P2(C).
We’ll follow standard quantum computing conventions instead.

2For the entirety of this course (except the last lecture) we take the traditional perspective from quantum computer science:
unless specified otherwise we consider that Hilbert spaces are always finite dimensional and computation is always performed on
qubits in C2 or possibly higher-dimensional qudits in Cd for d ≥ 1 a (finite) integer.
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1.2.1 Observables

While the state space of a qubit is generally taken to be C2, more generally a quantum mechanical state
lies in an arbitrary separable Hilbert space H.3 The term “observable” is used to denote any quantity that
can in principle be obtained as the result of a measurement: for example, position, momentum, spin, energy
(with respect to a certain Hamiltonian), are all observables. In full generality an observable is specified by
a Hermitian operator O on H.4 The interpretation of this is that each eigenvalue of O represents a possible
outcome under a measurement of the observable, and the associated eigenvectors denote states under which
the observable deterministically yields that outcome. Thus if O = ∑i λiΠi is a spectral decomposition of
O, then any state |ψ〉 such that Πi|ψ〉 = |ψ〉 will deterministically yield the outcome λi when measured
according to O. In particular, we see that the important part of an observable is its eigenprojections rather
than the associated eigenvalues: the latter are real numbers that are associated to the different possible
experimental outcomes. These numbers are generally associated to a physical meaning (such as position,
momentum, etc.) but they can easily be changed by post-processing.

A collection of projection operators {Πi} that sum to identity is called a Projector-Valued Measure
(PVM). When the Πi are no longer required to be projections, it is called a Positive Operator-Valued Mea-
sure (POVM). This is the most general kind of measurement that is allowed in quantum mechanics. Given a
POVM {Πi} the Born rule specifies that a measurement of an arbitrary state |ψ〉 under it will yield measure-
ment outcome i with probability ‖

√
Πi|ψ〉‖2 = 〈ψ|Πi|ψ〉. Since the Πi form a resolution of the identity

(∑i Πi = Id) and ‖|ψ〉‖2 = 1 we see that these probabilities always sum to 1, as they should. When the
outcome i is obtained, the state evolves to a post-measurement state |ψ′〉 =

√
Πi|ψ〉/‖

√
Πi|ψ〉‖. (Here√

Πi is generally taken to be the positive square root of Πi. However, other square roots can be used as
well: since different square roots differ only by a unitary degree of freedom, choosing the one over the other
is analogous to imposing an additional reversible evolution on the post-measurement state, which can be
considered to be part of the measurement itself.)

In case the {Πi} are obtained from some observable O, we may use the associated eigenvalues to
associate a real value to each measurement outcome i. In this case the expectation of the outcome of the
measurement is

∑
i

λi‖Πi|ψ〉‖2 = ∑
i

λi〈ψ|Πi|ψ〉 = 〈ψ|O|ψ〉 ,

a quantity that is sometimes referred to as the “overlap” of |ψ〉 on O. We will use this formula often.
An observable such that O2 = Id has at most two eigenvalues, which by convention we take to be −1

and +1. Such an observable is called a binary observable; it is the most frequent kind of observable that we
will encounter.

1.2.2 First definition of a qubit

With a precise mathematical definition of an observable quantity we are ready to make precise our informal
definition of a “qubit” as “a system that can be observed in two mutually incompatible ways”.

3“Separable” means thatH has a countable basis. In fact quantum states can also live in non-separable Hilbert spaces; we make
the restriction for convenience. In fact for the purposes of these notes you may as well think of H as being finite-dimensional, i.e.
H is isomorphic to the complex vector space Cd, for some integer d ≥ 1. Allowing infinite-dimensional spaces gives us a little
more generality.

4For us “Hermitian” means that O is self-adjoint, O = O†, where O† is the operator such that 〈O†u|v〉 = 〈u|Ov〉 for all |v〉 in
the domain of O. If H is finite-dimensional then a matrix representation of O† is obtained by taking the conjugate-transpose of a
matrix representation of O.
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Definition 1.1 (Qubit, Take 1). A qubit is a triple (H, X, Z) consisting of a separable Hilbert space H and
a pair of Hermitian operators X, Z acting on aH such that X2 = Z2 = Id and {X, Z} = XZ + ZX = 0.

Let’s see why Definition 1.1 captures the intuitive notion of “mutually incompatible” observables. Let
the ‘computational basis’ be an eigenbasis of Z, and the ‘Hadamard basis’ an eigenbasis of X. Then we
claim that the anticommutation relation XZ + ZX = 0 ensures that any vector in the former makes a 45◦

angle with any vector in the latter. To see this, let |ψ〉 be an eigenvector of X with associated eigenvalue
ε ∈ {±1}. Then 〈ψ|XZ + ZX|ψ〉 = 0 immediately implies 2ε〈ψ|Z|ψ〉 = 0. Given that Z only has
−1 and +1 as eigenvalues, this relation implies that the projections of |ψ〉 on the two eigenspaces of Z
have equal length; in other words, |ψ〉 lies exactly between the +1 and −1 eigenspaces of Z. (Yet another
way of saying this is that all principal angles between an eigenspace of X and one of Z are π

4 ; we will
make this precise soon.) In this sense any X and Z satisfying the conditions of the definition are “maximally
incompatible”: any definite state for the one is entirely undetermined (i.e. yields uniformly random outcomes
when measured) under the other.

There is a problem with this definition: by allowing the underlying Hilbert space H to be arbitrary we
seem to have all but dropped the earlier requirement that a qubit is a system whose state space is “two-level”
and thus identifiable with the projective space S(C2). Luckily, the following lemma allows us to make the
connection with this requirement.

Lemma 1.2. Let (H, X, Z) be a qubit. Then there is a Hilbert spaceH′ and an isomorphismH ' C2⊗H′
such that under the same isomorphism, X ' σX ⊗ Id and Z ' σZ ⊗ Id.5 Here, σX and σZ are the usual
Pauli observables on C2: in matrix form,

σX =

(
0 1
1 0

)
and σZ =

(
1 0
0 −1

)
.

Note that a consequence of the lemma is that qubits, as defined in Definition 1.1, only exist in spaces
of even (or infinite) dimension! In particular, qubits don’t exist in dimension 1; indeed, in dimension 1 all
operators commute. This is satisfactory: intuitively, a situation in which all possible observables commute
ought to be considered “classical” (for instance, because there is a complete set of simultaneous eigenvectors
for all observables).

It will be essential for our later goals that Definition 1.1 does not a priori require H to be a two-
dimensional space. Indeed, how would one test such a claim? One does not “see” the dimension of the state
space; while it is possible to probe parts of it it can never be excluded that the state space is larger than what
is accessible to the experimentalist’s setup. In this sense Definition 1.1 has a nice “operational” flavor to it:
it refers to observables of the system and their properties. Although much more work is needed before we
are able to make any of these statements formal, we see the definition as a good step towards giving us the
ability to “test” that a system “is a qubit”. In addition, the definition clearly has meaningful consequences;
in particular it implies that qubits do not have a “classical explanation”, so that a “test for a qubit” can serve
as a “test for quantumness”, i.e. a test that distinguishes quantum from classical behavior.

The proof of the lemma makes use of an elementary but fundamental tool in the analysis of many
quantum information protocols, the CS (for “Cosine-Sine”) decomposition. This decomposition is also
known as “Jordan’s lemma,” after Camille Jordan’s Traité des substitutions et des équations algébriques
from 1870 (see this EHESS PhD thesis [Bre06] for a masterful 730-page account of the history behind the

5The reader might wonder what happened to σY ... Don’t we need it to define our qubit? Here we are taking the “operator
algebraists”’ perspective, which is that if the system supports X and Z observables then it also supports Y = iXZ. Because Y is
determined by X and Z, we do not include it in the definition.
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use of Jordan’s name alongside this theorem). Given that we will use the lemma frequently we give it a
self-contained treatment in the next section.

1.2.3 Jordan’s lemma

The discussion of Jordan’s lemma in this section is mostly borrowed from https://cims.nyu.edu/

˜regev/teaching/quantum_fall_2005/ln/qma.pdf. Let P, Q be two orthogonal projections
on a separable Hilbert space H, and consider their sum R = P + Q. Then R is Hermitian so it has an
orthonormal set of eigenvectors that is also a basis for H.6 Let |ϕ〉 be any eigenvector of R with associated
eigenvalue λ. Consider two cases for the vector P|ϕ〉. The first case is that P|ϕ〉 is parallel to |ϕ〉. In this
case, since

Q|ϕ〉 = R|ϕ〉 − P|ϕ〉 = λ|ϕ〉 − P|ϕ〉 (1.1)

it follows that Q|ϕ〉 is also parallel to |ϕ〉, so |ϕ〉 is a common eigenvector of P and Q. The second case
is that P|ϕ〉 is linearly independent from |ϕ〉. In this case the two-dimensional subspace S spanned by |ϕ〉
and P|ϕ〉 is stable under P, because being a projection P satisfies P2 = P. Moreover, by (1.1) we see that
Q|ϕ〉 lies in S , and

QP|ϕ〉 = Q(λ|ϕ〉 −Q|ϕ〉) = (λ− 1)Q|ϕ〉

is also in that subspace. Using that P, Q are projections and that P is neither 0 nor the identity on S
(otherwise we would have been in the first case) it follows that there is a basis of S such that in that basis,

P =

(
1 0
0 0

)
and Q =

(
c2 cs
cs s2

)
, (1.2)

where c = cos θ and s = sin θ for some θ ∈ [0, π/2). (Other values of θ reduce to this case because the
sign of cs can be flipped by negating the second basis vector for the chosen basis of S .) Note finally that
since S is stable by both P and Q it is stable by R = P + Q, so it has a basis made of eigenvectors of
R, the vector |ϕ〉 that we started from and its orthogonal in R. Proceeding in this way inductively this lets
us identify an eigenbasis of R such that its vectors are either isolated (stable by both P and Q) or in pairs
(spanning a 2-dimensional subspace that is stable by both P and Q).

The following lemma summarizes the discussion so far.

Lemma 1.3. Let P, Q be projections on a separable Hilbert space H. Then there exists an orthogonal
decomposition H = ⊕iSi such that each Si is a 1- or 2-dimensional subspace that is stable by P and Q.
Furthermore, whenever Si is 2-dimensional there is a basis for it in which P and Q take the form (1.2), for
some ci and si that may depend on Si.7

This very useful lemma informally says that, when only two projections are concerned, we can reduce
the analysis to a 2-dimensional problem. Let’s apply it to show Lemma 1.2.

Proof of Lemma 1.2. Let H, X, Z be as in the statement of the lemma. Let P = 1
2 (Z + Id) and Q =

1
2 (X + Id). Then P, Q are projections on H so we can decompose them according to Lemma 1.3. Let
(|ei〉, | fi〉) be a basis for the i-th space Si in which the matrices for P and Q have the form (1.2). Using
XZ + ZX = 0 it follows that (i) there cannot be any 1-dimensional blocks, because these necessarily

6Here we are using thatH is separable.
7For the case of 1-dimensional subspaces, since P and Q are projections they are each either identically 0 or identity in those

subspaces.
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commute, and (ii) in any two-dimensional block, the angle θ must equal π/4, as this is the only value in
[0, π/2) that leads to anti-commuting operators. Thus in each space Si, Z acts exactly as σZ and X as σX.
Let H′ have canonical basis {|i〉}, where i ranges over the block indices in the decomposition of P and Q.
The required isomorphism is obtained by e.g. mapping |ei〉 ∈ H to |0〉 ⊗ |i〉 ∈ C2 ⊗H′ and | fi〉 ∈ H to
|1〉 ⊗ |i〉 ∈ C2 ⊗H′.

1.2.4 n qubits

Now that we have a working definition of a qubit, how about two, three, or even n qubits? What we mean
when we say that a system “has n qubits” is that (i) it should have n copies of one qubit, so there should be
(X1, Z1), (X2, Z2), . . . , (Xn, Zn) on H such that each pair satisfies the definition of a qubit, and moreover
(ii) the qubits should be “independent”: indeed, we wouldn’t want something like X1 = X2 to happen. How
do we prevent this? Intuitively “independence” of the qubits should be reflected in the fact that they can be
observed “independently”, in any order, such that if e.g. we “ observe” qubits 1 and 2 and then discard the
outcome associated with qubit 1, we should obtain an outcome that is identically distributed as if we had
only observed qubit 2 in the first place. These considerations suggest the following definition.

Definition 1.4 (n qubits, Take 1). A system of n qubits is a tuple (H, X1, Z1, . . . , Xn, Zn) consisting of a
separable Hilbert space H and n pairs of Hermitian operators (Xi, Zi) for i ∈ {1, . . . , n} acting on H such
that

(i) For each i ∈ {1, . . . , n}, (H, Xi, Zi) is a qubit;

(ii) For each i 6= j ∈ {1, . . . , n}, qubits i and j are independent:

[Xi, Xj] = [Xi, Zj] = [Zi, Xj] = [Zi, Zj] = 0 ,

where for arbitrary operators A, B onH, [A, B] = AB− BA denotes the algebra commutator.

The commutation condition (ii) indeed implies that measurements on different qubits can be performed
“independently”. For example, the expectation of a measurement of qubit 2 in the Hadamard basis after
qubit 1 has been measured in the computational basis is given by (where we write X1 = X0

1 − X1
1 for the

spectral decomposition of the observable X1)

〈ψ|X0
1Z2X0

1 |ψ〉+ 〈ψ|X1
1Z2X1

1 |ψ〉 = 〈ψ|X1Z2X1|ψ〉
= 〈ψ|Z2X2

1 |ψ〉
= 〈ψ|Z2|ψ〉 ,

as desired. (Here, for the first equality we used that 〈ψ|X0
1ZX1

1 |ψ〉 = 〈ψ|X1
1ZX0

1 |ψ〉, for the second we
used the commutation condition [X1, Z2] = 0, and for the last we used X2

1 = Id.) This calculation can be
done for any pair of qubits, or even any sequence of measurements of qubits, and it shows that item (ii) in
Definition 1.4 indeed captures the idea that each of the n qubits can be measured independently.

Note however that this “independence” is not necessarily quite the same as there truly being n qubits. In
particular, if our definition of a qubit only required the use of a single observable X, as a classical bit would,
then taking X1 = · · · = Xn would satisfy both (i) and (ii), since an operator always commutes with itself.
Indeed, just as we’re used to a qubit being defined through its state space S(C2), we’re used to n qubits being
defined through their state space S(C2)⊗ · · · ⊗ S(C2). Where is the tensor product in Definition 1.4, isn’t
it missing? The following lemma shows that an n-fold tensor product is in fact implicit in the definition.
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Lemma 1.5. Let (H, X1, Z1, . . . , Xn, Zn) be a system of n qubits. Then there exists a Hilbert spaceH′ and
an isormorphism H ' (C2)⊗n ⊗H′ such that under the same isomorphism, for every i ∈ {1, . . . , n} and
W ∈ {X, Z}, Wi ' σW,i ⊗ IdH′ , where here σW,i denotes the Pauli W operator acting on the i-th copy of
C2.

Proof. We show the lemma by induction on n ≥ 1. The case n = 1 is provided by Lemma 1.2. Suppose
the lemma shown for some n ≥ 1, show it for (n + 1). Let (H, X1, Z1, . . . , Xn+1, Zn+1) be a system of
(n + 1) qubits. Since (H, X1, Z1, . . . , Xn, Zn) is a system n qubits we can apply the induction hypothesis
to it. Let H′ and π′ be the promised space and isomorphism. The key step is provided by the following
claim.

Claim 1.6. Let W be an Hermitian operator onH such that [W, Xi] = [W, Zi] = 0 for all i ∈ {1, . . . , n}.
Then there exists W ′ Hermitian acting onH′ such that under π′, W ' Id(C2)⊗n ⊗W ′.

The claim immediately gives us the induction step: by applying it to Xn+1 and Zn+1 we find X′n+1 and
Z′n+1 on H′ such that (H′, X′n+1, Z′n+1) is a qubit. Applying Lemma 1.2 to this qubit and composing the
isomorphism obtained with π′ completes the induction step. Therefore, it only remains to prove the claim.

Proof of Claim 1.6. Clearly it suffices to prove the statement “under π”, i.e. for the case where Xi = σX,i
and Zi = σZ,i. We introduce the following notation: for a, b ∈ {0, 1}n,

σX(a) = σa1
X,1 ⊗ · · · ⊗ σan

X,n and σZ(b) = σb1
Z,1 ⊗ · · · ⊗ σbn

Z,n .

Using that the four 1-qubit Pauli matrixes Id, σX, σZ and σXσZ form a basis for the complex vector space of
linear operators on C2, W has a decomposition

W = ∑
a,b

σX(a)σZ(b)⊗Wa,b ,

where Wa,b are arbitrary operators on H′ (they are not necessarily Hermitian). Let’s write out the left and
right products of W with σX(c)σZ(d), for some c, d ∈ {0, 1}n:

σX(c)σZ(d)W = ∑
a,b

σX(c)σZ(d)σX(a)σZ(b)⊗Wa,b

= ∑
a,b
(−1)a·dσX(a + c)σZ(b + d)⊗Wa,b , (1.3)

where in the second line we used the anti-commutation relation σZ(d)σX(a) = (−1)a·dσX(a)σZ(d), as
well as the “additivity” relations σX(a + c) = σX(a)σX(c), and similarly for σZ. Similarly,

WσX(c)σZ(d) = ∑
a,b

σX(a)σZ(b)σX(c)σZ(d)⊗Wa,b

= ∑
a,b
(−1)b·cσX(a + c)σZ(b + d)⊗Wa,b . (1.4)

Using that the σX(a)σZ(b) are linearly independent we can identify terms in (1.3) and (1.4); it follows that
for any a, b, c, d, (−1)b·cWa,b = (−1)a·dWa,b. For any (a, b) unless a = b = 0 we can find strings c, d
such that the two terms in Wa,b are given opposite signs. Thus Wa,b = 0 whenever (a, b) 6= (0, 0), and
W = Id⊗W0,0. Since W is Hermitian, W0,0 is also Hermitian, proving the claim.
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Remark 1.7. The statement of Lemma 1.5 can be reformulated in the language of group representation
theory, and this reformulation will be useful later on. The “n qubit Weyl-Heisenberg group” is the 2 · 4n-
element group Gn that is generated by the n-qubit σX and σZ matrices; its elements are (−1)cσX(a)σZ(b)
for a, b ∈ {0, 1}n and c ∈ {0, 1}. From any system of n qubits (H, X1, Z1, . . . , Xn, Zn) it is straightforward
to specify a representation φ of Gn by setting φ((−1)cσX(a)σZ(b)) = (−1)c ∏i Xai

i ∏i Zbi
i . The lemma

can be adapted to show that any representation of Gn that in addition sends −1 to −1, as φ does, must be a
direct sum of copies of the representation by Pauli matrices.

1.2.5 Approximate qubits

An important theme of this course will be that the objects that we observe and manipulate in our “protocols”
or “experiments” generally cannot be assumed to be perfectly “clean” or “noise-free”. In this respect, the
following exercise is a simple test that we ought to make on our definition; furthermore, it is a good exercise
to practice the use of the CS decomposition.

Exercise 1.1. Suppose that X and Z are binary observables on H such that ‖{X, Z}‖ ≤ ε for some ε ≥ 0,
where ‖ · ‖ denotes the operator norm (largest singular value). Show that there exists a qubit (H, X′, Z′)
such that max{‖X− X′‖, ‖Z− Z′‖} ≤ δ(ε). State the best dependence δ that you can get.

The exercise can be extended to consider n approximate qubits, but the proof is more delicate as some
work is needed to keep the errors under control. The following is shown in [CRSV17].

Theorem 1.8. Let X1, Z1, . . . , Xn, Zn be binary observables on H and ε ≥ 0 such that ε/(1 − ε)2 ≤
1/(64n) and ‖{Xi, Zi}‖ ≤ ε and ‖[Si, Tj]‖ ≤ ε for all i 6= j ∈ {1, . . . , n} and S, T ∈ {X, Z}.8 Then
there exists binary observables X′1, Z′1, . . . , X′n, Z′n onH such that {X′i , Z′i} = 0, [S′i , T′j ] = 0 and moreover
‖S′j − Sj‖ ≤ 4nε/(1− ε)2 + ε for all i 6= j ∈ {1, . . . , n} and S, T ∈ {X, Z}.

The theorem shows that “n approximate qubits” are close to “n exact qubits” according to our defini-
tions. Note that there is a dependence of the error on n, but not on the dimension of H. In [CRSV17] it is
shown by an explicit example that a linear dependence on n is necessary.

1.2.6 An operational definition?

Earlier we qualified our definition of a qubit as being “operational”. This term is generally used to refer to
a definition that can be “observed”, i.e. the definition should imply a natural “test” that can be performed
experimentally and that “certifies” that a certain object satisfies the definition in some way or another. Def-
inition 1.1, or even the approximate version of it suggested in the previous section, lacks severely in that
matter: who gets to observe “operators”? How can the anti-commutator be “witnessed”? In the next lecture
we will refine our definition so that we are able to answer these questions.

8We slightly abuse notation in writing e.g. Si for Xi when S = X.
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Lecture 2

Testing a qubit

Recall the definition of a qubit from the first lecture: a qubit is a triple (H, X, Z) of a Hilbert space H
and a pair of binary observables X and Z on H such that {X, Z} = 0. Unfortunately, this definition is far
from operational! The operator condition {X, Z} = 0 is not something that we can hope to test based on
experimental data alone. A simple reason for this is that in general we may only hope to observe expectation
values for observables W evaluated on a certain state |ψ〉. While we may be able to prepare quite a range
of states |ψ〉 using our experimental system, there is no hope that we can prepare all possible states, which
would be required for a full “tomography” of the observable.1

Today we tweak our definition to obtain a new one that we claim is truly “operational,” and we start
exploring means of justifying this claim by showing how the definition can be “tested”.

2.1 Setup

Before we can make precise what we mean by “operational” we need to describe the framework in which we
operate. This framework is inspired by an (idealized) perspective on how “real-life” experiments are made.
An experiment can be formalized as an interactive process that involves two entities. One of the entities is
the “experimentalist”, whom we will refer to as the verifier. The other entity is the “quantum device” on
which the experiment is being performed. We will personify that device and refer to it as the prover. (We
motivate this terminology a little later.)

In an experiment the experimentalist generally has a model of how the device is expected to behave.
This model can be used to predict the input-output behavior for the device, i.e. how it will react to various
stimuli that the experimentalist might subject it to. For example, the device may be the combination of a
laser, a sheet of paper with two slits on it, and a screen. This device takes inputs in {0, 1}2 that model the
experimentalist’s choice of slits to open (0 for ’open’ and 1 for ’closed’). The device’s outputs are elements
of, say, {R, G, B}1000×1000, i.e. a 1000× 1000 pixel RGB image of the screen. The experimentalist’s model
makes a prediction for the device’s output picab on each possible input (a, b). In addition, if the experimen-
talist follows best practices in statistics they should decide a priori on a scoring function that determines,
whenever the experiment is performed, a “success score” for the experimental outcome obtained. In our ex-
ample we could use the normalized Hamming distance 10−6dH(picab, resab) where for a, b ∈ {0, 1}, picab
is the ideal outcome and resab the experimental outcome. The experimentalist would then repeatedly provide

1The problem is distinct from the “exponential scaling” of the Hilbert space: here, the issue is that we simply can’t expect that
the experimentalist has the ability to probe the system’s entire Hilbert space; in particular, we cannot impose any dimension bound
a priori.
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inputs (a(i), b(i)) to the device for i = 1, . . . , chosen uniformly at random or with some smarter distribution
(e.g. she could decide to never test the case (1, 1) corresponding to both slits closed), obtain a sequence of
outputs res(1), res(2), . . ., and return an averaged score that quantifies agreement of the experiment with the
theory.

Having set the stage with this rather loose description we make some important remarks:

1. Our notion of interactive experiment substantially restricts the means by which the experimentalist
may interact with the device. The experimentalist is allowed to provide classical inputs and obtain
classical outputs in return. While there may be some semantics associated with the inputs and outputs
(“which slit is open”, “an RGB image”) when the experiment is performed there is no guarantee that
these semantics correspond to any real-life phenomenon: inputs and outputs are strings of bits, nothing
more. There is no a priori guarantee that the device has any number of “slits” that are being “opened”
or “closed”; maybe the mysterious device contains a student equipped with a textbook on quantum
mechanics that allows her to calculate a reasonable outcome for the experiment. We emphasize that
“in real life” the experimentalist will typically make a number of explicit and implicit assumptions
about the system that is being tested and how it is accessed; here we aim to minimize such assumptions
to the extreme.

2. The insistence on classical inputs and outputs also means that we forbid the experimentalist from
directly accessing the quantum state or measurements of the device. One of our basic goals is to
devise tests that distinguish a classical device from a quantum one, and so we cannot assume any
quantum access to it a priori. We will formalize this model of “black-box access” in more detail in
the next section.

3. Nevertheless, we will assume throughout that quantum mechanics is a correct theory, i.e. the device
can always be modeled using the framework of quantum mechanics: it has a quantum state (that may
be entangled with the environment) that it evolves unitarily and measures according to the Born rule.
What we will aim to test is e.g. that the device does not have a model in classical mechanics.

4. Assuming correctness of quantum mechanics will not suffice. Make sure that you can convince your-
self of the following statement: “for any non-trivial experiment, i.e. such that for each possible input
of the verifier there is at least one output that would be accepted, there is a classical device that is
always accepted in the experiment.” In other words, any meaningful experiment will need to place
additional assumptions on the device: maybe the “valid” outcomes are hard to compute for a clas-
sical device, or maybe they are impossible to generate without entanglement or communication, etc.
Are we contradicting our first item? It all depends on what the assumption is. We will aim for as-
sumptions that require the least “faith” possible in the adequate execution of the experiment (i.e. the
experimentalist’s skills).

5. We ended the description of the double slit experiment by suggesting that the experimentalist may re-
peat the same experiment multiple times in order to collect statistics. In real life there is no guarantee
that a device behaves identically from one experiment to the next; its behavior may naturally fluctuate
with time, or it may have memory and adapt itself, etc. The assumption that the device can be ac-
cessed repeatedly without changing its behavior is called the “i.i.d. assumption”, for “identically and
independently distributed”. We will make that assumption when it is convenient; more often than not
it can be dropped at the cost of substantial technical work that we will not always have the opportunity
to accomplish.
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2.2 Interactive proofs

With this informal motivation for our notion of an “interactive experiment” in place we now give a more
precise framework for modeling such experiments. For this we adapt the framework of interactive proof
systems from cryptography and complexity theory. In this framework it is generally assumed that a trusted
entity called the verifier interacts with an not-necessarily-trusted entity called the prover. The verifier is
trying to verify some claim about the world (e.g. in complexity, that some input formula ϕ is satisfiable) or
about the prover itself (e.g. in cryptography, that the prover has the right identifying information). Towards
this the verifier may “interrogate” the prover in an interactive manner. At the end of the interaction the
verifier makes a decision to accept or reject. Informally, the proof system will be called “sound” if whenever
the verifier accepts, the claim is indeed true.

The formal definition of an interactive proof system makes use of the notion of “interactive Turing
machine” to model the prover and verifier. Since this formalism will not be essential for us we refer the
interested reader to [VW16, Chapter 4] for details. In complexity theory an interactive proof is always
associated to a language, that is a collection of problems, usually specified by strings x ∈ {0, 1}∗, such that
some of the problems have an affirmative answer and some have a negative answer (e.g. the problems could
be graphs, and the ones with affirmative answer those that have a proper 3-coloring). At the beginning of
the interactive proof both prover and verifier are provided with a problem instance x, and the goal of the
verifier is to leverage the prover’s computational power to help her determine if x is a positive instance, all
the while accounting for the fact that the prover may misbehave.

For our purposes we are led to slightly broaden the notion in an informal manner, so that we can not
only associate interactive proof systems to formal languages but also to statements about the device itself,
as is sometimes done in cryptographic applications of interactive proof systems. We will thus refer to an
interactive proof system, or sometimes more simply a “test,” for a hypothesis H as the specification of a
verifier in an interactive protocol with the following properties: (In the protocol both verifier and prover
may be provided with some auxiliary input, a classical xV for the verifier and a quantum ρP for the prover.)

1. Completeness: This property means that whenever the hypothesis H (which may depend on xV and/or
ρP) is satisfied there is a way for the prover to be accepted in the protocol “with high probability.” We
will sometimes use a parameter c ∈ [0, 1] to designate the probability that a “honest prover” succeeds
in the protocol.

2. Soundness: This property means that whenever the hypothesis H is not true no prover can succeed in
the protocol with probability higher than a small quantity s ∈ [0, 1] termed the “soundness parameter”.

We give a few examples. In the traditional setting of interactive proof systems the hypothesis H is that
xV = ρP ∈ L, where L is a fixed language, xV is the verifier’s input, and the prover’s input ρP is assumed
to equal xV . For example if L = 3COL then completeness states that whenever both V and P are provided
with the valid description of a graph as input, and that this graph is 3-colorable, there must be a way for
the prover to convince the verifier that this is so; soundness states that whenever xV designates a graph that
is not 3-colorable, irrespective of what ρP is there is no way for the prover to convince the verifier. (An
interactive proof system that satisfies both conditions is one in which the verifier simply expects the prover
to directly provide it with a proper coloring.)

As a second example, H could be the hypothesis that “P has the BB’84 state that is specified by xV”.
In this case we expect that e.g. xV = (v, θ) for v, θ ∈ {0, 1} and ρP = Hθ |v〉. Completeness states that if
this is indeed the case then there should be a way for P to succeed; soundness states the converse. There is
an easy quantum protocol for this hypothesis in which P is expected to provide its qubit to V, who verifies
it by performing the appropriate measurement. But is there a classical protocol?
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Finally, a less formal but more interesting for us example is that we could consider H to be the hypothesis
that “P has a qubit.”. In this case we do not make use of the auxiliary inputs; completeness states that for
any prover that does have a qubit (i.e. P has access to observables X, Z on H such that {X, Z} = 0) then
there should be a way for it to succeed in the protocol, whereas soundness states that conversely, any prover
that succeeds in the protocol must “have a qubit.”

2.3 An operational definition of a qubit

Given an interactive experiment of the sort described in the previous section, how do we model the actions
of an arbitrary prover in the protocol? At each stage of the protocol the prover receives a question x ∈ X
and is expected to provide an answer a ∈ A. Here X andA are finite sets that are specified by the protocol.
Although in general these sets may vary depending on the round in the protocol, for convenience we can
assume that it is always the same set of questions and of answers that is used.

As discussed earlier we will in general make the assumption that the prover’s actions can be modeled
using quantum mechanics. Thus there must exist a Hilbert space H associated with the prover and a state
ρ ∈ D(H) that the prover possesses at the start of the protocol.

Remark 2.1. Here we start using the density matrix representation for quantum states: we use the notation
D(H) to represent the set of density matrices on H, i.e. positive semidefinite matrices with trace 1. A
density matrix is used to represent part of a quantum state |ψ〉 ∈ H ⊗H′. Here H′ designates the Hilbert
space associated with the “environment”, which is everything that is not in the possession of V or P. Since
we do not want to rule out that the prover may share entanglement with the environment, we do not assume
that their initial state is a pure state |ψ〉.

When P receives its question x it measures some observable Ox = ∑a λaΠx
a , where λa are arbitrary and

Πx
a projections that sum to identity, i.e. Πx

a is a POVM. According to the Born rule, it obtains an answer
distributed as Pr(a|x) = Tr(Πx

a ρ).2 Finally the quantum state ρ of the prover gets updated as a function
of the outcome obtained. This formalization is fully general; in particular it can be used to model classical
deterministic strategies by setting Πx

a = 1 f (x)=a where f would be the function used by the prover to
determine its answers. Similarly, randomized strategies can be represented by making use of a totally mixed
state ρ = ∑r pr|r〉〈r|, for some arbitrary distribution {pr}, to capture the randomness.

When the interactive experiment is executed the only observable data that is accessible to the experi-
mentalist is, at best, the probabilities Pr(a|x).3 An important consequence of this is that we cannot hope to
achieve a characterization of the prover’s observable itself, but instead may only make assertions about the
action of the observable on the state. That is, if O is an observable, |ψ〉 a state on which it acts, and U an
arbitrary unitary,

〈ψ|O|ψ〉 = 〈Uψ|(UOU†)|Uψ〉 .

Thus two models of the prover, using state |ψ〉 and observable O or using state U|ψ〉 and observable UOU†,
lead exactly to the same observed data. Our earlier definition of a qubit, by ignoring the role played by the
state and imposing constraints on the operators themselves, violates this. This leads us to update our first
definition as follows.

2This is the generalization of the Born rule to density matrices. We recover the pure case by restricting to ρ = |ψ〉〈ψ|, in which
case using cyclicity of the trace, Tr(Πx

a ρ) = Tr(Πx
a |ψ〉〈ψ|) = 〈ψ|Πx

a |ψ〉.
3We write “at best” because the experimentalist does not get to see probabilities. Under the i.i.d. assumption it can sometimes

estimate them to within an additive error. However, in the case where A is a large alphabet it may be that all probabilities are
exponentially small. This will be the case in some of the experiments that we describe.
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Definition 2.2 (Qubit, Take 2). A qubit is a triple (|ψ〉, X, Z) such that |ψ〉 ∈ S(H), whereH is a separable
Hilbert space left implicit in the notation, and X and Z are Hermitian operators onH such that

{X, Z}|ψ〉 = 0 . (2.1)

Note that the definition still makes the requirement that X2 = Z2 = Id as operators. This is because this
requirement follows from the laws of quantum mechanics themselves; informally, it just means that each of
X and Z has a spectral decomposition with two associated eigenprojections, i.e. they represent valid binary
observables.

At this point there are two important questions we should be asking: (i) Is this definition meanginful?
With the anti-commutator weakened as in (2.1), does the definition still capture our intuitive notion of a
qubit? (ii) We weakened the definition in an arbitrary-looking way by inserting a dependence on the state
vector |ψ〉. Can we justify this, i.e. are we now able to develop protocols that test the definition?

In the remainder of the lecture we provide partial answers to these two questions. To answer the first,
we show the following.

Lemma 2.3. Let (|ψ〉, X, Z) be a qubit on H. Then there exists a Hilbert space H′ and an isometry
V : H → C2 ⊗H′ such that

VX|ψ〉 = (σX ⊗ Id)V|ψ〉 and VZ|ψ〉 = (σZ ⊗ Id)V|ψ〉 . (2.2)

The following diagram illustrates the situation guaranteed by the lemma:

H C2 ⊗H′

H C2 ⊗H′

V

X, Z σX⊗Id, σZ⊗Id

V

(2.3)

Note that the lemma no longer says that X is equal to σX ⊗ Id (under the isomprhism π), but only that it
has the same action on the state, up to the isometry V. In particular, it is now possible for H to have odd
dimension. This is necessary: for example, we can set

|ψ〉 =

1
0
0

 , X =

0 1 0
1 0 0
0 0 1

 , Z =

1 0 0
0 −1 0
0 0 1


and still satisfy Definition 2.2. Here, the third dimension has been added to the operators but since none
of |ψ〉, X|ψ〉 or Z|ψ〉 has support on it it is “inaccessible” to any experiment that involves only this state
and operators. However, it is good to verify that the definition is non-trivial, and in particular requires
dim(H) ≥ 2. Indeed, suppose that X|ψ〉 and Z|ψ〉 are colinear. Then by (2.2) it follows that (σX ⊗
Id)V|ψ〉 and (σZ ⊗ Id)V|ψ〉 are colinear. As we saw in the previous lecture, due to {σX, σZ} = 0 this is
impossible.

Proof. The proof is very similar to the proof of Lemma 1.2. Using Jordan’s lemma we find a decomposition
H = ⊕iSi such that for each i, Si is stable by both X and Z and moreover either Si is 1-dimensional

or Si is 2-dimensional and in a well-chosen basis, Z = σZ and X =

(
ci si
si −ci

)
for some ci = cos 2θi,

θi ∈ [0, π/2). For the one-dimensional blocks the anti-commutator equals (2). For a two-dimensional
block we compute {X, Z}2

|Si
= 4c2

i Id. Decompose |ψ〉 = ∑i αi|ψi〉 with |ψi〉 ∈ Si. Then we immediately
see that if Si is a 1-dimensional block, or a 2-dimensional block such that ci 6= 0, then αi = 0. This proves
the lemma.
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Note that the proof of the lemma shows something slightly stronger than is captured by the statement of
the lemma: informally, that for any of the subspaces Si on which |ψ〉 “has nonzero mass”, it must be that
{X, Z}|Si

= 0, as operators. But we can’t conclude anything about blocks where |ψ〉 “has no mass”.
The proof that we gave easily extends to the approximate case.

Exercise 2.1. Say that (|ψ〉, X, Z) is an ε-approximate qubit if ‖{X, Z}|ψ〉‖ ≤ ε. Show that there is an
isometry V : H → C2 ⊗H′ such that for W ∈ {X, Z},

∥∥(W −V†(σW ⊗ Id)V
)
|ψ〉
∥∥2 ≤ O(ε) .

[Hint: Use 2(1− sin θ) ≤
√

4 cos2 θ for θ ∈ [0, π).]

We end the section with a semi-informal definition of “self-testing” that connects the notion of interactive
experiment that we discussed earlier with the definition of qubit that we arrived at. For convenience we state
the definition for the setting of an experiment that involves a single round of interaction: a question x is
selected by the experimentalist, and an answer a is provided by the device. The “observable data” of such
an experiment is completely captured in the family of distributions {p(·|x)}x∈X overA, and so the starting
point for the definition is that data only.

Definition 2.4. We say that the family of conditional distributions {p(·|x)}x∈X self-tests a qubit if for any
state |ψ〉 ∈ S(H) and family of POVM {Px

a }a∈A for x ∈ X such that p(a|x) = 〈ψ|Px
a |ψ〉 for all a, x there

is an isometry V : H → C2 ⊗H′ and x0, z0 ∈ X such that the measurements Px0 and Px1 have only two
possible outcomes 0, 1 and moreover

V(Px0
0 − Px0

1 )|ψ〉 = (σX ⊗ Id)V|ψ〉 and V(Pz0
0 − Pz0

1 )|ψ〉 = (σZ ⊗ Id)V|ψ〉 . (2.4)

As you can see the definition is a little uncomfortable to state; not only does the notation quickly get
pretty heavy but one also has to be quite careful to make a meaningful statement for the applications that
one has in mind.

The use of the isometry in the definition may come as a surprise, because it allows us to “artificially”
extend the space in which the operators live. This is necessary because as discussed below Definition 2.2
in general the dimension of H may not be even, whereas any space in which we can write something like
“σX ⊗ Id” must have even dimension. For the time being you can think of V as an artefact that may create
additional dimensions in which V|ψ〉 has no “mass” at all, but are still needed to give the desired form to
the operators. As discussed below Lemma 2.3, even with the isometry the conclusion of the lemma is not
trivial since it at least implies that dimH ≥ 2.

Unfortunately, it is not hard to see that the definition is not “achievable” in the sense that without further
assumptions, no family of distributions {p(·|x)}x∈X self-tests a qubit in the sense of the definition. This is
simply because in general one cannot avoid that, say, |ψ〉 = 1 ∈ C and Px

a = p(a|x) for all a and x, which
is a valid POVM.4 As such one should only treat this definition as “indicative” and we use it for inspiration
only. In the future we will generally establish special-purpose statements that are more precise depending
on the situation we’re in.

4It is also possible to get a trivial realization using projective measurements by taking |ψ〉 to be sufficiently many EPR pairs, or
a more general entangled state, so as to instantiate the randomness required to implement the distribution.
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2.4 A first test for a qubit

We proceed to give a first answer to our second question, “is the definition testable?” Our answer today will
not be completely satisfactory, but it’s a start. Most important is that it will allow us to practice the notions
introduced so far and put in place techniques that will be useful later on.

In order to analyze the protocol that we give in Section 2.4.2 we will need some elementary notions
about density matrices and entanglement. The reader already familiar with these notions may skip the next
section, which contains a very brief introduction; as usual we refer to [NC02] for a much more leisurely,
and comprehensive, discussion.

2.4.1 Entanglement and density matrices

A pure state, as we know, is a unit vector in a Hilbert space H. A pure bipartite state is |ψ〉 ∈ HA ⊗HB,
where the “bipartition” ofH = HA⊗HB is often implicit from context. We use subscripts A or B to denote
subsystems, sometimes also called “registers”. Any pure bipartite state has a Schmidt decomposition

|ψ〉AB = ∑
i

√
λi|ui〉A|vi〉B (2.5)

where the λi are non-negative reals that sum to ‖|ψ〉‖2 = 1 and {|ui〉} and {|vi〉} are orthonormal bases
of HA and HB respectively. Here in the notation we sometimes, but not always, include a subscript A or
B (or both) on a “ket” to indicate which subsystem the state lies in. The coefficients λi in (2.5) are called
Schmidt coefficients and are uniquely defined. The {|ui〉} and {|vi〉} are called Schmidt vectors. The
reduced state of |ψ〉AB on HA is described by a density matrix ρA = ∑i λi|ui〉〈ui|, that one can interpret
as a distribution over pure states |ui〉. More generally, if ρAB is a density matrix on HA ⊗HB we use the
notation ρA = TrB(ρAB) to denote its reduced density on HA, and ρB = TrA(ρAB) for HB. These reduced
densities can be computed by extending the definition given for pure states by linearity, or in any other of a
number of equivalent ways.

For us, the EPR pair is a specific bipartite state |φ+〉 = 1√
2
(|00〉+ |11〉). It has the interesting property

that for any orthonormal basis |u0〉, |u1〉 of C2,

|φ+〉 = 1√
2
(|u0〉|u0〉+ |u1〉|u1〉) . (2.6)

This is because more generally for a linear operator A on C2, (A⊗ Id)|φ+〉 = (Id⊗AT)|φ+〉. In particu-
lar, we see that if a measurement of the first qubit is made in the basis {|u0〉〈u0|, |u1〉〈u1|} and the outcome
b ∈ {0, 1} is obtained then the state of the second qubit reflects this fact, becoming |ub〉〈ub|.

2.4.2 The protocol

Consider the following protocol between a “verifier” V and a “prover” P. Although ultimately our goal is to
have protocols that involve a purely classical verifier, in this first protocol V has some quantum capabilities;
its goal is to use this to ascertain that P has similar capabilities. In particular for this protocol we assume
that V has a quantum communication channel to P.

1. V selects two bits v, θ ∈ {0, 1} uniformly at random. She prepares a single-qubit state |vθ〉 = Hθ |v〉,

where H = 1√
2

(
1 1
1 −1

)
is the Hadamard matrix, and sends it to P.
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2. V waits for a few seconds.

3. V sends θ to P.

4. P returns a value v′ ∈ {0, 1}.

5. V declares that P has succeeded if and only if v′ = v.

We claim that any prover that succeeds with probability 1 in this protocol “has a qubit”. Before showing
this, let’s discuss a few points.

• What do you mean, the prover has a qubit? Of course it has a qubit–the verifier sent it to him! Aha,
but remember the discussion surrounding our definition of a qubit! What the prover gets is the state of
a qubit. A good model for a “classical” prover would be one that quickly measures (“decoheres”) any
state it receives in the computational basis, recovering the classical information only. Certainly, such
a prover would not count as having a “qubit”, because any measurement they are able to make is in
the computational basis, and in particular commutes. And indeed, it is easy to verify that such prover
only succeeds with probability at most 3/4 in the test. This is why step 2., the few seconds’ pause, is
inserted in the protocol. As we will see from the proof, we will be able to show that the prover still
“has a qubit” at step 3, when it receives the value θ from v.

• Didn’t we say that the verifier is classical? How come they can prepare qubits? That’s a good point.
As our analysis will show it is possible to show that the same protocol remains valid if we remove the
assumption that the verifier prepares the claimed state. That is, we can assume that an arbitrary entity
prepares an arbitrary (1 + N)-qubit state and sends one qubit to V and the others to P. In that case
the only thing that we need to assume is that the verifier has the ability to measure σX and σZ. So,
using that the verifier has a qubit, they can check that the prover also has a qubit. It’s not so trivial!

• How can you check that the prover succeeds with probability 1? Of course, we can’t. Assuming
that the prover behaves in an i.i.d. fashion, repeating the protocol K ∼ (1/ε) log(1/δ) times and
observing K successes would let us conclude, with confidence 1 − δ, that the prover’s “intrinsic”
probability of succeeding is at least 1− ε.5

Lemma 2.5. Suppose that a prover P succeeds with probability 1 in the protocol. Then P has a qubit.

To connect the statement of the lemma to Definition 2.4 we could also try to say that in this protocol, the
family of distributions {p(v′|θ, v) = 1v′=v}v,θ∈{0,1} “self-tests” a qubit. As we had predicted however, the
protocol does not neatly fit the definition for multiple reasons: it is not a 1-round protocol, there is quantum
communication, and the verifier maintains private information (the value v).

Proof. Before we show anything let’s first model precisely what goes on in this protocol; this modeling
step is often the most important one in the analysis of a protocol. For the proof it is more convenient (and
also more general) to consider the “purified” variant hinted at above. First, note the following equivalent
description of the protocol:

1. The verifier prepares a two-qubit EPR pair |φ+〉 = 1√
2
(|00〉 + |11〉). She keeps the first qubit to

herself and and sends the second to the prover.

5In other words, we’d show that any prover whose probability of succeeding is < 1− ε only has a chance at most δ to succeed
in K repetitions.
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2. The prover applies an arbitrary quantum map to their qubit, yielding the shared state |φ̃〉 = (Id⊗W)|φ+〉,
where W is the prover’s operation. In general, the prover’s map can be any isometry6 as the prover
may append ancilla qubits if it so desires.7

3. The verifier flips a coin θ ∈ {0, 1} and measures her qubit in the standard basis (i.e. the eigenbasis
of σZ) if θ = 0 and the Hadamard basis (the eigenbasis of σX) if θ = 1, obtaining an outcome
v ∈ {0, 1}.

4.-5. Same.

Using the observation (2.6) (and the discussion that follows it) we see that Step 4 has the effect of projecting
the prover’s share of the joint state to W|vθ〉, which is effectively the state that it would be in had we
proceeded according to the original description of the protocol. So, the two descriptions are equivalent.

This “purified” description of the protocol has one major advantage, which is that it allows us to “delay”
Alice’s choice of θ and v until step 3; as we will see this is very helpful. Yet the version that we wrote down
is still not so easy to analyze, mainly due to the fact that the isometry W may be completely arbitrary. As it
turns out it is more convenient to analyze another variant in which the prover is given more power, so that
showing this variant secure will immediately imply the same for the original one. In the new variant we
replace the first two steps by imagining that both verifier and prover are handed out a share of an arbitrary
initial state |ψ〉AB ∈ C2

A⊗HB. Here the verifier gets the first subsystem, that is assumed to be of dimension
2, and the prover gets the second subsystem, whose dimension is arbitrary. This is more general because the
state of the verifier’s qubit is no longer characterized (except for its dimension, that we fix to 2). However,
we will show that even in this variant in order to succeed the prover must “have a qubit”.

Remark 2.6. It will generally be convenient to assume that any measurement that the prover makes can
be modeled by a projective measurement. Abstractly, this can be guaranteed by Naimark’s theorem. We
will not review the theorem here, but if you are not familiar with it it is a good idea to make sure that you
understand its formulation. In particular, any use of Naimark’s may require extending the Hilbert space
by adding ancilla qubits to |ψ〉. This operation is an isometry that one should not forget to include in the
conclusion one is making—it is another reason for including the isometry V from Definition 2.4.

Continuing our modeling effort, at step 4 of the protocol the prover has in its hands (i) the qubit it
received from the verifier, that we model as the second half of some |ψ〉AB ∈ C2

A⊗HB (where the extension
to a larger space HB may have occurred as a result of some map that the prover applied during the course
of step 2 in the protocol), and (ii) the value θ ∈ {0, 1} it has received at step 3. Given this information,
it is expected to return a value v′ ∈ {0, 1}. In full generality we can model this by saying that for each
θ ∈ {0, 1} the prover has a measurement {Pθ

0 , Pθ
1 } that it performs on its share of |ψ〉AB in order to obtain

v′. Using the remark we may further assume that this measurement is projective, and so we can associate a
binary observable Pθ = Pθ

0 − Pθ
1 , for θ ∈ {0, 1}, to it. While this requires to enlarge the prover’s space to

apply Naimark’s theorem, since here we already allow the space to be arbitrary there is no loss in generality
with assuming at the outset that {Pθ

0 , Pθ
1 } is projective.

With all this modeling in place we are ready to write a formal expression for the prover’s success prob-

6An isometry is a linear length-preserving map into a larger space. Formally, W : C2 7→ H such that W†W = Id. For example,
W|u〉 = |u〉|0〉 is an isometry, which simply appends a qubit in state |0〉 to its input.

7We can use the ancilla to model a classical prover as well; here, W would simply copy the qubit to an environment register that
would become inacessible to the prover. This effectively decoheres the qubit that remains in the prover’s possession.
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ability in the test. By definition it is

Pr(v = v′) =
1
2
(
〈ψ|(|0〉〈0| ⊗ P0

0 )|ψ〉+ 〈ψ|(|1〉〈1| ⊗ P0
1 )|ψ〉

)
+

1
2
(
〈ψ|(|+〉〈+| ⊗ P1

0 )|ψ〉+ 〈ψ|(|−〉〈−| ⊗ P1
1 )|ψ〉

)
. (2.7)

Here the factors 1
2 represent the probabilities that the verifier chooses θ = 0 (measurement in the standard

basis) and θ = 1 (measurement in the Hadamard basis) respectively, and inside each bracket each of the
two terms represents the probability that the prover and verifier obtain the same measurement outcome
v = v′ = 0 for the first term and v = v′ = 1 for the second. Using the identities

|0〉〈0| = 1
2
(

Id+σZ
)

, |1〉〈1| = 1
2
(

Id−σZ
)

and |+〉〈+| = 1
2
(

Id+σX
)

, |−〉〈−| = 1
2
(

Id−σX
)

as well as the symmetric ones

P0
0 =

1
2
(

Id+P0) , P0
1 =

1
2
(

Id−P0) and P1
0 =

1
2
(

Id+P1) , P1
1 =

1
2
(

Id−P1)
together with some simple manipulations we can rewrite the expression (2.7) as

Pr(v = v′) =
1
2
+

1
4
(
〈ψ|σZ ⊗ P0|ψ〉+ 〈ψ|σX ⊗ P1|ψ〉

)
. (2.8)

This equality is the central equality in the proof, so it is worth looking at it closely. The expression quantifies
some form of “correlation” between the verifier’s observables, σZ and σX, and the prover’s, P0 and P1. Each
of the numbers inside the brackets on the right-hand side is a real number in [−1, 1] that is the expectation
value of the product of their outcomes, when interpreted as values in ±1. For the success probability to
equal 1 the outcomes must always match. Note, however, that the verifier is making two incompatible
measurements on their share of the state. The following claim shows that in this situation the prover’s
observables must also be incompatible, i.e. anti-commute.

Claim 2.7. Let |ψ〉 ∈ C2 ⊗H be an arbitrary state and X, Z arbitrary observables onH such that

〈ψ|σX ⊗ X|ψ〉 = 〈ψ|σZ ⊗ Z|ψ〉 = 1 . (2.9)

Then (Id⊗{X, Z})|ψ〉 = 0.

Intuitively, if X and Z were not incompatible then, since X can be used to predict the outcome of σX
and Z that of σZ, by simultaneously measuring the compatible observables X and Z we would be able
to simultaneously predict the outcomes of a measurement in the incompatible observables σX and σZ, a
contradiction. Let’s see the proof.

Proof. Using that all operators have norm at most 1 and that ‖|ψ〉‖ = 1 the equality (2.9) implies that

Id⊗X|ψ〉 = σX ⊗ Id |ψ〉 and Id⊗Z|ψ〉 = σZ ⊗ Id |ψ〉 .

Using these identities,

XZ|ψ〉 = σXσZ|ψ〉
= −σZσX|ψ〉
= −ZX|ψ̃〉 ,

as required.
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Exercise 2.2. The proof can be adapted to show a bit more than we extracted from it. By using Lemma 2.3
show that under the same assumptions as in the claim there must exist an isometry V : H → C2 ⊗H′ on
H under which (IdC2 ⊗V)|ψ〉 = |φ+〉 ⊗ |ψ′〉, where |φ+〉 = 1√

2
(|00〉+ |11〉 is an EPR pair and |ψ′〉 an

arbitrary state on H′. That is, even if we do not assume a priori that the two parties share an EPR pair, they
must do so in order to win with probability 1.

Applying Claim 2.7 to Z = P0 and X = P1 and using (2.8) to verify that (2.9) is satisfied we obtain
that (|ψ〉, P0, P1) is a qubit according to Definition 2.2. This concludes the proof.

2.5 Scaling it up: a test for quantum memory

The main drawback of the test presented in the previous section is that it requires one qubit on the verifier
side to test one qubit on the prover side. In general we are interested in tests where the verification effort is
much smaller than the effort that is certified of the quantum device, or “prover”.

The test we presented has a natural “scaled up” variant, in which the verifier sequentially prepares single-
qubit states |vθi

i 〉 for i = 1, . . . , n and sends them to the prover. Once all qubits have been sent, the verifier
announces θ1, . . . , θn and expects v′1, . . . , v′n ∈ {0, 1} such that v′i = vi for all i. In this test the verifier can
accomplish her share of the work using a single-qubit computer only, since she can prepare and send the n
qubits one at a time and use classical memory to store the entire strings v, θ ∈ {0, 1}n. A similar analysis
as the one presented in the previous section would then demonstrate that the prover “has n qubits”, where
the notion of having n qubits is the state-dependent version of the n-qubit definition we saw in the previous
lecture, Definition 1.4. Moreover, an n-qbut variant of Lemma 2.3 also holds, so that we’d effectively have
shown that the prover does require a quantum memory of dimension 2n in order to successfully accomplish
its task.

Unfortunately, the method that we introduced so far does not extend well to success probabilities smaller
than 1. In general it is unrealistic to make the assumption that the prover succeeds perfectly in the protocol,
as this cannot be verified. A more reasonable assumption is that the prover succeeds with probability 1− ε,
for some constant ε > 0 that can be made smaller and smaller with higher and higher confidence by repeating
the protocol, but can never be driven down to exactly zero. As far as I can tell applying the method from
the previous section to this case only yields a good bound on the quantum dimension of the prover when
ε = O(1/n), which then requires Ω(n) executions of the protocol to certify. (See [CRSV18, Theorem 2.1]
for a quantitative statement of the kind that would apply here.)

Instead in this section we propose a different method to analyze the scaled up protocol, that uses
information-theoretic technique to quantify the intuition from previous section that the quantumness of the
prover arises from its need to make predictions for incompatible observables. This method based on infor-
mation theory has the advantage that it generally yields much better quantitative results. The main drawback
is that it allows us to certify less—here, we will be able to certify the prover’s quantum dimension but not
the observables that it makes use of.

Before stating the protocol precisely and giving the analyzis we introduce a variant of Heisenberg’s
uncertainty principle “for qubits” that we will make use of in the proof.

2.5.1 Uncertainty relations

Our notion that anti-commuting observables are “incompatible” can be quantified through the uncertainty
principle. Here is an elementary formulation that applies to our context, due to Maassen and Uffink. To state

27



it we recall the definition of the Shannon entropy,

H({pi}) = −∑
i

pi log pi ,

for any distribution {pi}. Note that here we use a variant using base 2 logarithms, which is the standard
used for the extension to density matrices, that we give a little later.

Theorem 2.8. Let R and S be observables on H. Let c = max |〈ψ|φ〉|2 where |ψ〉 (resp. |φ〉) ranges over
all eigenvectors of R (resp. S). Let |ψ〉 be an arbitrary state on H and let R and S be random variables
distributed as the outcome of a measurement of R and S on |ψ〉, respectively. Then

H(R) + H(S) ≥ log2
1
c

. (2.10)

In the case when R and S are binary observables then c is precisely the squared cosine of the smallest
principal angle between an eigenspace of R and an eigenspace of S. If R and S have an eigenvector in
common then c = 1 and the right-hand side in (2.10) vanishes, as one would expect since taking |ψ〉 to be
that eigenvector yields zero entropy on the left-hand side. If R and S anti-commute, all the principal angles
are π/4 and so c = 1

2 . In this case, the uncertainty principle states that among the two binary variables R
and S there is at least one bit of entropy. This is a quantitative version of an observation that we made in
the first lecture, which was that any state that is determined for one observable must be “fully random” with
respect to the other: in that case we get H(R) = 0 and H(S) = 1 (or vice-versa). Theorem 2.8 shows that
there is always a quantitative trade-off between these two extremes.

For our purposes we need an extension of this relation to the case of quantum memory. To motivate it,
interpret Theorem 2.8 as a statement about the difficulty of a prediction task:

1. The “adversary” prepares an arbitrary pure state |ψ〉 and sends it to the “challenger”.

2. The challenger selects a uniformly random θ ∈ {0, 1} and measures |ψ〉 using the observable R (case
θ = 0) or S (case θ = 1), obtaining an outcome r or s respectively. It sends θ to the prover.

3. The prover returns a guess r′ or s′, depending on θ.

4. The adversary succeeds if its guess is correct.

Intuitively Theorem 2.8 states that there is no way for the adversary to succeed in this game, because however
it prepares |ψ〉 at least one of r or s will have randomness in it, making it impossible to predict without
additional information. (There is a precise quantitative connection between optimal success probability
in this game and the left-hand side in (2.10), but making this precise would take us a little too far in the
discussion of entropies.)

Now suppose for simplicity that R = σX and S = σZ. Then the game studied in the previous section
suggests that there is a way for the adversary to succeed perfectly in this game, if they are allowed to have
quantum memory: in this case, they would prepare an EPR pair |φ+〉AB and give only the first qubit to the
challenger. To match the challenger’s outcome, they would simply make the same measurement on the qubit
that they had kept to themselves. In this case their prediction will be correct with probability 1!

This example suggests that Theorem 2.8 should be modified to account for this more complex scenario.
Berta et al., based on work by Christandl, Winter, and others, introduced the following refinement. To state
the refinement we recall the definition of the conditional von Neumann entropy: for a bipartite state ρAB,

H(A|B)ρ = H(ρAB)− H(ρB) , (2.11)
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where ρB is the reduced density matrix of ρAB on HB and for a density matrix σ, H(σ) is its von Neumann
entropy

H(σ) = −Tr(σ ln σ) = −∑
i

λi log λi ,

where the λi are the nonzero eigenvalues of σ.
. Note that this quantity can be negative! However, it can never be more negative than the “quantum

dimension” of B. To make this notion precise we introduce the notion of a “classical-quantum”, or CQ
state. A CQ state is simply a bipartite state such that the first system is classical. More precisely, a CQ state
ρAB ∈ D(HA ⊗HB) has a decomposition

ρAB = ∑
x
|x〉〈x|A ⊗ (ρx)B ,

where here x ranges over the standard basis of HA. The first system is “classical” in the sense that a
measurement of it in the standard basis does not change ρ. Now, for an arbitrary state ρ ∈ HA ⊗ HB
suppose that we can decompose the B part into a “classical” part C and a “quantum” part Q:

ρB = ∑
c

pc |c〉〈c| ⊗ ρc ∈ HC ⊗HQ ,

where {pc} is an arbitrary distribution. Then ρAB = ∑c pc|c〉〈c| ⊗ ρ′c, with ρ′c ∈ D(HA ⊗HQ) such that
TrA(ρ

′
c) = ρc. Then,

H(A|B)ρ = H(ρAB)− H(ρB)

=
(

H({pc}) + ∑
c

pcH(ρ′c)
)
−
(

H({pc}+ ∑
c

pcH(ρc)
)

≥ min
c

(
H(ρ′c)− H(ρc)

)
= min

c
H(A|Q)ρ′c

≥ − log dimHQ . (2.12)

Here, the first line is by definition, the second is the chain rule, the third and fourth are clear, and the last is
again by definition.

Theorem 2.9. Let R and S be observables onHA and c = max |〈ψ|φ〉|2 where |ψ〉 (resp. |φ〉) ranges over
all eigenvectors of R (resp. S). Let ρAB be an arbitrary density matrix on HA ⊗HB. Let R(ρ), S(ρ) ∈
D(HA ⊗HB) denote the post-measurement states after a measurement of A using the observables R and S
respectively.8 Then

H(A|B)R(ρ) + H(A|B)S(ρ) ≥ log2
1
c
+ H(A|B) . (2.13)

If B is empty and |ψ〉A is a pure state then H(A|B) = 0 and we recover the previous relation. If B
is empty and ρA is a mixed state than H(A|B) > 0 and we obtain a strengthening of Theorem 2.8. If
ρAB = |φ+〉〈φ+|AB is an EPR pair then we can compute H(A|B)φ+ = −1, so the inequality does not
imply any non-trivial bound on the left-hand side, as we expect it to based on the discussion above.

8Equivalently, this is like decohering A in the eigenbasis of R or S respectively.
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2.5.2 A test for large quantum memory

The information-theoretic tools introduced in the previous section allow us to introduce a neat “scaling up”
of the single-qubit test from Section 2.4. Towards this we consider the following variant of the protocol
from Section 2.4.2, which was introduced in [CR20]. Important changes are highlighted in blue.

1. V selects a bit θ ∈ {0, 1} and a string v ∈ {0, 1}n uniformly at random. For i = 1, . . . , n she
successively prepares the single-qubit states |vθ

i 〉 = Hθ |vi〉 and sends them to P.

2. V waits for a few seconds.

3. V sends θ to P.

4. P returns a string v′ ∈ {0, 1}n.

5. V declares that P has succeeded if and only if v′ = v.

Note that compared to the naı̈ve repetition of the single-qubit protocol, here we elected to use the same
basis for all qubits. This brings a very minor saving in communication, and in parameters, that comes for
free from the tools that we use to analyze the protocol.

Lemma 2.10. Suppose that P succeeds with probability 1 in this protocol. Then P has quantum memory of
dimension 2n.

Proof. As in the proof of Lemma 2.5 it is convenient to consider a purified version of the protocol in which
the verifier prepares n EPR pairs and measures her n halves in the basis θ at step 3. Moreover, we can give
more power to the adversary by considering that the joint state between V and P at the end of step 2 is an
arbitrary ρ ∈ (C2)⊗n ⊗H where the n copies of C2 correspond to the verifier’s qubits, and the remaining
space H is in the hands of the prover. Let R (resp. S) be the observable associated with a measurement of
the verifier’s n qubits in the computational (resp. Hadamard) basis.

First we show that the fact that the prover succeeds in probability 1 in the protocol implies that neces-
sarily the left-hand side in (2.13) equals 0. This is due to the data processing inequality, which states that
the conditional entropy can only increase as a result of any quantum information performed on the system
that is being conditioned on. (This is intuitive: in an information-theoretic sense post-processing can only
increase uncertainty, by discarding information, and not reduce it.) Starting from e.g.

ρ′ := R(ρ) = ∑
v∈{0,1}n

Pr(v) |v〉〈v| ⊗ ρ′v ,

where v denotes the verifier’s outcome, Pr(v) denotes the probability that the verifier obtains the outcome v
(conditioned on having chosen to perform a measurement in the standard basis) and ρ′v ∈ D(H) the prover’s
system conditioned on the verifier having obtained v, the prover’s measurement that returns v′ yields

ρ′′ := ∑
v,v′

Pr(v) Pr(v′|v)|v〉〈v| ⊗ |v′〉〈v′| = ∑
v

Pr(v) 1|v〉〈v| ⊗ |v〉〈v| ,

since v = v′ with probability 1. On the state ρ′′, H(A|B)ρ′′ = 0 since both systems are classical and
perfectly correlated. Since ρ′′ is obtained by a measurement on register B in ρ′, it follows that H(A|B)ρ′ ≤
0.9 Of course a similar argument applies to S, showing that the left-hand side in (2.13) is non-positive (and
in fact, equal to 0).

9This inequality suffices for our purposes, but using that A is classical it is possible to conclude that H(A|B)ρ′ = 0.
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Using that the maximum overlap c between an eigenvector of R and an eigenvector of S is c = 1/2n

and applying Theorem 2.9 we deduce that necessarily

H(A|B)ρ ≤ − log2
1
c
= −n

We conclude by (2.12): the dimension of Bob’s quantum memory must be at least 2n.

An advantage of using information theory is that it is generally a very robust technique, i.e. with all the
machinery that we put in place it is not hard to extend the proof of Lemma 2.10 to cover the case where the
prover’s success probability is not necessarily 1 and may even be quite small. It is also possible to analyze
a “fault-tolerant” variant of the protocol in which the verifier accepts the outcome v′ reported by P as long
as it matches v in a fraction at least (1− α) of positions, where α ∈ (0, 1/2] is an arbitrary constant. The
following is shown in [CR20].

Theorem 2.11 (Theorem 2.1 in [CR20]). If P succeeds with probability p in the protocol, then its Hilbert
space must have dimension d such that

log2(d) ≥
(
(1− H(α))2p− 1

)
n− 2H(p) ,

where H is the binary entropy function.

This result is quite strong, as even for small constant values of α and values of p that are sufficiently
close to 1 we get a bound on the number of qubits of memory that Bob needs to keep that scales linearly with
n. Aside from the “dimension test” presented here these kinds of bounds have found numerous applications
in cryptography such as to proving security in the bounded storage model, where it is assumed that the
adversary has a limited amount of storage available (for the reader familiar with cryptography but who
hasn’t seen this before, we probably already said enough to start suggesting a protocol for some variant of
oblivious transfer...).

While techniques based on information theory have quantitative advantages, they will generally not
suffice for our purposes. In particular, note the difference between Lemma 2.5 and Lemma 2.10: while the
latter guarantees “one qubit” the former certies “dimension 2n”: the former is quantitatively stronger, but
qualitatively weaker as it does not give us access to information about the prover’s observables. From now
on we will mostly abandon the use of information theory, as it is too coarse grained for our purposes.
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Lecture 3

Testing a qubit under spatial assumptions

(Comment: To insert a comment, use the macro “\com{·}”)

In this lecture we introduce a new assumption in addition to our overarching assumption that all parties
in a protocol can be modeled using quantum mechanics; as argued in the previous lecture additional assump-
tions are necessary to develop a test for a qubit with classical verifier. In physical terms our new assumption
consists in requiring that the device that is being tested is made of two parts that are “physically isolated,” in
the sense that no communication can take place between the two parts for the duration of the protocol. For
the case where the protocol consists of a single round of interaction (a question from the verifier and an an-
swer from the prover) one can imagine enforcing this assumption by e.g. placing the provers and verifier on
a line P1 −V − P2 and ensuring that the round-trip interaction between the verifier and either prover takes
place sufficiently fast that the verifier is confident, based on relativistic considerations (information does not
travel faster than light), that no information can be exchanged between the provers between the times when
they receive their question and have to send their answer. Mathematically, the assumption is reflected by
modeling the device’s Hilbert space H as HA ⊗HB and writing that each sub-device’s observables act on
its Hilbert space only. Following tradition we will use the symbols A and B to denote “registers” (a word
loosely used to refer to the physical substrate modeled by the mathematical Hilbert space) associated with
each device and, oftentimes personify the devices as “provers” or “players” with the lovely names of “Alice’
and “Bob” respectively.

As we will see in this lecture as well as in the last third of the course this assumption of “localization”
allows the verifier to gain much leverage over the device. Some intuition for this may be gained from
thinking about a situation where a detective (the verifier) interrogates two suspects (the provers). Clearly the
detective has more leverage over the suspects if she interrogates them in isolation and cross-examines their
answers. Be warned however that this intuition only goes so far, because it only explains why interactive
proofs with two provers may be more powerful than single-prover interactive proofs; it does not give insight
into why specifically quantum aspects of the provers may manifest themselves in this framework. The fact
that quantum mechanics allows a broader set of behavior for the provers than classical mechanics does
is evidenced in the EPR paradox [EPR35], whose authors puzzle over the “non-local” nature of quantum
mechanics. A precise framework for describing this non-locality was set in place by Bell [Bel64] who
identified simple “inequalities” that separate classical from quantum behavior in bipartite scenario. Here we
take the modern tack on Bell’s inequalities and introduce them directly through the framework of nonlocal
games.
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3.1 Nonlocal games

A non-local game is a cooperative game of imperfect information between a referee and two players. The
referee is a trusted party that executes the game by sending a question to each player, collecting answers
from them, and deciding whether the players’ answers satisfy a winning criterion. The rules of the game
(the distribution on questions used by the referee, the possible answers, the winning criterion) are public
and known to the players, who cooperate in order to maximize their chances of winning. The only source of
uncertainty is that each player is only revealed their question, but not the other’s; this point is what makes
the difference between a single-player and a multi-player game.

Remark 3.1. To make the connection with interactive proof systems of the kind that we described in the
previous lecture, somewhat informally a multi-prover interactive proof system for a language L is specified
by a collection of non-local games {Gx}x∈{0,1}∗ , one for each possibe input x. These games should have
the property that if x ∈ L then there is a strategy for the players that succeeds with high probability (this
is the completeness property) and if x /∈ L then no strategy will make them win with high probability
(the soundness property).1 In the notes we freely interchange between the terminology of non-local games,
referees and players and that of interactive proofs, verifier and prover depending on context.

One may rightfully wonder what is the benefit of associating games, or interactive proof systems, to com-
putational problems. One element that we can point out is that a game itself is a computational problem—is
the maximum winning probability high (larger than some c) or low (smaller than some s)? By providing
a different, “dynamic” perspective on e.g. a 3SAT formula the framework of games has historically been
instrumental in proving results in hardness of approximation for constraint satisfaction problems. In a com-
pletely different direction, they are a natural setting for cryptography where they were introduced in the
context of zero-knowledge proofs.

For the sake of concreteness let us see an example. Consider the language L that is the collection of
all strings x such that x represents a satisfiable 3SAT formula ϕ.2 For example, ϕ could be “y1 ∧ y2 ∧
y3 AND y2 ∧ y3 ∧ y4,” which is obviously satisfiable. Since it is in general believed to be hard to determine
satisfiability of such a formula, let’s make the provers work and design an interactive proof systems for the
hypothesis “ϕ is satisfiable”.3

Here is a first candidate, which involves a single prover:

1. The verifier sends ϕ to the prover.4

2. The prover returns a {0, 1}-valued assignment (y1, y2, . . .) to all variables in ϕ.

3. The verifier accepts if and only if the assignment satisfies ϕ.

This proof system has completeness 1 (if there is a solution, a prover that sends it will be accepted with
probability 1) and soundness 0 (if there is no solution, no prover has any chance of being accepted). Unfor-
tunately, while the verifier is more efficient than solving the formula herself (by e.g. trying out all possible

1For a formal connection between interactive proofs and games one would also have to insist that the games be “uniformly
generated” from x, and that the verifier in each game is described by a circuit of size poly(|x|).

2In the following we use the notation ϕ and x interchangeably: we think of x as a string of bits and ϕ as a formula, but we
assume fixed an efficiently computable bijection between the two.

3We emphasize that the goal of the proof system is not to find a more efficient method to solve the formula itself, as someone
—the prover— still has to do the work. The goal rather is to provide a different framework in which to think about the complexity
of the computational problem “decide if ϕ is satisfiable”.

4In the theory of interactive proof systems it is always assumed that the prover has access to the instance that is being decided,
so this step is not necessary.
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solutions) she still has to read a lot of information in order to make her decision.5 In keeping with our goal
of making verifiers more efficient, let’s see a more succinct proof system with two provers. Let ϕ consist
of equations E1, . . . , Em such that Ej has the form y

cj1
j1
∧ y

cj2
j2
∧ y

cj3
j3

with cj ∈ {0, 1} and for a variable y,
y0 = y and y1 = (1− y).

1. The verifier selects j ∈ {1, . . . , m} uniformly at random and k ∈ {1, 2, 3} uniformly at random. She
sends j to the first prover and jk to the second, where jk is the index of the k-th variable on which
clause Ej acts in some canonical ordering. (Importantly, this ordering hides k, i.e. the prover only
knows that its variable appears in some clause, but not which clause or which position the variable
appears in it.)

2. The first prover returns a triple (a1, a2, a3) ∈ {±1}. The second prover returns a value b ∈ {±1}.

3. The verifier accepts if and only if (consistency check:) ak = b and (equation check:) (a1, a2, a3)
satisfy clause Ej.

We make the following claim regarding completeness and soundness of this proof system:

Claim 3.2. The two-prover proof system described above has completeness 1 and soundness at most 1− 1
3m ,

where m is the number of clauses in the input formula.

Note that while our proof system brought us gains in terms of communication, the soundness has de-
graded quite substantially, from 0 to 1− 1

3m . It is possible to obtain improved variants of this proof system
that have roughly similar communication complexity but much better soundness, say 1

100 or even less. How-
ever, this requires much more work and is essentially the content of the PCP theorem, to which we will
return in the last part of the course.

Proof. The completeness is easy to verify. For soundness, consider an arbitrary strategy for the two provers
that succeeds with some probability p. In order to analyze this strategy we first need to accomplish the
usual modeling step: how do we represent a two-prover strategy? The most “naı̈ve” way to do so is to use
a representation of each prover as a function from questions to answers and declare that the provers’ joint
strategy is the combination (direct product) of these functions: the first prover, Alice, employs a function
fA : {1, . . . , m} → {0, 1}3 and the second prover, Bob, a function fB : {1, . . . , n} → {0, 1}; their joint
strategy is simply the function f = ( fA, fB) that goes from pairs of questions (x, y) in the protocol to pairs
of answers (a, b). If one gives a little more thought to the question then it is not at all obvious that this is
the right answer. Nevertheless, let’s postpone any further thinking for now and finish the proof of the claim
using this model for the provers.

Fix a strategy ( fA, fB) of this form for the provers. We distinguish two cases. Either the strategies
“match”, meaning that for any clause Ej it holds that

fA(j) = ( fB(j1), fB(j2), fB(j3)) , (3.1)

where yj1 , yj2 , yj3 are the three variables involved in Ej. In this case we interpret the list of values
fB(1), . . . , fB(n) as an assignment to the n variables of ϕ. Since by assumption ϕ is not satisfiable there
must exist a j such that ( fB(j1), fB(j2), fB(j3)) do not satisfy clause Ej. By (3.1), fA(j) does not satisfy Ej

5It is possible to argue that for a proof system of this form it is necessary for the prover to send a total number of bits that scales
linearly with the length of an NP (i.e. non-interactive) proof for the same statement, see e.g. [GVW01].
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either. Hence whenever the verifier sends a question of the form (j, k) for k ∈ {j1, j2, j3} the provers fail in
the equation check.

In the second case, the strategies do not match, i.e. there is a pair (j, k) ∈ {1, . . . , m} × {1, 2, 3} such
that the k-th entry of ( fA(j)) does not match fB(jk). In this case the provers fail in the consistency check
when the question (j, k) is sent.

In all cases there is at least one question on which the provers must fail one of the verifier’s checks. Since
there are 3m possible questions in total and the verifier’s distribution on them in uniform this completes the
proof of the claim.

3.2 Non-local strategies

In the proof of Claim 3.2 we were faced with the problem of modeling precisely how the assumption that
the provers do not communicate affects the class of strategies that they may employ. While we dodged
the question there, let’s turn to it more seriously now. First of all, note that the object we are trying to
represent is a family of bipartite conditional probability distributions {p(·, ·|x, y)}x,y∈X×Y over A × B,
where X ,Y and A,B are finite sets of questions and answers respectively associated with each player. The
question then is, what families of bipartite conditional distributions can be generated by non-communicating
provers? (equivalently, players, devices, etc.)

3.2.1 Classical and non-signaling correlations

Let’s examine two extremes. The first extreme is to require that each prover performs an entirely local
computation. In this case the first prover’s answer a1 to their question x1 is determined by a function
f1 : X → A, and similarly for the second prover. This is the answer that we adopted in the proof of
Claim 3.2. More generally, being familiar with randomized computation we could allow each prover to
make use of a randomized computation, in which case their respective input-output behavior can be modeled
by a family of conditional distributions {pA(·|x)}x∈X on A, and similarly for the second prover. The joint
distributions of answers that they provide to the verifier would then be required to factorize as

∀(x, y) ∈ X ×Y , ∀(a, b) ∈ A×B , p(a, b|x, y) = pA(a|x)pB(b|y) . (3.2)

Since we allowed randomness it may also be natural to allow the randomness to be shared, i.e. allow the
more general class of distributions that can be represented as

∀(x, y) ∈ X ×Y , ∀(a, b) ∈ A×B , p(a, b|x, y) =
∫

λ
pA(a|x, λ)pB(b|y, λ)dλ , (3.3)

where λ ranges over any measurable set and for each λ, {pA(·|x, λ)}x∈X is a family of conditional distribu-
tions on A, and similarly for the other prover. It is not hard to see that the proof of Claim 3.2 generalizes to
this case: briefly, this is because for a strategy of the form (3.3) to succeed with probability p in the protocol
it is necessary that the product strategy obtained by fixing λ succeeds with probability p for at least some
choice of λ.

The second extreme is to allow the most general family of bipartite conditional distributions that does
not “imply communication”. A natural formalization of the latter requirement, usually referred to as the
“non-signaling assumption” on p, is that for every a, x and y, y′,

∑
b

p(a, b|x, y) = ∑
b

p(a, b|x, y′) . (3.4)
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In words, the answer a given by the first prover should have a marginal distribution that is independent of
the question y given to the second prover. Of course, a symmetric condition should hold with the provers’
roles exchanged.

At first it may seem that these two extreme classes “ought to” be the same. Are there distributions that
satisfy (3.4) but are not of the form (3.3)? The answer is yes. Here is a simple example: let X = Y =
A = B = {0, 1}. For (x, y) 6= (1, 1) let p(·, ·|x, y) be uniform over {(0, 0), (1, 1)}. For (x, y) = (1, 1)
let p(·, ·|x, y) be uniform over {(0, 1), (1, 0)}. It is easy to see that this distribution cannot be expressed in
factorized form, or even as a convex combination of factorized forms as in (3.3). (Showing this is a good
exercise which we leave to the reader.6) However, the distribution clearly satisfies (3.4) since all marginals
are uniform. We will see another example in Section 3.3.1.

Having observed that there are at least two possible models for the “non-communicating provers,” which
one is it most appropriate? Conventionally we call the first model “classical” because it can be realized
physically using local computation only, together with possibly a source of shared randomness. The second
model is called “non-signaling” and is considered non-physical even though it does not strictly violate
the no-communication assumption, because we do not have a credible physical theory in which arbitrary
distributions in that model can be generated at locations that are space-time isolated (in other words, there
is no physical theory that allows us to describe an experiment which would be able to generate any kind of
correlation that is in principle allowed by special relativity; there are other constraints that relativity itself
does not provide a means to model). Interestingly, the kind of correlations that can be generated by quantum
provers lies strictly in-between the two extremes. Let’s explore those correlations next.

3.2.2 Quantum (tensor product) correlations

The most natural way to measure spatial isolation in non-relativistic quantum mechanics is to associate a
distinct Hilbert space with each device (or prover),HA for Alice andHB for Bob, such that the joint Hilbert
space is H = HA ⊗HB. Upon receiving a question x the first prover performs a POVM {Ax

a}a∈A on HA
to obtain an outcome a that it sends back to the verifier; similarly, the second prover performs a POVM
{By

b}b∈B to obtain its answer b. The class of correlations that can be generated in this model is all families
of bipartite conditional distributions that take the form

p(a, b|x, y) = 〈ψ|Ax
a ⊗ By

b |ψ〉 , (3.5)

where Ax
a and By

b are as above and |ψ〉 ∈ HA⊗HB is an arbitrary state. We will succinctly write (|ψ〉, A, B)
to represent a triple of a bipartite state and families of POVM measurements on each subsystem as above,
and refer to such a triple as a strategy for a given two-player game.

Definition 3.3. Given a two-player one-round7 game G with question sets X and Y and answer sets A and
B, a strategy for G is a triple (|ψ〉, A, B) where |ψ〉 ∈ HA ⊗HB is a quantum state on the tensor product
of finite-dimensional Hilbert spaces HA and HB and A = {Ax} and B = {By} are collections of POVM
{Ax

a} and {Ay
b} onHA andHB respectively, for every x ∈ X and y ∈ Y .

As a sanity check we can verify that (3.5) allows us to recover (3.3). To see this, set HA and HB to
be separable Hilbert spaces with a basis indexed by all possible values of λ,8 |ψ〉 = ∑λ∈Ω

√
pλ|λ〉A|λ〉B,

6Hint: “fix the randomness” and consider the values that each prover returns to each of their two possible questions. Show that
these four values together cannot all lie exclusively among the allowed pairs for all four possible pairs of questions.

7A non-local game, just as an interactive proof system, can in principle involve multiple rounds of interaction. Here we always
always restrict ourselves to the single-round case, that is simpler to analyze and captures everything that we need.

8Assume for simplicity that the probability space is countable.

37



Ax
a = ∑λ pA(a|x, λ)|λ〉〈λ|A, and similarly for By

b . One immediately verifies that these define valid POVM
and that they lead to the desired correlation (3.3). Moreover, the POVM condition ∑b By

b = Id for all y
implies that the correlations (3.5) always satisfy the no-signaling condition (3.4). However, the model is
strictly more general than the classical model (3.3), as we show next by identifying a non-local game in
which the use of quantum correlations leads to a strictly higher winning probability than classical correla-
tions could. (It is also possible to show that it is not as general as the non-signalling model, as the example
of a non-signaling correlation given above cannot be realized in quantum mechanics.)

3.3 Binary Linear System Games

For this section we borrow some material from the lecture notes by Richard Cleve available at this url.

Binary linear system games, or BLS games for short, are a class of two-player one-round games intro-
duced in [CM14] and inspired by Mermin’s proofs of Bell’s theorem [Mer90, Mer93]. These games capture
the flavor of the “clause-vs-variable” game considered in the previous section, except that the underlying
formula involves parity constraints of the form yj1 ⊕ · · · ⊕ yj` = cj as opposed to the disjunctions we had
for the case of 3SAT.

Definition 3.4. A BLS game is specified by integers m, n ≥ 1, a matrix E ∈ {0, 1}m×n and a vector
c ∈ {±1}m. (This information is available to both the referee and the players in the game.) The game
proceeds as follows:

1. The referee samples j ∈ {1, . . . , m} uniformly at random and sends j to the first player. Let ` be
the number of nonzero entries in the j-th row of E. The referee samples k ∈ {1, . . . , `} uniformly at
random and sends the index of the k-th nonzero entry of the j-th row of E to the second player.

2. The referee expects answers (a1, . . . , a`) ∈ {±1}` from the first player and b ∈ {±1} from the
second.9

3. The referee declares that the players win if and only if both the following conditions hold: (consistency
check:) ak = b and (equation check:) ∏i ai = cj.

The class of BLS games has many interesting properties. In particular, there is a direct correspondence
between the existence of perfect strategies in different models and certain kinds of ’solutions’ to the system
of equations implied by E and c. (Precisely, for j ∈ {1, . . . , m} the j-th row of E and c can be interpreted

as a constraint y
Ej,1
1 · · · y

Ej,n
n = cj on n variables y1, . . . , yn ∈ {±1}.) For the case of classical strategies,

following the proof of Claim 3.2 we easily see that the game has a perfect strategy if and only if the system
of equations has a solution over {±1}, which in this case can be determined by Gaussian elimination. For
quantum strategies in the model introduced above (i.e. the “tensor product model” (3.5)) there is a correspon-
dence between perfect strategies and “operator solutions” to the system of equations. This correspondence
will allow us to make use of a specific BLS game called the “Magic Square game” in order to develop our
first test of a qubit that can be executed by an entirely classical verifier. We introduce the Magic Square
game in the next section.

Remark 3.5. The correspondence between strategies and (operator) solutions goes further than the classi-
cal and tensor product models. In particular one can say interesting things about quantum strategies in an
extended model called the “commuting-operator model”, but we don’t discuss this here. See for exam-
ple [CLS17] and follow-up works.

9For later convenience we adopt a multiplicative {±1} convention for the variables, instead of the more usual {0, 1} convention.
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3.3.1 An example: the Magic Square game

The Magic Square game is the following BLS game with 6 constraints on 9 variables. The constraints are
best visualized by picturing the variables arranged in the entries of a 3× 3 square, as follows:

y1 y2 y3 +1
y4 y5 y6 +1
y7 y8 y9 +1

+1 +1 −1

As indicated on the picture the 6 constraints are that the product of all variables in any given row should
equal +1 and that the product of all variables in any column should equal +1 except for the last column,
where it should equal −1.

This system of equations does not have a solution (make sure you can show this!), and so the associated
BLS game, as described in Definition 3.4, does not have a perfect classical strategy: it is not hard to see that
the maximum success probability that classical players can achieve is 17

18 , matching the bound of Claim 3.2.
A remarkable fact is that there is a perfect quantum strategy for this game (“perfect” means that the

strategy succeeds with probability 1 in the game). This is remarkable because, as we just saw, the underlying
system of equations does not have a solution! Yet quantum players are able to always give answers that are
accepted by the referee. For this to be possible these answers necessarily have to be generated “on the fly”,
freshly every time a question is asked: if this were not the case then the same proof as that of Claim 3.2
would apply. Quantum provers are able to win with certainty, yet there is no way to extract a satisfying
assignment from them. What feature of the system of equations makes this possible? Can quantum provers
win any BLS game with probability 1, irrespective of any truth value of the underlying system of equations?

To gain insight into this question let us describe an explicit quantum strategy for the players that succeeds
with probability 1. The key observation is that even though as we saw the system of equations associated
with the magic square does not have a solution with values in {±1}, it has an operator solution

I ⊗ σZ σZ ⊗ I σZ ⊗ σZ
σX ⊗ I I ⊗ σX σX ⊗ σX

σX ⊗ σZ σZ ⊗ σX σY ⊗ σY

(3.6)

where σY = iσXσZ. Observe that in each row or column the three observables always commute; moreover,
the product of the three observables in each row or column is always +I except for the last column, where
it is −I. This is what we mean by “operator solution”.

Definition 3.6. An operator solution to a BLS (E, c) is a collection of binary observables Y1, . . . , Yn on the
same Hilbert space H such that for each equation (specified by a row of E) yj1 · · · yj` = cj the observables
Yj1 , . . . , Yj` commute and their product equals cj Id.

It is not too hard to show that for any BCS, an operator solution immediately translates into a perfect
quantum strategy for it.

Lemma 3.7. Suppose given an operator solution Y1, . . . , Yn to a BLS (E, c) such that each Yj is a binary
observable on a finite-dimensional Hilbert space H. Then the following strategy succeeds with probability
1 in the BLS game:
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• The players share the maximally entangled state

|ψ〉AB =
1√
d

∑
i
|i〉A ⊗ |i〉B ∈ HA ⊗HB , (3.7)

where d is the dimension of H, each of HA and HB is a copy of H, and {|i〉} an orthonormal basis
for it.10

• On question j, Alice sequentially measures the observables Yj1 , Yj2 , . . . , Yj` on her share of |ψ〉, where
j1, . . . , j` are the indices of the nonzero entries of the j-th row of E. She obtains outcomes a1, . . . , a`
that she returns as her answer.

• On question k ∈ {1 . . . , n} Bob measures the observable YT
k on his share of |ψ〉. He obtains an

outcome b ∈ {±1} that he returns as his answer.

Proof. First we note that the strategy described in the lemma is valid: since by definition of an operator
solution the observables Yj1 , Yj2 , . . . , Yj` always commute it is possible for Alice to measure them simulta-
neously.

The following relation holds the key to the proof: for any operators A onHA and B onHB it holds that

〈ψ|A⊗ B|ψ〉 = 1
d

Tr(ABT) , (3.8)

where |ψ〉 is as in (3.7). This relation follows easily from the relation (Id⊗B)|ψ〉 = (BT ⊗ Id)|ψ〉 that
we saw in the previous lecture and the fact that the reduced density matrix of |ψ〉 on either subsystem is the
totally mixed stated d−1 Id. Using this relation it is a matter of direct calculation to verify that the prover’s
answers always satisfy the verifier’s checks in the game. In more detail,

• For the consistency check, we note that the probability that the two players return consistent answers
on question (j, k) is

1
2
+

1
2
〈ψ|Yjk ⊗YT

jk |ψ〉 =
1
2
+

1
2

1
d

Tr
(
Y2

jk

)
= 1 ,

where the first equality follows from (3.8) and the second holds since Yjk is a binary observable so
Y2

jk
= Id.

• For the equation check, we note that the probability that Alice’s answers satisfy the check for the j-th
equation is

1
2
+

cj

2
〈ψ|Yj1 · · ·Yj` ⊗ Id |ψ〉 = 1

2
+

cj

2
〈ψ|cj Id⊗ Id |ψ〉 = 1 ,

where the first equality holds since Yj1 · · ·Yj` = cj Id by definition of an operator solution.

Remark 3.8. The reader will have noticed that in Lemma 3.7 we carefully added the assumption that the
operator solution is finite-dimensional, and indeed this seems necessary for the state |ψ〉 to be well-defined.
It is possible to show that infinite-dimensional operator solutions to a BLS correspond to commuting-
operator strategies for the associated game, and conversely; this correspondence is established in [CLS17].
Commuting-operator strategies are a strict superset of tensor-product strategies

10The maximally entangled state is a natural generalization of the EPR pair which can be defined on any tensor product of
(finite-dimensional) isomorphic Hilbert spaces.
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Combining Lemma 3.7 with the operator solution to the magic square given by (3.6) we obtain a perfect
strategy for the magic square game that uses two qubits per player, and two EPR pairs shared between them.
Since we saw that the magic square does not have a perfect strategy this strategy gives us another example
of a non-signaling correlation that is not classical.

3.3.2 Characterization of optimal strategies

The following converse to Lemma 3.7 is shown in [CM14].

Lemma 3.9. Suppose given a BLS (E, c) and a strategy (|ψ〉, A, B) for the associated game that succeeds
with probability 1. Then the BLS has a finite-dimensional operator solution.

Proof. We give the proof for the special case of the Magic Square game, as the general case is similar. We
start with the modeling step: a strategy (|ψ〉, A, B) for the magic square game is given by a bipartite state
|ψ〉 ∈ HA ⊗HB for finite-dimensional HA and HB as well as the following measurements. For the first
player (Alice), for each row or column x there is a 9-outcome projective measurement {Ax

a : a ∈ {±1}3}
on HA. For the second player (Bob), for each variable (square) y there is an observable By on HB. Note
that here we assumed that the measurements made by each player are projective, which is without loss of
generality by applying Naimark’s theorem and enlarging the spacesHA andHB if necessary.

To each of Alice’s questions we can associate three observables that correspond to the three bits of her
answer. For example, for question j = 1 (first row) we can define

A1 = ∑
a1,a2,a3∈{±1}

a1 A1
a1a2a3

, A2 = ∑
a1,a2,a3∈{±1}

a2 A1
a1a2a3

, A3 = ∑
a1,a2,a3∈{±1}

a3 A1
a1a2a3

.

We can similarly proceed to define A4, . . . , A9 from the rows and A′1, . . . , A′9 from the columns. Next we
show that success with probability 1 in the consistency checks implies that

∀y ∈ {1, . . . , 9} , Ay = A′y = BT
y . (3.9)

Take for example the consistency check on question (1, 2) (first row to Alice, second entry to Bob). It is
easy to show that success in that check implies that

〈ψ|A2 ⊗ BT
2 |ψ〉 = 1 . (3.10)

We use the following claim.

Claim 3.10. Suppose that |ψ〉 is a bipartite state A, B observables such that 〈ψ|A ⊗ B|ψ〉 = 1. Let
|ψ〉 = ∑t λt|ut〉|vt〉 be the Schmidt decomposition of |ψ〉, with λt > 0 for all t and {|ut〉} and {|vt〉}
orthonormal families. Let SA = Span{|ut〉} ⊆ HA and SB = Span{|vt〉} ⊆ HB. Then SA is stable by
A and SB is stable by B. Moreover, letting AS denote the matrix of the restriction of A to SA in the basis
{|ut〉} and similarly for B, it holds that AS = BT

S .

Proof sketch. Let K = ∑t λt|ut〉〈vt|. Then the equality 〈ψ|A ⊗ B|ψ〉 = 1 is equivalent to AKBT =
K. Identifying left and right eigenspaces we see that A and B must each preserve the eigenspaces of K
associated with any given eigenvalue. Thus AKBT = K decomposes in block form ⊕λ AλBT

λ = Idλ,
where for each block we indicated with a subscript λ the restriction of each operator to the eigenspace of K
associated with eigenvalue λ. This shows the claim.
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Using Claim 3.10 and the implications of the form (3.10) for the consistency checks, (3.9) follows,
where the operators and the transpose should be understood to be written with respect to the Schmidt bases
of |ψ〉. To conclude we claim that BT

1 , . . . , BT
9 (precisely, their restriction to the support of |ψ〉 on HB) are

an operator solution to the Magic Square. Commutation in each row or column follows from (3.9) and the
definition of the Ay (which by definition commute by rows) and A′y (by columns). The constraints follow
from the fact that e.g. for the first row, 〈ψ|A1A2A3 ⊗ Id |ψ〉 = +1, which using Claim 3.10 implies that
A1 A2 A3 = Id and hence BT

1 BT
2 BT

3 = Id. (Of course we could remove the transpose signs and still have a
valid solution.)

3.4 A nonlocal test for a qubit

We now have everything that we need in order to give our first classical-verifier test for a qubit (in fact, as we
will see, for two qubits!). To motivate this, observe that the proof of Lemma 3.9 says a bit more than is stated
in the lemma itself: not only did we show that the Magic Square has an operator solution, we also exhibited
such a solution directly from the second player’s observables in the game. Let’s show the following simple
fact.

Claim 3.11. Suppose given an operator solution Y1, . . . , Y9 to the magic square. Then Y2 and Y4 anti-
commute.

Proof. We first rewrite the product Y2Y4 by rows to obtain

Y2Y4 = Y1Y3 ·Y6Y5

= Y1 ·Y9 ·Y5 ,

where the second line is by the last column constraint. Next we write the product Y4Y2 by columns:

Y4Y2 = Y1Y7 ·Y8Y5

= Y1 · (−Y9) ·Y5 ,

where the second line is by the last row constraint. Combining both equations it follows that Y2Y4 = −Y4Y2,
as claimed.

The following lemma is immediate from the proof of Lemma 3.9 and Claim 3.11. We state the lemma
using the language of “self-testing” from the previous lecture.

Lemma 3.12. Suppose that two non-communicating quantum devices A and B generate correlations

p(a, b|x, y) = 〈ψ|Ax
a ⊗ By

b |ψ〉

that perfectly satisfy the referee’s tests in the Magic Square game. Let SB denote the support of the reduced
density ρB of |ψ〉 ∈ HA ⊗HB on HB. Then the observables B1, . . . , B9 stabilize SB, and their restriction
to that space form an operator solution to the Magic Square. In particular, the device’s joint state |ψ〉AB
together with observables B2 and B4 of device B associated with inputs y = 2 and y = 4 respectively form
a qubit (|ψ〉, B2, B4).

Proof. The first part of the lemma follows from the proof of Lemma 3.9. By Claim 3.11 the observables
associated to y = 2 and y = 4 anti-commute.
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The preceding lemma shows that two of device B’s observables, B2 and B4, must anti-commute. As we
saw in Lemma 1.211 this means that up to an isomorphism on the device’s space these observables must
take the form B2 ' σZ ⊗ Id and B4 ' σZ ⊗ Id, which is exactly the form that they take in the solution
given in (3.6). What about the other observables? In other words, are the constraints that underlie the Magic
Square game rigid?

Lemma 3.13. Under the same assumptions as Lemma 3.12 there is a unitary U on the spaceHB associated
with device B such that the observables U†BkU for k ∈ {1, . . . , 9} take the form described in (3.6). in
particular, the dimension of (the span of the support of |ψ〉 on)HB is a multiple of 4.

Proof. The main ingredient in this proof is the qubit lemma, Lemma 1.2, together with Claim 1.6 which
allows us to argue that observables that commute with σZ and σX on a copy of C2 must act as identity on
C2.

First note that the proof of Lemma 3.12 immediately extends to show that any two observables not in
the same row or column anti-commute. Furthermore, by definition the condition that the 9 observables
B1, . . . , B9 form an operator solution to the Magic Square implies that all observables in the same row or
column must commute. Using this condition and the characterization of B2 and B4 given in Lemma 3.12 it
follows from Claim 1.6 that B1 ' Id⊗B′1 and B5 ' Id⊗B′5, for some observable B′1 and B′5 on H′ that
anti-commute. Using Lemma 1.2 again it follows that there is an isometry U′ on H′ such that as operators
on H′, B′1 ' σZ ⊗ Id and B′5 ' σX ⊗ Id, with the identity acting on some new ancilla space H′′ such that
H′ ' C2 ⊗H′′. Combining U and U′ together, we have shown that there is an isomorphism U′U under
which

B1 ' Id⊗σZ ⊗ Id B2 ' σZ ⊗ Id⊗ Id
B4 ' σX ⊗ Id⊗ Id B5 ' Id⊗σX ⊗ Id

.

The remaining entries of the table are immediately filled in from the row and column constraints, which
uniquely determine them.

As a last step we show that we can also characterize the entangled state used by any strategy. Inter-
estingly, this characterization comes as a consequence of the characterization of the observables, which we
obtained without talking much about the state. This is based on the following general lemma, that we will
often make use of.

Lemma 3.14. Let |ψ〉ABE ∈ (C2)⊗n
A ⊗ (C2)⊗n

B ⊗HE be such that for every i ∈ {1, . . . , n} it holds that(
σX,i
)

A ⊗
(
σX,i
)

B|ψ〉ABE =
(
σZ,i
)

A ⊗
(
σZ,i
)

B|ψ〉ABE = |ψ〉ABE ,

where the Pauli operators act on the i-th copy of C2 in register A and B respectively. Then |ψ〉ABE =
|φ+〉⊗n

AB ⊗ |aux〉, for some state |aux〉 onH.

Proof. Note that σX ⊗ σX and σZ ⊗ σZ commute, hence are simultaneously diagonalizable. The proof
immediately follows from the observation that the only simultaneous eigenvalue-1 eigenstate of σX ⊗ σX
and σZ ⊗ σZ is the EPR pair |φ+〉.

Exercise 3.1. Show that the conclusion of Lemma 3.14 holds under the following weaker assumption:
|ψ〉ABE ∈ (C2)⊗n

A ⊗H
⊗n
B ⊗HE withHB arbitrary, and for every i ∈ {1, . . . , n},(

σX,i
)

A ⊗
(
Xi
)

B|ψ〉ABE =
(
σZ,i
)

A ⊗
(
Zi
)

B|ψ〉ABE = |ψ〉ABE ,

11Here we can apply the “state-independent” version of the qubit lemma because Lemma 3.12 states that the observables them-
selves, or rather their restriction to the support of |ψ〉, satisfy the operator constraints.
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with Xi and Zi arbitrary binary observables on HB (in particular, we are not assuming any a priori qubit
structure onHB). [Hint: Remember Claim 2.7]

3.4.1 Consequences

The characterization of perfect strategies given in Lemma 3.13 together with Lemma 3.14 have some nice
consequences. First of all, they imply that the Magic Square game tests not one, but two qubits: any perfect
strategy must have a 4-qubit entangled state, two qubits per player, and Bob’s observables specify two qubits,
e.g. B2 and B4 for the first and B1 and B5 for the second. We even have access to more: for example, we
know that when Bob is asked question 9 the observable he applies is σY ⊗ σY. Although we clearly have
some distance to go, these are first steps towards testing that Bob implements a certain computation; for
now, we are able to test that he applies specific observables.

Another consequence of the characterization has to do with the problem of randomness certification. At
this point we know that, in any perfect strategy, whenever Bob is asked question 2 he measures the first qubit
of an EPR pair in the standard basis. This has the following implications:

1. The answer reported by Bob on question 2 (and, in fact, on any question) is a uniformly random
bit. In particular, no deterministic strategy can succeed in the game! We knew this already, because
deterministic strategies are classical. As such, any game for which quantum strategies can succeed
with strictly higher probability than classical strategies can serve as a “test for randomness”.

2. More importantly, the randomness that is generated by Bob at each execution of the game is “fresh”
and “private”. What we mean by this is that Bob’s random bit is (1) independent of any information
at the verifier’s side, including Bob’s question, and (2) uncorrelated to the environment. Indeed, since
Bob’s bit is the result of a measurement of half an EPR pair, the only party that can obtain correlated
information is Alice, who holds the other half of the EPR pair. By the rigidity theorem this EPR pair
must be in control of Alice: she needs it for them to succeed in the game. Therefore the verifier has
the guarantee that the bit she obtains (1) cannot have been “planted” a priori in the devices, and (2)
cannot be learned, even partially, by any third party distinct from A and B, even if the party could a
priori have kept entanglement with the devices—this is because, using the notation of Lemma 3.14,
the third party would only at best have access to the entirety of system E, which is uncorrelated with
AB.

These observations are important for cryptography, where the use of high-quality randomness that is uncor-
related from any possible eavesdropper or adversary is an essential resource. Indeed, the observations we
just made form the basis for the so-called “device-independent” analysis of quantum cryptography protocols.

Remark 3.15. We presented the fact that the Magic Square game tests two qubits, instead of one, as a
“feature”. But what if one only cares about a single qubit, is there a simple test for this? There is such a
test, but it is not an BLS game: it is the CHSH game. The proof that this game tests a qubit was recognized
early on, see e.g. [SW87] or [MYS12] for a more modern treatment. Unfortunately the game does not
have “quantum completeness 1”, in the sense that the optimal quantum strategy for it achieves a success
probability that is greater than the optimal classical, but less than 1 (precisely, it is cos2 π/8 ≈ 0.85). This
makes it less convenient to use as a building block in larger protocols, and so here we will stick with the
Magic Square game that is the simplest value-1 game which self-tests at least one qubit that we know of.

An important drawback of our analysis so far is that it is limited to the case of perfect strategies, i.e.
strategies that succeed with probability 1 in the game. In practice one may only reasonably assume, after
multiple executions of the game, that a given strategy succeeds with some probability that is close to one,
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1− ε for some ε ≥ 0 that can be made small but not 0. In the next section we discuss how the results can be
extended to that case.

3.4.2 The approximate case

The following theorem gives the flavor of an approximate version of the lemmas from the previous section.
It is taken from [CS17], where more general statements are shown for any BLS that satisfies appropriate
conditions. (A similar result specialized to the case of the Magic Square game is shown in [WBMS16].)

Theorem 3.16. Suppose that a strategy (|ψ〉, A, B) succeeds with probability 1− ε in the Magic Square
game, for some ε ≥ 0. Then there are isometries VD : HD → C2 ⊗C2 ⊗HD′ for D ∈ {A, B} such that∥∥VA ⊗VB|ψ〉AB − |φ+〉 ⊗ |φ+〉 ⊗ |aux〉

∥∥2
= O

(√
ε
)

,

for some state |aux〉 onHA’ ⊗HB’, and∥∥ IdA⊗
(
VBB2 − (σZ ⊗ Id⊗ Id)VB

)
|ψ〉AB

∥∥2
= O(ε) ,∥∥ IdA⊗

(
VBB4 − (σX ⊗ Id⊗ Id)VB

)
|ψ〉AB

∥∥2
= O(ε) ,

and similar relations hold for the remaining seven observables on Bob’s side.

Note that the theorem only characterizes the player’s observables “up to isometry”, as opposed to “up
to isomorphism” as we were able to in the perfect case (Lemma 3.13). As discussed in the previous lecture
(Section 2.3) this is unavoidable in general.

Later we will see a general method to derive statements such as Theorem 3.16 based on the use of
approximate group representation theory. For now, we let it serve as a good illustration of the kind of
statements we aim to prove in this course. It is worth reflecting on the strength of what we have achieved:
using only classical data and a single physical assumption (our model for spatial isolation based on the use of
tensor products) we have arrived at a very simple test that can be used to fully characterize the quantum state
of a 16-dimensional system (4 qubits) as well as elementary operations performed on it. This conclusion is
much stronger than the “standard” conclusion that motivates the study of Bell inequalities in the first place:
that they require entanglement.12 There is no equivalent to this in classical theory!

12Note that the fact that the isometries VA and VB are “local”, each acting only on one half of the total Hilbert space, is important
because it means that they couldn’t have artificially create the entanglement present in |φ+〉⊗ |φ+〉: that entanglement must “exist”
even independently of the application of the isometry, which only serves to “package” it in the neat form of two EPR pairs. Of
course, the state |aux〉 may or may not contain entanglement itself.
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Lecture 4

Testing a qubit under computational
assumptions

As we discussed in the first lecture, a simple interactive “test of quantumness” under computational assump-
tions consists in asking the device to factor a large integer n; under the assumption that factoring is hard for
classical computers this test adequately distinguishes classical from quantum devices.

The main limitation of this test that is generally pointed out is that in order for a device to successfully
demonstrate its “quantumness” it needs to have the capability to implement a large, fault-tolerant quantum
computation. In contrast, the test based on spatial isolation that we saw in the previous lecture can be
executed with a pair of two-qubit devices.1

A second limitation that is relevant for us is that the test does not seem to provide a means to certify
a qubit. Modeling the prover in a “factoring test” would give us a family of POVM {Πn

{pi}}, indexed by
integers n and whose outcomes are lists of primes {pi}. In fact, for each n there should be a single POVM
element —the one with the correct outcome— such that Πn

{pi}|ψ〉 = |ψ〉 with |ψ〉 the initial state of the

device; in somewhat informal notation that POVM element is supposed to be obtained as U†|{pi}〉〈{pi}|U
with U a circuit implementation of Shor’s algorithm. But to identify a qubit we know that we need two
observables acting on the same space as well as some indication that these observables ought to be “incom-
patible” (anti-commutation). It is not at all clear how to identify such observables here.

A key insight from this lecture is that in order to obtain a computational test for a qubit we will need to
assume that a certain problem is hard not for classical computers but also for quantum computers. This is
because our model requires us to identify two observables X and Z in the device such that the device has the
ability to perform either X and Z but not both simultaneously. In Lecture 2 this incompatibility arose from
the necessity for X and Z to yield predictions that matched those of σX and σZ. In the second lecture, it
arose from some form of information-theoretic impossibility—in a loose sense, had X and Z (recall that in
the notation from the previous lecture these were identified as B4 and B2) been compatible, then the Magic
Square would have had a classical solution—which it doesn’t.

In this lecture the impossibility of measuring X and Z will be based on considerations of computational
difficulty. We will show that, if the quantum device was able to measure X and Z jointly then it would
break a computational problem that is assumed to be hard even for quantum computers — we will formulate
this later as a form of “computational uncertainty principle”. Since by definition the device can measure X

1The test does require the ability to distribute entanglement across a large distance—if one uses relativity to certify the assump-
tion of spatial isolation—and to perform fairly high-fidelity measurements on it. This is not at all easy, but it can be done today;
implementations of Shor’s algorithm that outperform the best classical factoring algorithms are not expected within the next decade.
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and Z separately, if they commuted then it could also measure them jointly. Therefore, the computational
assumption gives rise to an information-theoretic consequence on the observables X and Z: they must form
a qubit.

4.1 Simon’s algorithm

As a warm-up we start by reminding ourselves of a typical example of a kind of task for which the manipu-
lation of quantum information provides a computational advantage.

4.1.1 The algorithm

The input to an instance of Simon’s problem is a function f : {0, 1}n → {0, 1}n that has the property that f
is 2-to-1 (every value in the range has exactly two preimages) and moreover there is a string s ∈ {0, 1}n such
that for every x, y ∈ {0, 1}n, f (x) = f (y) if and only if y = x or y = x + s, where addition is performed
coordinate-wise and modulo 2. The goal is to recover the string s. It is not hard to see that in the worst case
any classical algorithm requires at least Ω(2n/2) evaluations of f to determine s. This is because on the one
hand for any deterministic algorithm that makes a smaller number of evaluations there is a function f such
that all values returned by f are distinct, so no information about s is gained; similarly one can show that
for any randomized algorithm if f is chosen at random then it is unlikely that the algorithm will gain any
information about s in� 2n/2 evaluations. On the other hand, by making roughly Ω(2n/2) evaluations at
random points then by the birthday paradox one will likely obtain x 6= y such that f (x) = f (y), which
immediately reveals s = x + y.

Simon showed that there is a quantum algorithm that can solve this problem using only O(n) evalua-
tions, provided that the function f can be evaluated “in superposition”. The algorithm first evaluates f on a
uniform superposition of inputs, as follows:

|0n〉|0n〉 7→ 1√
2n ∑

x
|x〉|0n〉

7→ 1√
2n ∑

x
|x〉| f (x)〉 .

It then measures the last register in the computational basis, yielding some y = f (x0) = f (x1) where x0
and x1 = x0 + s are the two preimages of y under f . The re-normalized post-measurement state is

1√
2

(
|x0〉+ |x1〉

)
|y〉 . (4.1)

Measuring the first register in the Hadamard basis yields a uniformly random d ∈ {0, 1}n such that d · s = 0.
Repeating the entire procedure O(n) times yields (n− 1) linearly independent such d’s, which suffices to
recover s with high probability.

4.1.2 Instantiating the black box

The main limitation of Simon’s problem is that it only provides a black-box separation: the quantum ad-
vantage holds under the assumption that the classical or quantum algorithms are allowed to evaluate the
function f , but they are not given an explicit description of it. Showing that the separation still holds for an
explicit choice of the function f is much harder, because it is difficult to rule out some smart behavior for
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the classical algorithm that would take advantage of specific code for f ; indeed, showing such a separation
would be a major breakthrough in quantum algorithms.

This difficulty shouldn’t prevent us from toying with the question: Can we identify natural candidates?
For example one could take f (x) = Ax for A ∈ Fn×n

2 a matrix of rank exactly (n− 1). In that case the
kernel of A is spanned by a single vector s ∈ Fn

2 , and f is exactly 2-to-1: f (x0) = f (x1) if and only
if A(x0 − x1) = 0, i.e. x0 − x1 is either 0 or s. Unfortunately this f is not a good candidate, because
there happens to be an efficient classical algorithm that directly solves Simon’s problem for it: Gaussian
elimination.2 The example shows that at a minimum we need a function f that is 2-to-1 but such that finding
any colliding pair of inputs (x0, x1) with f (x0) = f (x1) is computationally difficult. In the next section we
introduce some background from cryptography that will allow us to make this requirement precise.

4.2 Computational assumptions

So far everything that we have done in the course is “information-theoretic”, in the sense that we have not
had to fix a model of computation nor discuss efficiency of the various operations that we had our verifiers
and provers implement (the only distinction we made is if an operation is classical or if it requires a quantum
component). In this lecture we start making assumptions of a computational nature, such as “this problem
cannot be solved by this class of adversaries”. In this section we briefly review the formalism for making
such assumptions precise and apply it to a specific scenario of interest for the lecture.

4.2.1 PPT and QPT procedures

The first thing that we need to make precise is our computational model. Since the protocols we consider
involve interaction between a verifier and prover(s) we focus on modeling such devices as machines that
perform a computation. Loosely speaking, each device operates in a number of rounds where at each round
the device performs a computation that takes it from a certain internal state as well as an input (a message
received from another device) to a new internal state and an output (a message that it returns). We will
model each such computation as a circuit. A circuit is a sequence of elementary operations called “gates”
that operate either on a classical state (in which case the gates can be things like an AND, an OR, a NOT,
etc.) or a quantum state (in which case the gates can be things like a 1-qubit Hadamard, a σX or σZ, a
2-qubit controlled NOT, etc.).3 To recap, for us a verifier or a prover is specified by a sequence of classical
or quantum circuits. We will always assume that the circuits explicitly specify which spaces they are meant
to operate on (e.g. verifier’s space, message from verifier to prover, etc.).

Next we discuss what it means for a verifier (or prover) to be “efficient”. To make this precise we need
to talk about families of verifiers. We will imagine that there is an underlying size parameter n ∈ N (for
example, n could be the size of a 3SAT formula that the verifier aims to check, or the number of qubits that
she aims to certify) and that the verifier (or prover) is specified by a classical Turing machine M that on
input 1n returns an explicit classical description of a sequence of circuits that can be used to implement the
verifier (or prover) for problems of size n. We will say that the verifier (or prover) is probabilistic polynomial
time (PPT) (resp. quantum polynomial time (QPT)) if this Turing machine runs in time polynomial in its
input (i.e. polynomial in n; this is why we always assume that n is passed in unary to M) and returns a

2In lecture 7 we will see that a “noisy” version of f provides a partial workaround.
3To be fully precise we would need to fix a finite gate set for classical circuits and another for quantum circuits. What gate set

is used will not matter for us; the only important point is that there exists finite universal gate sets and that all such gate sets are
roughly equivalent in terms of how many gates are required to decompose any larger unitary.
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family of classical (resp. quantum) circuits. Note that the assumption that the Turing machine is polynomial
time immediately implies that the circuits it returns act on polynomially many bits (resp. qubits) and have a
polynomial number of classical (resp. quantum) gates.

In a cryptographic context we will generally allow M to take a second input 1λ for λ ∈ N called the
security parameter. While the input size n is governed by the size of the problem, the security parameter
can be chosen at will; the larger it is the more “secure” the protocol is supposed to be (for example, the
smaller the probability that the verifier makes an incorrect decision or the higher the quality of the certified
qubits).

4.2.2 Claw-free functions

Similarly to circuits in the previous section, when we talk about computational difficulty of a certain problem
we always need to refer to families of objects. This is because e.g. for any given function f there is nothing
“hard” about the task of recovering specific information about f : if f is fixed everything about it is fixed
as well; in particular in the case when f has the structure required for Simon’s problem there is a simple
algorithm that identifies s, and this is the algorithm that writes s down starting from any initial state.

For this reason we will always consider families of functions { fpk : {0, 1}m(λ) → {0, 1}m(λ)}pk∈{0,1}k(λ)

where the index λ ∈N is called security parameter and k and m are polynomially bounded functions of λ;
the idea is that for each λ there is a collection of functions, indexed by strings of length k(λ) and with the
same domain and range, such that the larger the λ the more “complex” the functions are. For example, we
could take k(λ) = λ2, m(λ) = λ, and fpk to be multiplication by the matrix A ∈ {0, 1}λ×λ obtained by
“reshaping” the λ2-bit string pk into a λ× λ square.

Let’s give our first definition of a cryptographic property that applies to a family of functions.

Definition 4.1 (Claw-free function family). A family F = { fpk : {0, 1}m(λ) → {0, 1}m(λ)}pk∈{0,1}k(λ) is
claw-free against classical (resp. quantum) adversaries if the following conditions hold:

• fpk can be efficiently evaluated: there is a PPT procedure that given pk and x as inputs returns fpk(x).

• For every λ ∈N and pk ∈ {0, 1}k(λ), fpk is 2-to-1.

• For every PPT (resp. QPT) procedure A the following holds: (the procedure A is often personi-
fied as the “adversary” trying to demonstrate that the function family is not claw-free) there exists a
negligible4 function µ : N→N such that for every λ,

Pr
pk←R{0,1}k(λ)

(
(x0, x1)← A(1λ, pk) : x0 6= x1, fpk(x0) = fpk(x1)

)
≤ µ(λ) .

In words, the third condition states that there is no polynomial-time algorithm that given a uniformly
chosen index pk for a function from the family is able to return two distinct inputs for the function that
constitute a claw.5

Remark 4.2. In the definition we require the function family to be parametrized by arbitrary strings pk. In
general this requirement can be relaxed; in fact there could even be a single function for every λ. In cryp-
tographic constructions the function family generally comes equipped with a PPT key generation procedure
GEN that takes 1λ as input and returns pk.

4A function µ : N→ R is called negligible if for every polynomial p, p(λ)µ(λ)→λ→∞ 0.
5A triple (x0, x1, y) such that x0 6= x1 and f (x0) = f (x1) = y is called a claw. To see why, picture the arrows x0 → y and

x1 → y drawn with x0, x1 on top of each other on the left and y on the right.
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An example of a claw-free family of functions against PPT adversaries can be constructed as follows.
(This construction appears in [GMR85], where it is used to construct a digital signature scheme.) Let
N = pq be a product of two primes p ≡ 3 mod 8 and q ≡ 7 mod 8. This choice ensures that −1 and 2
are not squares mod N; moreover, if QN denotes the set of quadratic residues (i.e. squares) modulo N then
f0(x) = x2 mod N and f1(x) = 4x2 mod N are both permutations of QN . (This fact requires proof but
it is a simple exercise in arithmetic.) However, suppose given a claw (x0, x1) such that x0, x1 ∈ QN and
f0(x0) = f1(x1). Then x2

0 = 4x2
1 but x0 6= ±2x1 mod N because ±2x1 /∈ QN . Thus computing the GCD

of N with x0 ± 2x1 recovers a nontrivial factor.
While this family of functions is claw-free with respect to PPT adversaries, it is clearly not claw-free

against QPT adversaries, that can use Shor’s algorithm to factor efficiently. We will construct such a function
family in the next lecture; for the time being we assume its existence.

4.2.3 Hardcore bits

Following the initial steps of Simon’s algorithm as described in Section 4.1.1 when instantiated with any
2-to-1 function enables a quantum device to generate strings d ∈ {0, 1}m such that d · (x0 + x1) = 0,
where (x0, x1) are preimages of some y ∈ Fm

2 by f . Intuitively one might expect that this represents a
computational advantage, because d provides an equation in x0 + x1, which is some information about both
preimages together. For example in the case where x0 + x1 = s, where s is some fixed secret independent of
y, we saw that provided the equation d can be assumed to be uniformly distributed among all valid equations
in s then running the procedure O(m) times gives sufficiently many equations to recover s.

Unfortunately, as discussed in Section 4.1.2 for the only function that we could think of that has this
property it is in fact easy to recover s, even for a classical computer. This suggests that in general the
assumption that f satisfies the structure required for Simon’s algorithm might be too strong to obtain an
explicit candidate. Moreover, recall that at the start of the lecture we pointed out that our goal is not directly
to find a task for which there is a quantum computational advantage, but instead we are trying to identify
two tasks that the quantum device can perform separately but not simultaneously—if someone, such as
a classical device, was able to execute both tasks simultaneously then it would break the computational
assumption. What could those two tasks be here?

Starting from the state (4.1) it is natural to measure in the Hadamard basis, obtaining as before an
equation d such that d · (x0 + x1) = 0, but also in the computational basis, obtaining either x0 or x1. Given
that “honest” measurements in the computational and hadamard basis are incompatible, these are natural
candidates for our “qubit.” However, we also saw that if x0 + x1 = s for some fixed secret s then the
Hadamard measurements alone allow us to recover s. So a quantum procedure could recover s “on the side”
and then, knowing f explicitly, succeed in any reasonable “test” by using classical operations alone—this
would make it very hard for us to identify the “qubit” that the device should have used to recover s (this is
similar to the example of Shor’s algorithm given at the start of the lecture). But what if the structure of f is
a little more complicated, so that e.g. x0 + x1 = g(x0, s) for some function g? In that case a single equation
in g(x0, s) might not be so useful; even many such equations for varying x0 could be useless since without
knowledge of x0 itself one cannot determine what the equation is about. However, if one was able to obtain
x0 simultaneously with the equation then one would obtain a sequence of (possibly non-linear, depending
on g) constraints on s. These considerations motivate the following computational assumption:

Assumption 1 (Adaptive hardcore bit). There is a claw-free family of functions F = { fpk} such that for
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any QPT adversary A there is a negligible function µ such that∣∣∣1
2
− Pr

pk←R{0,1}k(λ)

(
(x, d)← A(1λ, pk), {x0, x1} ← f−1

pk ( fpk(x)) : d 6= 0m∧ d · (x0 + x1) = 0
)∣∣∣ ≤ µ(λ) .

(4.2)

In words, the assumption is that no quantum polynomial-time algorithm can simultaneously return an
element x in the domain of f and an equation d such that, letting {x0, x1} be the two preimages of fpk(x)
under fpk it holds that d 6= 0m and d · (x0 + x1) = 0. Note that although we required { fpk} to be claw-free,
this requirement is stronger, since any algorithm that can find a claw (x0, x1) can be used to break (4.2).

Remark 4.3. Assumption 1 is called adaptive hardcore bit for the following reason. Given a function f a
hardcore bit for f is a 1-bit function h such that given f (x) (but not x) it is hard to predict h(x). Here,
the hardcore bit that underlies the assumption is the function h(x) = d · (x0 + x1) for any d 6= 0m: the
Goldreich-Levin theorem implies that if f is indeed claw-free then it is hard to predict h(x) for a random d.
The “adaptive” qualifier refers to the fact that in (4.2) we allow the adversary A itself to select the equation
d without requiring that this equation is uniformly distributed (we will see why this is needed in the next
section); in particular A may return always the same d, and this invalidates the classic Golreich-Levin
argument. This makes the property harder to satisfy, because more power is given to the adversary. (Note
in particular that we had to explicitly require d 6= 0m, as otherwise there is an easy adversary that always
succeeds.)

4.3 A computational test for a qubit

We conclude the lecture by giving a “proof of concept” that it is possible to test a qubit based on computa-
tional assumptions. Our presentation is a simplified version of the protocol and analysis from [BCM+18].
For a related approach, see [CCKW19].

The main assumption that we make is that there is a function family { fpk} that satisfies the hardcore
bit assumption, Assumption 1. In fact we will need a little bit more. Let’s summarize the requirements as
follows:

(F.1) There is a 2-to-1 claw-free function family F = { fpk} equipped with an efficient key generation
procedure GEN(1λ) such that for each key pk the function fpk can be evaluated efficiently.

(F.2) The function family F satisfies the adaptive hardcore bit assumption, Assumption 1.

(F.3) F is equipped with a trapdoor: in addition to pk, GEN(1λ) returns a trapdoor td such that given pk,
td and any y in the range of fpk it is possible to efficiently recover the two preimages x0 and x1 of y.

(F.4) For any pk and any y in the range of fpk the two preimages of y are labelled ’x0’ and ’x1’ using some
canonical efficient procedure. That is, given a key pk and an x in the domain of fpk it is possible to
efficiently determine if x is the ’x0’ or the ’x1’ preimage of y = f (x). Let b : {0, 1}m → {0, 1} be
this labeling procedure; b may depend on pk.

Let us fix a function family F satisfying the assumptions (F.1) to (F.4). We give a protocol based on F . The
protocol describes the interaction between a classical polynomial-time verifier and a (possibly quantum)
polynomial-time prover. Here, the input to both parties is the security parameter λ; when we refer to PPT
or QPT we mean with respect to λ. The protocol is described in Figure 4.1. For future reference we refer to
it as “protocol Q.”
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Let F be a function family and λ ∈N a security parameter.

1. The verifier generates (pk, td)← GEN(1λ). It sends pk to the prover.

2. The prover returns y ∈ {0, 1}m, where m = m(λ).

3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.

4. (a) (pre-image test:) In case c = 0 the prover is expected to return an x ∈ {0, 1}m. The verifier
accepts if and only if f (x) = 1.

(b) (equation test:) In case c = 1 the prover is expected to return a d ∈ {0, 1}m. The verifier uses td
to determine the two preimages (x0, x1) of y by fpk. She accepts if and only if d · (x0 + x1) = 0.

Figure 4.1: Protocol Q, the computational test for a qubit. The protocol is parametrized by a function
family F satisfying assumptions (F.1) to (F.4).

Theorem 4.4. Let F satisfy the assumptions (F.1) to (F.4). Then the following hold for protocol Q.
• (Completeness:) There is a QPT prover P which succeeds with probability 1 in the protocol.

• (Soundness:) Suppose that a QPT prover P succeeds with probability 1 in the protocol. Then P has a
(near-perfect) qubit.

As we are now accustomed to, we note the slightly informal nature of the theorem and make a few
comments:

• First of all, we make explicit the computational assumption: combining Assumption 1 with the re-
quirement that the prover P is QPT effectively means that we are assuming that P does not “have the
ability” to violate (4.2). Slightly more formally, in the proof we will show that if P does not “have
a qubit” then it can be used to construct an adversary A that violates (4.2). Note also that in the
soundness case it should be assumed that P is in fact a family of {Pλ}, one for each possible choice
of λ, that can be uniformly generated from λ (i.e. there is a classical Turing machine that takes 1λ as
input and returns a description of a family of circuits that can be used to implement Pλ).

• Second, we ought to be a little more precise as to how P’s qubit is specified. The two observables X
and Z that define it will be derived from the two measurements that P makes based on the challenges
c = 0 or c = 1. Since these measurements in general have outcomes in {0, 1}n some post-processing
will be required. Interestingly, the post-processing for the X observable will not be efficient, in the
sense that it will require knowledge of td. So, our proof will show that there exists two anti-commuting
observables on the Hilbert space of P that can be defined from P’s operations and some classical
post-processing. Since the post-processing is classical we can nevertheless claim in good faith that
the “qubit” is located on the prover’s space, as we are not injecting any external “quantumness” in it.

• Third, we make the usual comment regarding the assumption that the prover succeeds with probability
1: this assumption is, of course, unrealistic. As in other protocols that we have seen so far the
assumption can be lifted at the cost of some amount of work. We will discuss this in more detail when
we build on the present protocol to construct a more complex protocol for verifying an entire quantum
computation in the next few lectures.
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• Finally, an explanation is in order regarding the “(near-perfect)” qualifier. This is an unavoidable
consequence of the fact that the protocol relies on a computational assumption. Indeed, consider
the following possible behavior for the prover. The prover first devotes a small amount of time to
trying their luck at breaking the underlying computational assumption (in our case, the prover could
randomly generate candidate trapdoors td′ and check if they allow it to invert the function fpk). If the
prover succeeds then it can pass in the protocol without manipulating any quantum state, using the
fake td′ to find a claw that allows it to answer both types of challenges. If it does not succeed then
it behaves honestly in the protocol. Such a prover succeeds with probability 1, but the measurement
operators associated with its answers have a part that is “classical” and from which we have no hope
of extracting a qubit.

Proof of Theorem 4.4. The completeness part of the theorem is clear. In the first phase the prover proceeds
exactly as in Simon’s algorithm to obtain the state (4.1). In the second phase, it measures the preimage
register in the standard basis in case c = 0 and in the Hadamard basis in case c = 1, returning the n-bit
outcome obtained as its answer. This prover is always accepted with probability 1 in the protocol.

To show the soundness part of the theorem we start with the usual (and, here, crucial) modeling step.

Step 1: Modeling Since we will not need to model the prover’s actions in the first phase of the protocol
in detail we directly give a name to the state of the prover at the end of step 2; let it be |ψ〉 ∈ HP. This
state depends on pk as well as on y; for clarity we suppress this dependence from the notation. Moreover,
in general |ψ〉 may be a mixed state, and we represent it as a pure state for convenience only; in general one
could assume that we included a register E to denote an “environment” that holds a purification |ψ〉PE of a
general ρ ∈ D(HP).

At the second stage of the protocol the prover is given a challenge c ∈ {0, 1} and tasked with responding
with an n-bit string, x or d depending on the challenge. In general, x is obtained by performing a POVM
{Πx} on the prover’s entire space, and similarly d is the outcome of a POVM {Md}.6 We make the
following observations that allow us to simplify the presentation of these POVM:

• Without loss of generality both Π and M are projective measurements. This is because we can enlarge
P and add sufficiently many ancilla qubits initialized to |0〉 so as to apply Naimark’s theorem.

• Without loss of generality, assume that the prover has access to an m-qubit register X initialized to
|0m〉.

• Without loss of generality, assume that Π is obtained by first applying a unitary transformation U0 on
HX⊗HP followed by a standard basis measurement ofHX ' (C2)⊗m. Any projective measurement
can be put in this form by letting U0 be any unitary extension of the map

|0〉|ψ〉 ∈ HX ⊗HP 7→ ∑
x
|x〉
√

Πx|ψ〉 ,

as this map is easily verified to be an isometry on |0〉X ⊗HP.

• Similarly, without loss of generality assume that M is obtained by first applying a unitary transforma-
tion U1 onHX ⊗HP followed by a Hadamard basis measurement ofHX.

• Without loss of generality assume that U0 = Id. This is because we can always redefine the prover’s
state at the end of step 2 to be |ψ′〉 = U0|ψ〉, in which case U′0 = Id and U′1 = U1U†

0 . Since
U0 = Id, we simply use U to denote U1.

6We do not need to explicitly mark any dependence of Π or M on pk and y, because without loss of generality the prover has
kept a classical copy of these strings in its quantum state |ψ〉, which can be used as a classical control by both Π and M.
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We now introduce observables Z and X onHX associated with the prover. For Z, we define it to be

Z = ∑
x∈{0,1}m

(−1)b(x)|x〉〈x| , (4.3)

where b : {0, 1}n → {0, 1} is the function from assumption (F.4). Z is efficiently computable since b is.
For X, we define it to be

X = ∑
d∈{0,1}m

(−1)d·(x0+x1) U†(H⊗m
X ⊗ IdP

)†(|d〉〈d|X ⊗ IdP
)(

H⊗m
X ⊗ IdP

)
U , (4.4)

where x0 and x1 are the two preimages under fpk of the string y returned by P at step 2. (There is an
observable X for each possible string y, but we suppress this dependence from the notation for clarity.) Note
that X is not efficient, because we are not assuming that determining x0 + x1 from y is efficient in general.
However, X can be computed in a straightforward manner by applying the prover’s efficient measurement
{Md} followed by (non-efficient) classical post-processing. (We insist on this point to clarify that our
definition is not injecting “quantumness” artificially.) Informally, X can be thought of as the observable that
determines if the equation d returned by the prover on challenge c = 1 is correct or not. In particular, later
we will use that for a prover that always succeeds to a challenge c = 1 we have X|ψ〉 = |ψ〉, i.e. |ψ〉 is a
+1 eigenstate of X.

Step 2: Establishing a qubit The goal for the remainder of the proof is to show that (|ψ〉, Z, X) form a
qubit, i.e. that the two observables X and Z anticommute on |ψ〉. Informally, this is because if X and Z were
jointly measurable then they could be used to simultaneously obtain a preimage of y and a valid equation
d in x0 + x1, thereby violating (F.2). We proceed with the details. The heart of the proof is the following
claim.

Claim 4.5. For any b ∈ {0, 1}, ∣∣〈ψ|ZbXZb|ψ〉
∣∣ = negl(λ) ,

where Zb = (Id+(−1)bZ)/2, negl(λ) denotes some negligible function of λ, and the expression on the
left should be understood on average over pk← GEN(1λ) and the distribution of y as returned by P in the
protocol.

Proof. We do the proof for the case b = 0, the other case being similar. Suppose for contradiction that there
is a polynomial q : N→ R+ such that

∣∣〈ψ|Z0XZ0|ψ〉
∣∣ ≥ 1

q(λ)
(4.5)

for infinitely many values of λ. We use this assumption to construct an adversary in (4.2). The adversary
proceeds as follows. Given as input 1λ and pk the adversary first executes the first phase of the prover,
obtaining an outcome y and a state |ψ〉. Then, the adversary measures the m qubits in register X in the
computational basis to obtain a value x ∈ {0, 1}m. If b(x) = 0 then the adversary applies the unitary V
and measures register X (again) in the Hadamard basis to obtain d ∈ {0, 1}n. The adversary returns the pair
(x, d). If b(x) = 1 then the adversary chooses d ∈ {0, 1}m uniformly at random and returns d. Since the
prover P and b are both efficient, A is efficient.

Note that this adversary does something “unusual” in the sense that it sequentially applies two operators
that the prover would never have applied simultaneously in the protocol. It is to make sense of this sequential
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application that we made the structural simplifications at the start of the proof. Let’s analyze the success
probability of A by using (4.5). There are two cases. Suppose first that the adversary obtains an x such that
b(x) = 0. Then since P is assumed to succeed with probability 1 in case c = 0, we know that necessarily
x = x0, and moreover prior to the measurement the support of |ψ〉 on X contained only the two values |x0〉
and |x1〉 (as otherwise there would be a chance that the prover returns an invalid preimage to the challenge
c = 0). Thus by definition of Z in (4.3) the post-measurement state is Z0|ψ〉 (suitably re-normalized). The
probability that A obtains b(x) = 0 and then a correct equation is then, by definition of X in (4.3) and
X0 = 1

2 (Id+X), precisely

〈ψ|Z0X0Z0|ψ〉 =
1
2
(
〈ψ|Z0|ψ〉+ 〈ψ|Z0XZ0|ψ〉

)
.

For the second case assume that A obtains an x such that b(x) = 1. In this case it returns a uniformly
random equation; since x0 + x1 6= 0 this has probability exactly 1

2 of being correct. Overall, the adversary’s
success probability is

1
2
〈ψ|Z1|ψ〉+

1
2
(
〈ψ|Z0|ψ〉+ 〈ψ|Z0XZ0|ψ〉

)
=

1
2
+

1
2
〈ψ|Z0XZ0|ψ〉 ,

where the equality uses Z0 + Z1 = Id to combine the first two terms. Using (4.5), this violates (4.2).

To conclude the proof of the theorem we need the following simple calculation.

Claim 4.6. Let X, Z be any two binary observables onH. Then

1
4
{X, Z}2 = XZ0XZ0 + Z1XZ1X .

Proof. This can be verified by direct calculation. Using that X and Z are Hermitian and square to identity
we get by expanding the square

{X, Z}2 = 2 + XZXZ + ZXZX . (4.6)

Expanding Z = Z0 − Z1,

ZXZ = Z0XZ0 + Z1XZ1 − Z0XZ1 − Z1XZ0 .

Moreover, using Z0 + Z1 = Id it follows that

Z0XZ0 + Z1XZ1 + Z0XZ1 + Z1XZ0 = X

Putting the two equations together, ZXZ = 2
(
Z0XZ0 + Z1XZ1

)
− X. Plugging back into (4.6) and using

X2 = Id proves the claim.

Combining Claim 4.6 and Claim 4.5 we make the following calculation:

1
4

∥∥{X, Z}|ψ〉
∥∥2

= 〈ψ|XZ0XZ0|ψ〉+ 〈ψ|Z1XZ1X|ψ〉

= 〈ψ|Z0XZ0|ψ〉+ 〈ψ|Z1XZ1|ψ〉
= negl(λ) ,

where to obtain the second line we used that X|ψ〉 = |ψ〉 since the prover is assumed to succeed with
probability 1 in the protocol (and hence always return a correct equation). This shows that (|ψ〉, Z, X) is a
near-perfect qubit, completing the proof.
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Lecture 5

Delegating Quantum Computations

So far we have been entirely focused on the problem of certifying a “qubit”, i.e. that a certain device to
which the experimentalist, or verifier, has access to and is willing to make simple assumptions about (the
device has two spatially isolated components/the device is computationally bounded) is, at some point in its
execution, making a pair of anti-commuting measurements.

Our goal in the next three lectures is to go beyond the certification of a single qubit, to the verification
that the device implements an entire quantum computation of the verifier’s choice. In this lecture we define
this problem of delegating quantum computations to an untrusted party and give an overview of existing
approaches. Towards the end of the lecture we describe a protocol due to Fitzsimons and Morimae [MF16]
that involves quantum communication from the prover to the verifier. In subsequent lectures we combine
that protocol with the computational qubit test from the previous lecture and a few additional ideas to obtain
a purely classical protocol due to Mahadev [Mah18].

5.1 Problem statement

5.1.1 Quantum circuits and the class BQP

For us, a quantum circuit C is specified by an integer n and an ordered sequence of elements of the form
(G, i, j) where G ∈ {H, CNOT, T} and i, j ∈ {1, . . . , n}. Letting

H =
1√
2

(
1 1
1 −1

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =

(
1 0
0 eiπ/4

)
, (5.1)

the circuit C = ((G1, i1, j1), . . . , (GT, ik, jk)) represents the unitary U on (C2)⊗n obtained as U = UT · · ·U1
where for all t ∈ {1, . . . , T}, Ut acts as the unitary associated with Gt in (5.1) on qubits it and jt and as
identity on the other qubits. (In case Gt ∈ {H, T} it is required that it = jt.) The Solovay-Kitaev theorem
shows that any n-qubit unitary can be arbitrary well-approximated, in operator norm, by the unitary derived
from a circuit; however, the size of the circuit may (in fact, must) in general grow exponentially fast with n.
Those unitaries that can be represented by small circuits are called “efficient”.

0Some of the material for this lecture is taken from an overview of Mahadev’s result written for a mathematical audience
and published in the Bulletin of the AMS [Vid20]. Some of it is reproduced from lecture notes prepared for a winter school at
UCSD: http://cseweb.ucsd.edu/˜slovett/workshops/quantum-computation-2018/.
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Given a quantum circuit C acting on n qubits and x ∈ {0, 1}m for some m ≤ n we say that “C
accepts input x with probability p” if the probability of obtaining the outcome 1 after a measurement in the
computational basis of the first qubit of the n-qubit state obtained by applying the unitary C to the input state
|x〉|0n−m〉 is p.

Definition 5.1. We say that a promise language L = (Lyes, Lno) is in BQP if there exists a family of
polynomial-time generated quantum circuits {Cn}n∈N such that for all integer n and x ∈ {0, 1}n,1

• (Completeness:) If x ∈ Lyes then Cn accepts x with probability at least 2
3 ;

• (Soundness:) If x ∈ Lno then Cn accepts x with probability at most 1
3 .

Note the requirement that the family {Cn} is polynomial-time generated. This means that there exists a
classical Turing Machine that on input 1n runs in time poly(n) and returns a description of Cn as a sequence
of gates taken from a fixed universal set—here we use (5.1), but the specific choice will not matter for us.

The definition of BQP sets arbitrary values 2/3 and 1/3 for the completeness and soundness param-
eters. Error amplification works just as for the case of BPP, by repeating the circuit sequentially. This
requires intermediate measurements, but it is not hard to show that these can be postponed till the end
of the computation by the use of ancilla qubits and CNOT gates. As a result, any choice of a, b such
that a − b > poly−1(n) gives the same definition: for any such a, b, and for any fixed polynomial q,
BQP(a, b) = BQP = BQP(1− 2−q, 2−q).

Exercise 5.1. Show that BQP is included in PP, the class of languages for which there exists a probabilistic
Turing machine that accepts YES inputs with probability > 1/2, and rejects NO inputs with probability
> 1/2. (Hint: first show inclusion in PSPACE by giving space-efficient implementations of basic linear
algebra operations. Inclusion in PP follows from similar arguments, but is a bit more delicate.)

The class PP lies outside of the polynomial hierarchy. The most commonly-held belief is that the
intersection of BQP and PH is non-trivial: it is neither BPP, nor PH itself. Recently Raz and Tal [RT19]
showed that an oracle problem introduced by Aaronson [Aar10] is in BQP but not in PH.

Recall the notion of interactive proof system that we introduced informally in Section 2.2. We end this
section by defining a family of complexity classes associated with interactive proof systems.

Definition 5.2 (Adapted from [AG17]). Given complexity classes P and Q, IP[P ,Q] is the class of
(promise) languages L such that there is a polynomial-time Turing machine M that on input 1n returns
the description of classical circuits for the verifier Vn in an interactive protocol with a prover P such that

• (Completeness:) There is a family of provers {Pn}n∈N that lie in the class P such that for all x ∈ Lyes

the interaction of V|x| and P|x| on common input x accepts with probability at least 2
3 .

• (Soundness:) For any family of provers {Pn}n∈N that lie in the classQ, for all x ∈ Lno the interaction
of V|x| and P|x| on common input x accepts with probability at most 1

3 .
When the classes P and Q coincide we simply write IP[P ] for IP[P ,P ]. We use the standard notation
IP = IP[BPP, ALL] with ALL the class of all languages (i.e. soundness is proves without any restriction
on the prover).

The definition is slightly informal, because for some classes P it may not be clear what it means for the
prover to lie in P . For us the meaning will always be clear from context, as P and Q will always be either
BPP, BQP or ALL.

1Note that in general, Cn may act on poly(n) qubits, the first n of which are by convention destined to receive the input x and
the first of which also serves as output qubit.
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5.1.2 Delegating quantum computations

The fact that BQP is not (believed to be) in NP implies that in general we do not expect there to exist
classically verifiable proofs for the correctness of an arbitrary quantum computation. This poses a challenge:
as we see quantum computers emerging, how will we test their predictions? This is a practical problem —
will anyone trust the “quantum cloud” — but also a philosophical one — is quantum mechanics a testable
theory? (For more on this, see [AV13].)

Not all is lost. What we do know is that BQP is included in PSPACE, the class of languages that can
be decided using polynomial space (and arbitrary time); in fact Exercise 5.1 asked you to show a stronger
statement. And even though it is not a trivial result, it is known that PSPACE = IP. So all languages
in BQP have classical interactive proofs, with an efficient classical verifier! Unfortunately there is a major
caveat to this observation. The proof that PSPACE is in IP is based on the classical SUM-CHECK protocol,
which in general requires the server to execute PSPACE-complete computations (essentially, the server has
to compute exponentially large sums in order to determine answers that will satisfy the client). (For an
exposition of the proof we refer to the book [AB09].)

So, even though a protocol exists, it is unknown if there is such a protocol in which a honest server is
only required to have the power of BQP. Today this is a major open question:

Open Question 5.3. Is BQP ⊆ IP[BQP, ALL]? In words, do all languages in BQP have single-server
interactive proofs in which the client has the power of BPP and for which completeness holds with a BQP
server and soundness holds against any server?

In [ACGK17] some partial impossibility results are shown for the case of blind delegation protocols. If
the inequality BQP ⊆ IP[BQP, ALL] does hold it is likely to require protocols with polynomially many
rounds of interaction, because constant-round protocols lie in AM and BQP is not believed to be in AM.
Such protocols are known where completeness holds for provers that require more power than BQP but not
necessarily the entire power of PSPACE; see e.g. [AG17]. If, however, one allows slightly more power to
the verifier then there are scenario in which the question is known to have a positive answer:

1. The client has access to a limited quantum computer, such as the ability to prepare single qubits in
arbitrary states and send them to the server, or receive single qubits from the server and make simple
measurements on them;

2. The client is allowed to interact with multiple quantum servers sharing entanglement.

The question as formulated above asks for verifiable delegation: given a quantum circuit (deciding some
BQP language L), is there a protocol that allows a classical client to extract the outcome of the circuit
from a BQP server, in a way that any cheating server, attempting to convince the client of the wrong
outcome, will be detected? A second desirable property of a delegation protocol is blindness: while the
client would like to learn the valid outcome of her circuit, she might not want to disclose the particular
circuit or input she is interested in to the server. This is a distinct property from verifiability; in particular,
one may ask for blindness in the “honest-but-curious” model, where verifiability is trivial. The following
definition introduces these properties slightly more formally.

Definition 5.4 (Delegated computation). In the task of delegated computation, a client (sometimes called
the verifier) has an input (x, C), where x is a classical string and C the classical description of a quantum
circuit. The client has a multiple-round interaction with a quantum server (sometimes also called server).
At the end of the interaction, Alice either returns a classical output y, or she aborts. A protocol for delegated
computation is called:
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• Correct if whenever both the client and the server follow the protocol, with high probability Alice
accepts (she does not abort) and y = C(x). (This property is sometimes called completeness.)

• Verifiable if for any server deviating from the protocol, the client either aborts or returns y = C(x).
(This property is analogous to what we have been calling soudness.)

• Blind if for any server deviating from the protocol, at the end of the protocol the server has no infor-
mation at all about the client’s input (x, C).

The definition remains rather informal. For example, how should we formalize the “information” that
the server has at the end of the computation? This can be rather delicate, especially once one starts taking
into account a small chance ε of deviation from the perfect properties. A precise definition satisfying all the
desired properties (universal composability in particular) would take us too far. Such a definition was given
using the framework of abstract cryptography in [DFPR14].

The informal definition will be sufficient for our purposes. Note that in spite of being rather similar
neither of the properties of verifiability or blindness is known to directly implies the other. In practice
verifiability often follows from blindness by arguing, using “traps”, that if a protocol is already blind then
the server’s trustworthiness can be tested by making it run “dummy” computations for which Alice already
knows the output, without the server being able to distinguish whether it is asked to do a real or dummy
computation. We will see an example of this technique later on.

Open Question 5.5. Is there a general transformation from any protocol satisfying blindness, to a protocol
satisfying both verifiability and blindness? See [Mor18] for how to achieve this by making use of post-hoc
verification (cf. Section 5.2), and [KMW17] for another approach.

Remark 5.6. The problem of delegating computation is interesting even for classical computation. In this
case the client herself could directly execute the classical circuit C. But it makes sense to be even more
demanding, and seek protocols where the client is super-efficient: the best we could hope for is a client that
runs in time linear in the input length, and independent of the size of the circuit. In addition, we would like
the overhead for the server to be as small as possible, so that the honest behavior requires a server effort
of the same order as the size of the circuit, |C|. This kind of interactive proofs are called doubly efficient
interactive proofs [GKR08]. The paper [RRR16] shows how to achieve such proofs with client runtime
that is linear in the input length, polynomial in the space required by C, and polylogarithmic in |C|. If one
is willing to make computational assumptions (essentially, subexponential LWE) then even more efficient
delegation is possible [KRR14], with client runtime that is linear in the input size and poly-logarithmic in
|C|.

These results usually do not put emphasis on the requirement of blindness: they focus on verifiabil-
ity alone. One reason for this is that blindness is “trivially solved” by employing homomorphic encryp-
tion [Gen09]. This, however, requires computational assumptions, and induces significant computational
overhead.

5.1.3 Approaches to delegating quantum computation

There are three main types of approaches: prepare-and-send (the client has ability to prepare single-qubit
states and send them to the server), receive-and-measure (the client has the ability to receive single-qubit
states from the server and measure them), and two-server (the client interacts classically with two spatially
isolated servers. A great recent survey describing these approaches in detail is [GKK19]. Here we focus
on a specific protocol of receive-and-measure type, that we will later build on to obtain a protocol with a
classical verifier, under computational assumptions on the prover.
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5.2 The Fitzsimons-Morimae protocol

We describe the receive-and-measure protocol from [MF16], as it will form the basis for the Mahadev
protocol.

5.2.1 The circuit-to-Hamiltonian reduction

The Cook-Levin theorem showing NP-completeness of the 3SAT problem is based on what could be called
a “circuit-to-formula” reduction: given a classical circuit, the computation performed by the circuit on some
input is represented as a “tableau” such that the property of being a valid tableau can be encoded in a formula
whose variables represent the state of any given wire in the circuit and whose constraints enforce correct
propagation of the gates of the circuit.

CNOT

H

T

|ψ0〉|0〉
⊗
+

|ψ1〉|1〉
⊗
+

|ψT 〉|T 〉
⊗
+

|ψtableau〉 =
|ψhist〉 =

CNOT

CNOT

Figure 5.1: Two different ways to create a tableau from a quantum circuit. The state |ψtableau〉 is the tensor
product of the state of the circuit at each time step. The state |ψhist〉 is their superposition, indexed by a
clock register that goes from |0〉 to |T〉.

For quantum circuits the idea of a tableau of the computation is less straightforward. The most direct
analogue is to consider the juxtaposition of the quantum state of a T-gate circuit at each step of the com-
putation, i.e. the tensor product |ψ0〉 ⊗ · · · ⊗ |ψT〉 of the states |ψi〉 obtained by executing the circuit from
scratch and stopping after i gates have been applied. While this is a well-defined n(T + 1)-qubit quantum
state (see Figure 5.1) the property of being a valid “quantum tableau” cannot be enforced using local con-
straints! The reason is subtle, and has to do with the possible presence of entanglement at intermediate steps
of the computation. Indeed, there are quantum states that are very different, in the sense that they are per-
fectly distinguishable by some global observable, yet cannot be distinguished at all by any local observable,
that would act on at most, say, half the qubits. An example is given by the two n-qubit “cat” (named after
the homonymous animal) states

|ψ±〉 =
1√
2

(
|0 · · · 0〉 ± |1 · · · 1〉

)
.

The two states |ψ+〉 and |ψ−〉 are easily seen to be orthogonal, so that they can be perfectly distinguished
by a measurement. But it is an exercise to verify that for any observable that acts on at most (n− 1) of the
n qubits, both states give exactly the same expectation value. (Informally, this is because any measurement
on a strict subset of the qubits of the state necessarily destroys the coherence; the only relevant information,
the ± sign, is encoded “globally” and cannot be accessed locally.) Note that this is a uniquely quantum
phenomenon: if two classical strings of bits have each of their bits equal, one pair at a time, then the strings
are “globally” identical. Not so for quantum states.
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So naı̈ve tableaus will not do. In the late 1990s Alexei Kitaev introduced a very powerful idea that
provides a solution. Kitaev’s idea is to replace the juxtaposition of snapshot states by their superposition
(see Figure 5.1). A special ancilla system, called the “clock”, is introduced to index different elements of
the superposition. Thus, instead of defining a tableau as |ψ0〉 · · · |ψT〉, Kitaev considers the state

|ψhist〉 =
1√

T + 1

T

∑
t=0
|t〉|ψt〉 . (5.2)

Note that this takes less qubits to store, but this is not the important point. Kitaev showed that, assuming
the clock register is encoded in unary, it is possible to check the correct propagation of every step of the
circuit directly on this superposition by only applying local observables: there is a set of observables Hin
that checks that |ψ0〉 has the right format; a set of observables Hprop that checks propagation of the circuit,
and an observable Hout that checks that the output qubit of the circuit is in the right state. (In addition,
there is a term Hclock that checks that the clock register is well-formed, i.e. contains the representation of
an integer in unary. This can be done locally by penalizing configurations of the form “· · · 10 · · · ”.) The
key point that makes this possible is that, while equality of quantum states cannot be decided locally when
the states are juxtaposed, it becomes possible when they are given in superposition. As an exercise, we can
verify that a measurement of the first qubit of the state

|ψSWAP〉 =
1√
2

(
|0〉|ψ0〉+ |1〉|ψ1〉

)
in the Hadamard basis {|+〉, |−〉} returns the first outcome with probability exactly 1

2 (1 + |〈ψ0|ψ1〉|2).
With more work, replacing the use of gadgets in the classical Cook-Levin reduction by techniques from
perturbation theory, it is possible to write the resulting observables as a linear combination of local terms
that all take a particularly simple form. The result is the following theorem from [CM16].

Theorem 5.7. For any integer n ≥ 1 there are n′ = poly(n), a = a(n) and δ ≥ 1/ poly(n) such
that the following holds. Given a T-gate quantum circuit C = ((G1, i1, j1), . . . , (GT, iT, jT)) acting on n
qubits, such that T = poly(n), and an input x for the circuit, there exist efficiently computable real weights
{Jij, i, j ∈ {1, . . . , n′}} such that |Jij| ≤ 1 for all i, j and moreover if

HC = −∑
i,j

Jij

2
(
σX,iσX,j + σZ,iσZ,j

)
, (5.3)

where σX,i and σZ,j denote single-qubit Pauli X and Z operators acting on the i-th and j-th qubit respectively,
then:

• (Completeness) If the circuit C accepts its input x with probability at least 2/3, then the smallest
eigenvalue of HC is at most a;

• (Soundness) If the circuit C accepts its input x with probability at most 1/3, then the smallest eigen-
value of HC is at least a + δ.

Remark 5.8. It is possible to modify Theorem 5.7 so that the completeness and soundness statements specify
that “if there exists a state |φ〉 such that C accepts on input (x, |φ〉) with probability at least 2/3...” and “if
there does not exist a state |φ〉 such that C accepts on input (x, |φ〉) with probability greater than 1/3...”
respectively. Thus, Theorem 5.7 can be adapted to show that the problem of estimating the minimal energy
of a Hamiltonian of the form (5.3) is a QMA-complete problem.
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Theorem 5.7 provides us with a roadmap for the verification of quantum circuits: it is sufficient to
verify the existence of a quantum state that yields certain statistics, when some of its qubits are measured in
the computational (σZ observable) or Hadamard (σX observable) basis. The reason this can be considered
progress is that we no longer need to check the time evolution of a quantum state under a quantum cicuit; it
is sufficient to collect measurement statistics and estimate the “energy” 〈ψ|H|ψ〉. In particular, the theorem
readily leads to a verification protocol in a model where the prover has a full quantum computer, and the
verifier only has a limited quantum device — namely, a one-qubit memory, together with the ability to
measure the qubit using either the σX or σZ observables.

5.2.2 The protocol

Such a verification protocol was introduced by Fitzsimons and Morimae and refined in a paper with Hadjušek.
The protocol is summarized in Figure 5.2. In the protocol, the prover is required to prepare a smallest eigen-
state of the Hamiltonian HC given in (5.3). While it may not be immediately obvious at the level of our
description, it is possible to prepare such a “history state” (5.2) by executing a quantum circuit that is only
mildly more complex than the original circuit C.

Let C be a quantum circuit provided as input, and HC the n-qubit Hamiltonian obtained from C as in (5.3).

1. The verifier initializes a counter γ to 0. She executes the following interaction with the prover inde-

pendently N = C
δ2 (

n′
2 )

2
ln(1/ε) times, where C is a large enough universal constant:

(a) The prover creates an eigenstate |ψ〉 of H with smallest eigenvalue.

(b) The prover sends the qubits of |ψ〉 one by one to the verifier.

(c) The verifier selects a measurement W ∈ {X, Z} uniformly at random, and measures each qubit
in the associated basis upon reception. Let bW,i ∈ {−1, 1} be the outcome for the i-th qubit.

(d) The verifier selects i 6= j ∈ {1, . . . , n′} uniformly at random. She updates her counter γ ←
γ− JijbW,ibW,j.

2. If γ
N (n′

2 ) ≤ a + δ/2 the verifier accepts the interaction. Otherwise, she rejects.

Figure 5.2: The Fitzsimons-Hadjuček-Morimae verification protocol, parametrized by a quantum circuit C
and an accuracy parameter ε > 0.

We note that in the protocol, the verifier measures the qubits in a randomly chosen basis, and then selects
a single pair (i, j) such that Jij 6= 0 uniformly at random to update her counter. One could imagine small
optimizations where e.g. a maximum matching of such pairs is measured at each step. Such optimizations
only bring marginal improvements in efficiency of the protocol; moreover they complicate the extension to
a classical verifier that we will see later. For this reason, we prefer to keep the simplest expression possible
for the protocol.

Theorem 5.9. Let C be a quantum circuit and HC the Hamiltonian associated to it as in (5.3). Let x be an
input to the circuit C and ε > 0 a parameter for the protocol. Then the following hold:

• (Completeness:) If C accepts x with probability at least 2/3, then there is a QPT prover that is
accepted with probability at least 1− ε
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• (Soundness:) If C accepts x with probability at most 1/3, then any prover is accepted with probability
at most ε.

Note that in the theorem, the soundness statement does not place any computational assumption on the
prover.

Proof. The key calculation that underlies the proof is the following.

Claim 5.10. Let ρ be the density matrix that represents the mixture over the N n′-qubit states sent by the
prover in the protocol (in general these states may be entangled). Then the expectation of γ/N is exactly

E
[ γ

N

]
= − 1

(n′
2 )

∑
i 6=j

Jij

2
Tr
((

σi
Xσ

j
X + σi

Zσ
j
Z
)
ρ
)
=

1

(n′
2 )

Tr
(

Hρ
)

. (5.4)

Moreover, for N chosen as in the protocol for a large enough choice of the constant C it holds that

Pr
(∣∣∣ γ

N

(
n′

2

)
− Tr

(
Hρ
)∣∣∣ > δ

2

)
≤ ε . (5.5)

Proof. For t ∈ {1, . . . , n} let Gt denote the product of the two outcomes bW,i and bW,j obtained by the
verifier at step (c) of the protocol, where W, i and j are as sampled at step (d). Then the random variables
Gt ∈ {−1, 1} are i.i.d. such that for each t, E[Gt] = Tr(σi

Wσ
j
Wρ), with W, i and j are the values sampled

in step t. Since γ = −∑t JijGt, averaging over those choices gives (5.4). Using |Jij| ≤ 1, by Hoeffding’s
inequality for any s > 0

Pr
(∣∣γ− E[γ]

∣∣ > s
)
≤ e−

2s2
4N .

By choosing N sufficiently large with respect to (n′
2 )

2
δ−2 ln(1/ε) we get (5.5).

Based on Claim 5.10 the proof of Theorem 5.9 follows rather directly. For the completeness, we take ρ =
|ψ〉〈ψ| such that 〈ψ|H|ψ〉 ≤ a, whose existence is guaranteed by the completeness case of Theorem 5.7.
As noted above, this ρ can be prepared efficiently by a QPT prover. Using (5.5) it follows that this prover
is accepted with probability at least 1− ε. For the soundness, ρ is arbitrary. Using the soundness case of
Theorem 5.7 it must be that Tr(Hρ) ≥ a + δ, so that the conclusion follows again from (5.5).

Even though the verifier’s “quantumness” in this protocol is limited — she only needs to hold one qubit
at a time — this capability is crucial for the analysis, as it is used to guarantee the “existence” of the state
that is being measured: it allows us to meaningfully talk about “the state ρ whose first qubit is the first qubit
received by the verifier; whose second qubit is the second qubit received by the verifier; etc.”. These qubits
are distinct, because the verifier has seen and then discarded them (it would be a different matter if they
were returned to the prover). In particular, the fact that a one-qubit computer can be trivially simulated on a
classical piece of paper is immaterial to the argument.

With a classical verifier things become substantially more delicate. How can we verify the existence of
an n-qubit state with certain properties, while having only access to classical data about the state, data that,
for all we know a priori, could have been generated by a simple — classical — laptop? To achieve this we
need to find a way for the verifier to establish that the prover holds an n-qubit state, without ever having the
ability to directly probe even a single qubit of that state. In the previous lecture we saw a means to achieve
this for a single qubit based on the computational hardness of certain functions called “claw-free”. In the
next lecture we extend that method to introduce a protocol by which the prover can certify the existence
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of any single-qubit state that is a low-energy eigenstate of a single-qubit Hamiltonian. In the following
lecture we combine this extension with the Fizsimons-Morimae protocol to obtain a protocol for delegating
quantum computations with a classical client.
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Lecture 6

Verifying a single qubit-Hamiltonian

In the previous lecture we introduced the circuit-to-Hamiltonian construction, that given a quantum cir-
cuit C and an input x to it returns a Hamiltonian HC of the form (5.3) such that the completeness and
soundness properties stated in Theorem 5.7 hold. This construction allowed us to reduce the problem of del-
egating a quantum computation to the problem of deciding if a certain publicly known, explicitly specified
exponential-size Hermitian matrix HC has an eigenvalue below a certain threshold a, or all its eigenvalues are
above b + δ for a δ that is at least inverse polynomial in the number of qubits n on which HC acts.1 We then
introduced the Fitzsimons-Morimae protocol (Figure 5.2) that is a protocol with one-way communication
for verifying this fact.

Our goal in the next two lectures is to combine the Fitzsimons-Morimae protocol with the computational
test for a qubit from lecture 4, Section 4.3 to obtain a classical protocol with similar guarantees to the
Fitzsimons-Morimae protocol. For this we will develop a test that allows one to verify that a prover “has” a
quantum state |ψ〉 with certain properties (e.g. it satisfies 〈ψ|H|ψ〉 ≤ a+ δ/2, i.e. certifies that the outcome
of the computation is ‘1’. Note that even though in principle it is sufficient for the verifier to be convinced
that such a |ψ〉 exists to make the right decision, we will see from the proofs that we can go a little further
and give a precise meaning to the notion that the prover ‘has’ |ψ〉. This, however, will not be as strong as
the claim that the prover ‘has n qubits in state |ψ〉’ in the sense that we gave to the phrase ‘has n qubits’, i.e.
we will not quite exhibit 2n Pauli operators Xi, Zi that satisfy all the required relations.

Remark 6.1. In passing to the Hamiltonian model of computation we relaxed our main goal, from obtaining
a value b ∈ {0, 1} that is distributed as a measurement of the output qubit of the quantum circuit C in the
standard basis to obtaining a value that is 1 whenever this measurement returns 1 with probability larger than
2
3 , and 0 whenever it is less than 1

3 . In particular, we make no requirement for circuits that are “undecided”,
e.g. return a random bit as output. This is typical to applications in complexity where it is assumed that
circuits of interest make a clear-cut decision, 0 or 1; this is the setting discussed in Section 5.1. By tweaking
the definition of HC it is in fact possible to guarantee that any state |ψ〉 such that 〈ψ|HC |ψ〉 ≤ a + δ/2 is
such that a measurement of the first qubit of |ψ〉 in the standard basis yields an outcome whose distribution is
within total variation distance, say, 1

100 from a measurement of the output qubit of C. Using this observation
the protocol given at the end of this lecture can be adapted to return outcomes that are distributed close to
the circuit output distribution, even in cases where the output is not assumed to be biased one way or the
other. For simplicity we leave this extension as an exercise to the reader.

1In the previous lecture this number of qubits was called n′, with n the number of qubits of the circuit C. For the next two
lectures, C disappears and so we re-use n to measure the size of HC .
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6.1 A test for a specific single-qubit Hamiltonian

We start with an “easy” case: we show how the computational test for a qubit from lecture 4, protocol Q, can
be cast as a verification protocol for the claim that the Hamiltonian H = −σZ has a “low” eigenvalue, equal
to −1. We go a little further by showing how such an eigenstate can be “extracted” from any successful
prover in the protocol.

6.1.1 An explicit isometry

Our main result on the computational qubit test, Theorem 4.4, states that any successful prover in the proto-
col must “have a qubit”. The proof achieves slightly more than that, as it explicitly states what the observ-
ables Z in (4.3) and X in (4.4) that define the qubit (|ψ〉, Z, X) are. As we saw in Lemma 2.3 in lecture
2 the qubit implies the existence of an isometry V : H → C2 ⊗H′ under which Z ' σZ, X ' σZ, and
|ψ〉 ' |ψ′〉 ∈ C2 ⊗H′, giving us an identification of the “abstract” qubit (|ψ〉, Z, X) with a “concrete”
qubit, i.e. the space C2 and its algebra of operators, of which σZ and σX form a linear basis.

With our present goal of “extracting” a specific quantum state (a low-energy eigenstate for the Hamil-
tonian HC) it is worthwhile making V a little more explicit. Indeed, an important point that we did not
emphasize so far is that this identification is not “canonical”. If you remember the proof of Lemma 2.3, it
involves an application of Jordan’s lemma to identify a block structure such that in each block, Z and X act
like σZ and σX respectively. These blocks were obtained by diagonalizing the operator (X + Z). In the case
where X and Z anti-commute this operator has only two eigenvalues, ±

√
2, and the associated eigenspaces

are highly degenerate. Any choice of a basis for one of the eigenspaces can be used to specify an isometry
V (a basis for the other eigenspace is determined by the first). (That there would be such a degeneracy is
easily seen by observing that composing V by any unitary on H′ still gives a valid isometry with the same
properties.)

It is, in fact, possible to define a canonical choice for the isometry. This choice has the advantage that it
is explicit and from a computational viewpoint leads to a circuit for V that can be constructed from circuits
for X and Z. The idea behind the definition is to use the operators X and Z to “teleport” the abstract qubit
(|ψ〉, Z, X) into a “concrete” qubit (|ϕ〉, σZ, σX) by means of an EPR pair. This is done in the following
proposition.

Proposition 6.2. Let (|ψ〉, Z, X) be a qubit onH. Let |φ+〉 = 1√
2
(|0〉|0〉+ |1〉|1〉) ∈ C2⊗C2 be the state

of an EPR pair. LetH′ = C2
A ⊗H and V : H → C2

Q ⊗H′ defined by

∀|ϕ〉 ∈ H , V|ϕ〉 = 1
2
(

Id⊗ IdA⊗ IdQ +X⊗σX⊗ IdQ +Z⊗σZ⊗ IdQ +XZ⊗σXσZ⊗ IdQ
)
|ϕ〉|φ+〉AQ ,

(6.1)
where the systems in the range of V are re-ordered so that the first factor C2 is associated with the second
qubit of |φ+〉AQ in (6.1), and H′ consists of the state of the first qubit of |φ+〉, i.e. register A, as well as the
part of the state inH. Then V is an isometry and for all W ∈ {X, Z},

VW|ψ〉 = (σW ⊗ Id)V|ψ〉 . (6.2)

Proof. The proof is by direct calculation. First we verify that V is indeed an isometry. This is simply because
the four states {(σX(a)σZ(b)⊗ Id)|φ+〉, a, b ∈ {0, 1}} are orthonormal2 and X and Z are observables, so

2For a, b ∈ {0, 1} we use the notation σX(a) for σa
X and similarly σZ(b) for σb

Z. The motivation for this notation will be seen
later when we consider n-qubit Pauli operators.
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that for normalized |ϕ〉 each of the four terms on the right-hand side of (6.1) has norm exactly 1. Note that
this does not require any other condition on X, Z than that they are observables (in fact, unitarity suffices).
In particular, they do not need to anti-commute. Next we verify (6.2). Take W = X. Then

VX|ψ〉 = 1
2
(
X⊗ Id⊗ Id+ Id⊗σX ⊗ Id−XZ⊗ σZ ⊗ Id−Z⊗ σXσZ ⊗ Id

)
|ψ〉|φ+〉

=
1
2
(
X⊗ Id⊗ Id+ Id⊗σX ⊗ Id−XZ⊗ σZ ⊗ Id−Z⊗ σXσZ ⊗ Id

)
|ψ〉(σX ⊗ σX)|φ+〉

=
1
2
(
X⊗ σX ⊗ σX + Id⊗ Id⊗σX + XZ⊗ σXσZ ⊗ σX + Z⊗ σZ ⊗ σX

)
|ψ〉|φ+〉

= (σX ⊗ Id)V|ψ〉 ,

where for the first line we used that X and Z anti-commute on |ψ〉, for the second that σX⊗ σX|φ+〉 = |φ+〉,
for the third that σX and σZ anti-commute, and for the last we re-ordered terms.

6.1.2 Extraction of prover’s qubit

In the proof of Theorem 4.4 we defined a specific X and Z from the prover’s actions and showed that they
anti-commute. Moreover, we showed that for a prover that always succeeds in the equation test (case c = 1)
it must be the case that the state |ψ〉 of the prover is a +1 eigenstate of X, X|ψ〉 = |ψ〉. For the definition
of |ψ〉 ∈ HX ⊗HP, recall that we had assumed that the prover directly measures the qubits in register X on
challenge c = 0, and applies an arbitrary unitary U before measuring in the Hadamard basis on challenge
c = 1. This means that after the isometry V, the prover’s state |ψ〉 is mapped to a +1 eigenstate of σX, i.e.
the state |+〉. The following corollary summarizes this discussion.

Corollary 6.3. Suppose that a prover succeeds with probability 1 in the protocol. Then the isometry V
defined from the observables Z in (4.3) and X in (4.4) sends |ψ〉 to |+〉Q|aux〉, for some state |aux〉 onH′.

In the context of this lecture we interpret Corollary 6.3 as our first test for a quantum computation in the
Hamiltonian-based model: in this test, the verifier is effectively checking that the prover has prepared a +1
eigenstate of the Hamiltonian σX, or in other words a ground state of H = −σX. While we know that this
eigenstate always exists, the analysis of the protocol shows that in some sense the prover has prepared the
state. This additional observation allows us to make stronger conclusions from the protocol. For example,
just as a measurement of |+〉 in the computational basis yields an unbiased random bit, we are able to deduce
that the value of b(x) with x the prover’s answer on challenge c = 0 is an unbiased random bit. This ties
in to the discussion in Section 3.4.1, where we observed that high success probability in the magic square
game could be used to certify the generation of a random bit, and makes the protocol potentially useful for
cryptographic applications where the generation of certified unbiased randomness serves as a resource.

In the development of our test we were greatly aided by the fact that we know what is the ground state
of H = −σX, and in particular we know that a Hadamard basis measurement of it yields the outcome 0 (for
‘+’) with probability 1. This “knowledge” was indirectly encapsulated in the test performed for the case
c = 1, the analysis of which led us to conclude that X|ψ〉 = +|ψ〉. But what if we didn’t? What if H is a
general Hamiltonian of the form (5.3), for which we can’t a priori predict measurement outcomes?

6.2 Extracting a qubit: general case

In Section 6.1.1 we made the important observation that the map V in (6.1) is a well-defined isometry for
any choice of the two observables X and Z. In particular, this map allows us to make a meaningful definition
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of a space for a qubit, and a state for that qubit, associated with any prover in protocol Q, the computational
test for a qubit described in Figure 4.1. This definition does not guarantee that the prover “has a qubit,”
because it does not say anything about how the prover’s observables operate on it. However, it still allows us
to define a candidate for a single-qubit state on which σX and σZ measurements can in principle be made.
The next claim evaluates how outcomes of these measurements when performed on the extracted qubit are
a distributed as a function of the observables X and Z on the prover’s state |ψ〉.

Claim 6.4. Let |ψ〉 ∈ H and X, Z observables on H be arbitrary. Let V be defined as in (6.1). Then the
following hold:

〈ψ|V†(σZ ⊗ Id
)
V|ψ〉 = 〈ψ|Z|ψ〉 , (6.3)

〈ψ|V†(σX ⊗ Id
)
V|ψ〉 = 1

2
(
〈ψ|X|ψ〉 − 〈ψ|ZXZ|ψ〉

)
, (6.4)

where the σZ and σX operators act on the first tensor factor C2 in the range of V and the identities act on
H′.

Recalling the diagram 2.3 introduced to illustrate Lemma 2.3, Claim 6.4 can similarly be illustrated as
follows, where Eb denotes the average over b:

H C2 ⊗H′

H C2 ⊗H′

V

Z

Eb∈{0,1}(−1)b ZbXZb

σZ⊗Id

σX⊗Id

V

(6.5)

We emphasize that this diagram is purely illustrative and should be understood exactly in the sense of (6.3)
and (6.4); i.e. it does not imply a relation on the operators but only on the expectation values on the state
|ψ〉. Informally, when considering expectation values only the isometry has the effect of applying a Z-twirl
to the Hadamard basis observable X.

Proof. Let W ∈ {X, Z}. Expanding from the definition of V,

〈ψ|V†(σW ⊗ Id
)
V|ψ〉 = 1

4 ∑
P,Q∈{I,X,Z,XZ}

〈ψ|P†Q|ψ〉 · 〈φ+|σ†
PσQ ⊗ σW |ψ〉

=
1
4 ∑

P,Q: σ†
PσQ=σW

〈ψ|P†Q|ψ〉 ,

where for the second line we used that 〈φ+|σW ⊗ σW ′ |φ+〉 = δW,W ′ with δ the Kronecker symbol. In case
W = Z the pairs P, Q that appear in the last summation above are (Z, I), (I, Z), (X, XZ) and (XZ, X).
Using X2 = Id we obtain (6.3). In case W = X then the summation is over (X, I), (I, X), (XZ,−Z)
and (Z,−XZ) and has a minus sign for the last two terms due to σXσZ = −σZσX. Thus we get (6.4) as
well.

Observe that if X and Z anti-commute then Claim 6.4 gives us the result that we expect: in this case
(|ψ〉, Z, X) is a qubit so Proposition 6.2 applies and the isometry “intertwines” measurements X and Z on
|ψ〉 with σX and σZ respectively on the first factor of V|ψ〉. At the other extreme, if X and Z commute
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then (6.4) indicates that a measurement in the Hadamard basis of the extracted qubit returns an unbiased
random bit. This is expected of a “classical” state, which always leads to uniformly random results in the
Hadamard basis. The lemma in some sense interpolates between these results. Importantly, it allows us to
associate a qubit with the state of an arbitrary prover in the protocol, that is such that the distribution of mea-
surements on the extracted qubit can be related to quantities that involve the prover’s state and observables
in the protocol. For convenience we make this into a definition.

Definition 6.5 (Extracted qubit). Let P be a prover in protocol Q. Let |ψ〉 be the state of P after having sent
y in the first round of interaction. Let V be defined as in (6.1). Then we call the reduced density of V|ψ〉 on
the first factor C2, associated with register Q, the extracted qubit and denote it by ρQ.

Lemma 6.6. Let P be a prover that succeeds with probability 1 in the pre-image test of protocol Q and such
that the string d returned in the equation test is d = 0m with probability that is negligibly small in λ. (No
other assumption is made on the equation test.) Let ρ be the extracted qubit, as defined in Definition 6.5.
Then the following hold:

• (Z-measurement:) The outcome of measuring ρ in the computational basis is identically distributed
to the bit (−1)b(x) computed from the prover’s answer x in case c = 0.

• (X-measurement:) Under assumption (F.2), the outcome of measuring ρ in the Hadamard basis is
computationally indistinguishable from the bit (−1)d·(x0+x1) where d is obtained from the prover in
case c = 1.

Remark 6.7 (Computational distinguishability). The statement of the lemma refers to two distributions being
computationally indistinguishable. Informally, this means that no computationally efficient procedure can
distinguish a sample taken from one distribution from a sample taken from the other. Formally, families of
distributions D = {Dλ} and D′ = {D′λ} on universes {Xλ} are said to be computationally indistinguish-
able if for any PPT (or QPT for computational indistinguishability against quantum adversaries) procedure
A there is a negligible function µ such that for every λ,∣∣∣ Pr

x←Dλ

(
A(1λ, x) = 1

)
− Pr

x′←D′λ

(
A(1λ, x′) = 1

)∣∣∣ ≤ µ(λ) .

Here, when we refer to computational indistinguishability we will always mean against QPT adversaries.
Note that for distributions on a family of universes {Xλ} such that |Xλ| grows at most polynomially with λ
the notion of computational indistinguishability is equivalent to statistical indistinguishability, i.e. the total
variation distance between Dλ and D′λ goes to 0 as fast as some negligible function. (Showing this formally
is a good exercise to practice with the definitions.)

Proof. The first item follows immediately from (6.3) in Claim 6.4 and the definition of Z in (4.3), which
guarantees that the bit (−1)b(x) obtained from the prover in case c = 0 has expectation precisely 〈ψ|Z|ψ〉.

To show the second item we assume for contradiction that the two distributions are computationally
distinguishable. Since the distributions are over a single bit, as recalled in Remark 6.7 this is equivalent to
statistical distinguishability: there must exist a polynomial q(λ) such that for infinitely many values of λ,

∣∣〈ψ|X|ψ〉+ 〈ψ|ZXZ|ψ〉
∣∣ > 1

q(λ)
, (6.6)

where recall that the expression on the left should be understood on average over the generation of pk by
the verifier and the message y sent by the prover in the first round of interaction. We derive a contradiction

71



with (F.2) by constructing an adversary in (4.2). Given λ and pk as input, A prepares the state |ψ〉. A
then measures register X in the standard basis to obtain an outcome x. Using the assumption that the prover
succeeds with probability 1 in the pre-image test, fpk(x) = y and the (unnormalized) post-measurement
state is exactly Zb(x)|ψ〉, where as usual Zb = (Id+(−1)bZ)/2. Finally, the adversary applies the prover’s
unitary U and measures in the Hadamard basis to obtain a string d. It returns the pair (x, d). The expected
value of (−1)d·(x0+x1) under this procedure is

〈ψ|Z0XZ0|ψ〉+ 〈ψ|Z1XZ1|ψ〉 =
1
2
(
〈ψ|X|ψ〉+ 〈ψ|ZXZ|ψ〉

)
,

which can be seen by expanding Zb = (Id+(−1)bZ)/2 for b ∈ {0, 1} and canceling cross-terms. Us-
ing (6.6) and the fact that, A violates (4.2).3

6.3 A single-qubit verification protocol

In the previous section we showed how to identify a “qubit” such that for any prover in the protocol, as long
as the prover succeeds in the preimage test then it is possible for the verifier to infer from the prover’s answers
a bit whose distribution is statistically indistinguishable from outcomes of σZ or σX measurements on a well-
defined quantum state. In order to turn this into a verification protocol for a single-qubit Hamiltonian, we
are missing the completeness statement: while in Section 4.3 we saw how a prover could behave in such a
way that the extracted qubit is a |+〉 state, we do not yet know if it is possible to use the protocol for the
verification of other single-qubit states. In order for this to work out, we make the following assumption that
replaces assumption (F.4):

(F.4’) For any pk and any y in the range of fpk the two preimages of y take the form (b, xb) where b ∈ {0, 1}
and xb ∈ {0, 1}m(λ)−1. In particular, the function b : {0, 1}m → {0, 1} returns the first bit of its
input.

This assumption is mainly for convenience and holds for most constructions of claw-free functions, in-
cluding the one that we sketch in the next lecture. Given a 2-to-1 function family that satisfies (F.4’) the
following lemma shows how a prover can behave in the protocol so that the extracted qubit defined in the
previous section is a state |ϕ〉 of its choice.

Lemma 6.8. Let |ϕ〉 ∈ C2 be any state. Then there is a way for the prover to behave in protocol Q such
that the prover is accepted with probability 1 in the preimage test and moreover the extracted qubit satisfies
ρQ = |ϕ〉〈ϕ|.

Proof. Let |ϕ〉 = α|0〉+ β|1〉 for α, β ∈ C such that |α|2 + |β|2 = 1. The prover performs the following
steps:

1. Prepare the initial state

|ψ(0)〉BXY = |ϕ〉B ⊗
( 1

2m−1 ∑
x∈{0,1}m−1

|x〉X
)
|0〉Y ,

where B is a one-qubit register, X an (m− 1) and Y an m-qubit register, for m = m(λ).

3The end of the proof glosses over a detail: one needs to guarantee that the equation d returned by A is not 0. While the lemma
assumes that this is the case when the equation is measured directly on |ψ〉, here A measures after |ψ〉 has already been measured
using the observable Z. To show that the assumption that d 6= 0m with probability negligibly close to 1 still holds one needs to use
the “collapsing” property of fpk, that we will introduce in the next lecture.
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2. Upon receipt of the function index pk, coherently evaluate fpk on the input in registers BX, writing
the output in register Y to obtain the state

|ψ(1)〉BXY =
α

2m−1 ∑
x∈{0,1}m−1

|0〉B|x〉X| f (0x)〉Y +
β

2m−1 ∑
x∈{0,1}m−1

|1〉B|x〉X| f (1x)〉Y .

3. Measure the last register to obtain a y. Let (0, x0) and (1, x1) be the two preimages of y under fpk.
Then the re-normalized post-measurement state is

|ψ(2)〉BXY =
(
α|0〉B|x0〉X + β|1〉B|x1〉X

)
|y〉Y .

4. Upon receipt of challenge c, perform as the honest prover in protocol Q: if c = 0 measure registers
BX in the standard basis and return the outcome x = (b, xb); if c = 1 measure in the Hadamard basis
and return the outcome d.

This prover always returns a valid preimage in the case of a challenge c = 0, so it is accepted with probability
1. Observe that the operator Z associated to this prover is equal to a σZ on register B. Regarding the operator
X, a simple calculation reveals that the action of X restricted to the span of |0, x0〉BX and |1, x1〉BX consists
in exchanging these two basis states. Using the explicit form of the isometry V given in (6.1) one can verify
that

V|ψ(2)〉 = 1√
2

(
|0〉B|x0〉X|0〉A + |1〉B|x1〉X|1〉A

)
⊗
(
α|0〉Q + β|1〉Q

)
⊗ |y〉Y ,

where AQ are the two registers introduced to hold the EPR pair |φ+〉AQ used in the definition of V. Register
Q contains the extracted qubit.

Let F be a 2-to-1 trapdoor claw-free function family and λ ∈ N a security parameter. Let ε, δ > 0 be
accuracy parameters. Let γ = 0 and N = C

δ2 ln(1/ε) for some large constant C. The verifier and prover
repeat the following interaction N times.

1. The verifier generates (pk, td)← GEN(1λ). It sends pk to the prover.

2. The prover returns y ∈ {0, 1}m, where m = m(λ).

3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.

4. (a) (Computational basis, c = 0:) In case c = 0 the prover is expected to return an x ∈ {0, 1}m.
If f (x) 6= 0 then the verifier immediately aborts. The verifier sets a ← (−1)b(x) and γ ←
γ− JZa.

(b) (Hadamard basis, c = 1:) In case c = 1 the prover is expected to return a d ∈ {0, 1}m. The
verifier uses td to determine the two preimages (x0, x1) of y by fpk. She sets b← (−1)d·(x0+x1)

and γ← γ− JXb.

If the verifier has not aborted at any of the steps c = 0, she returns the real number o = 1
N γ.

Figure 6.1: Verification protocol for a single-qubit Hamiltonian H = − JX
2 σX − JZ

2 σZ.
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The following proposition summarizes what we have achieved so far, a verification protocol for single-
qubit Hamiltonians and a completely classical verifier. (Of course a simpler protocol would be to have
the verifier classically do the computation themselves! The point is that this protocol is not too hard to
extend to n qubits, as we will see in the next lecture.) The protocol, which combines protocol Q with the
Fitzsimons-Morimae verification protocol, is summarized in Figure 6.1.

Proposition 6.9. Let H = − JX
2 σX− JZ

2 σZ be a single-qubit Hamiltonian and δ, ε > 0 accuracy parameters.
Then the verification protocol from Figure 6.1 has the following properties:

1. (Completeness:) For any single-qubit state |ϕ〉, there is a QPT prover that is accepted with probability
1 in the protocol and such that the value o returned by the verifier at the end of the protocol satisfies
E[o] = 〈ϕ|H|ϕ〉.

2. (Soundness:) For any QPT prover that is accepted with probability 1 in the protocol, there is a single-
qubit state ρ such that the value o returned by the verifier at the end of the protocol satisfies E[o] =
Tr(Hρ).

Moreover, with the value of N specified in the protocol in both cases it holds that Pr(|o−Tr(Hρ)| > δ) ≤ ε.

Remark 6.10. The assumption that the prover succeeds with probability negligibly close to 1 in the protocol
can be relaxed to a constant sufficiently close to 1, where the distance to 1 will affect the distance |E[o]−
Tr(Hρ)|. First we observe that a success probability negligibly close to 1 is sufficient; this can be verified
by going through the argument again, and nothing needs to be changed. Second, it is possible to show that
any prover with success probability 1 − κ for some κ ≥ 0 can be transformed to a prover with success
probability negligibly close to 1, affecting the distribution of o proportionately to κ. Intuitively, the new
prover will test if the value y that the old prover would have returned will lead to success on challenge
c = 0, in case that the test is actually executed by the verifier. This can be done efficiently by the prover
by evaluating the pre-image condition on register X. If this test fails then the new prover simply re-executes
the old prover from scratch, until it is certain to achieve success. With probability negligibly close to 1
this iterative procedure will stop in a polynomial number of steps, and using the “pretty-good lemma” it is
possible to show that the prover’s distribution of outcomes is affected by some O(

√
κ) in statistical distance.

We omit the details.

Proof. The completeness statement follows from Lemma 6.8. For soundness we use Lemma 6.6. This
shows that the expectation of the bit a in step 4.(a) satisfies E[a] = Tr(σZρ) where ρ is the extracted qubit.
Similarly, the bit b in step 4.(b) satisfies E[b] = Tr(σZρ). Since by definition

E[o] = − JZ

2
E[a]− JX

2
E[b]

the proposition follows.
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Lecture 7

Verification for n qubit Hamiltonians in
XX− ZZ form

Moving beyond the case of a single qubit, our goal in this lecture is to generalize the results from Section 6.2
to a procedure for extracting n qubits from a prover, together with a statement that allows us to relate
measurements in the standard or Hadamard basis of the extracted qubits to measurements performed by the
prover in the protocol. Once this has been put in place we will not be far from a delegation protocol along
the lines of the Fitzsimons-Morimae protocol from Section 5.2, but, crucially, with classical verifier and
communication.

7.1 Setup

To set the stage we first give a straightforward generalization of the single-qubit verification protocol from
Figure 6.1 to the case of n qubits. Recall from Section 5.2.2 that for our purposes it suffices to consider
Hamiltonians that take the form (5.3). This form allows us to restrict our attention to a collection of mea-
surement outcomes on an n-qubit state such that all qubits are measured in the same basis, computational
or Hadamard. In particular we do not need to consider “mixed” measurements, with some qubits measured
in the standard basis and other qubits in the Hadamard basis, because (5.3) does not have mixed terms such
as σX,iσZ,j. (See Remark 7.1 regarding extensions to the mixed case.) It is then natural to request that the
honest prover behaves exactly as in the single-qubit verification protocol, except that each action should
be repeated independently for each of the n qubits: in the first phase the verifier sends the information
for n functions fpk1 , . . . , fpkn , the prover executes the encoding procedure from the proof of Lemma 6.8
independently for each of the n qubits of its claimed low-energy eigenstate |ϕ〉 of HC and reports the n
images y1, . . . , yn obtained; in the second phase the verifier sends a single-bit challenge c ∈ {0, 1} and the
prover measures all its qubits in the computational or Hadamard basis and returns the outcomes x1, . . . , xn
or d1, . . . , dn respectively. Note that the only part that is not repeated is the challenge, which is identical
for each of the n concurrent repetitions. The reason that we can restrict ourselves to such challenges is due
to the form of HC from (5.3) and, as we will see, greatly simplifies the analysis. The complete protocol is
given in Figure 7.1.

Before proceeding to the analysis of the protocol we examine the question, “Where are the qubits?”
For the single-qubit verification protocol our initial intuition came from the qubit computational test from
lecture 4, for which we were able to argue that the prover indeed has a qubit (|ψ〉, Z, X). For the verification
protocol seen in the last lecture we saw that in order to allow verification of other states than the |+〉 state
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Let F be a 2-to-1 trapdoor claw-free function family and λ ∈ N a security parameter. Let ε, δ > 0 be
accuracy parameters. Let γ = 0 and N = C

δ2 (
n
2)

2 ln(1/ε). The verifier and prover repeat the following
interaction N times.

1. The verifier selects a pair i 6= j ∈ {1, . . . , n} and W ∈ {X, Z} uniformly at random.

2. For ` = 1, . . . , n the verifier generates (pk`, td`)← GEN(1λ). It sends (pk1, . . . , pkn) to the prover.

3. The prover returns y1, . . . , yn ∈ {0, 1}m, where m = m(λ).

4. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.

5. (a) (Computational basis, c = 0:) In case c = 0 the prover is expected to return x1, . . . , xn ∈
{0, 1}m. If fpk`(x`) 6= 0 for any ` then the verifier immediately aborts. The verifier sets

γ← γ− Jij (−1)b(xi)(−1)b(xj) .

(b) (Hadamard basis, c = 1:) In case c = 1 the prover is expected to return d1, . . . , dn ∈ {0, 1}m.
The verifier uses tdi and tdj to determine the preimages (xi,0, xi,1) of yi by fpki and (xj,0, xj,1)
of yj by fpk j respectively. She sets

γ← γ− Jij (−1)di ·(xi,0+xi,1)(−1)dj·(xj,0+xj,1) .

If the verifier has not aborted at any of the steps c = 0, she returns the real number o = 1
N (n

2)γ.

Figure 7.1: Verification protocol Vn for an n-qubit Hamiltonian HC = −∑i,j
Jij
2 (σX,iσX,j + σZ,iσZ,j).
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we had to remove some of the tests done by the verifier (specifically, the equation check) and that due to
this we were no longer able to guarantee a qubit in the sense of Definition 2.2. Nevertheless we were able
to get around this by defining an abstract extracted qubit that did not directly correspond to the prover’s
observables but was still such that measurement outcomes on the extracted qubit could be shown to have a
distribution that is negligibly close to outcomes obtained from the prover in the actual protocol (Lemma 6.6).

For the case of demonstrating n qubits a priori one would have to show that the prover has a state |ψ〉
and two families of observables {X(a) : a ∈ {0, 1}n} and {Z(b) : b ∈ {0, 1}n} that satisfy the Pauli
commutation and anti-commutation relations when they act on |ψ〉. Indeed, a straightforward generalization
of Lemma 2.3 then guarantees the existence of a suitable isometry with the space of n actual qubits. Showing
this is challenging; luckily, for our purposes it is also not necessary.1 Indeed, just as in the single-qubit case
it is worth emphasizing that in the context of verification we do not need to guarantee that the prover has a
certain quantum state, nor that it is able to perform certain measurements on it. The only real requirement is
that a state |ϕ〉 exists such that 〈ϕ|HC |ϕ〉 ≤ a. Thus, as we did in the analysis of the single-qubit verification
protocol we will first introduce a abstract extracted n qubit defined from the prover’s state and actions in
the protocol but that also include additional ingredients that make it at first unclear how they relate to the
prover itself. The definition of the extracted qubits is given in Section 7.2. Once this has been defined
we will perform the second, crucial step, which is to relate the distribution of measurement outcomes on
the extracted qubits to quantities that are directly observable in the protocol. This is done in Section 7.3.
Finally in Section 7.4 we put everything together and show the completeness and soundness properties of
the verification protocol given in Figure 7.1. In addition in Section 7.5 we will sketch a construction of a
function family based on the Learning With Errors (LWE) problem that (approximately) satisfies all required
assumptions and can thus be used to instantiate the protocol.

7.2 The n extracted qubits

7.2.1 Modeling the prover

We start by introducing notation that allows us to model an arbitrary prover in the protocol. Similarly to
how we modeled the prover for the analysis of the computational qubit test in Section 4.3, a prover in the
n-qubit verification protocol from Figure 7.1 can be represented using the following objects:

1. A state |ψ〉, that may depend on pk1, . . . , pkn and y1, . . . , yn, such that |ψ〉 ∈ HX1 ⊗ · · · HXn ⊗HP
with each space HXi isomorphic to (C2)⊗m. The state |ψ〉 represents the state of the prover and the
message registers at the end of step 3 in the protocol.

2. For the case c = 0, the prover directly measures all the X registers in the standard basis to obtain
x1, . . . , xn that it returns to the verifier. For a string a ∈ {0, 1}n we let

Z(a) = ∑
x1,...,xn

(−1)a1·b1(x1) · · · (−1)an·bn(xn)|x1〉〈x1| ⊗ · · · |xn〉〈xn| , (7.1)

where the functions bi are not necessarily all equal since they may depend on pki. This is analogous
to (4.3).

1In the last three lectures of the course we will see how in the context of spatial assumptions it is known how to test n qubits in
this sense; for computational assumptions we do not yet know how to do it.
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3. For the case c = 1, the prover applies an arbitrary unitary U followed by a measurement of the qubits
in X in the Hadamard basis to obtain d1, . . . , dn. For a string b ∈ {0, 1}n we let

X(b) = ∑
d1,...,dn

(−1)b1(d1·(x1,0+x1,1)) · · · (−1)bn(dn·(xn,0+xn,1))

·U†(H⊗nm
X ⊗ IdP

)†(|d1, . . . , dn〉〈d1, . . . , dn|X ⊗ IdP
)(

H⊗nm
X ⊗ IdP

)
U . (7.2)

Remark 7.1. Note that the fact that the protocol only has two different challenges, c = 0 and c = 1, allows
us to have a simple description for all Z(a) and all X(b) observables that involves only one “adversarial”
unitary U. However, the fact that there are only two challenges also ultimately limits the soundness that
we are able to achieve: it could not be larger than 1

2 . In fact, mostly due to the fact that we restricted to
Hamiltonians in XX-ZZ form we will not obtain a better than inverse polynomial gap between completeness
and soundness. Designing a protocol that allows more general Hamiltonians with mixed terms of the form
σX,iσZ,j is a little more complicated due to the need for extracting “mixed” measurement outcomes from the
prover. This can done by exploiting further properties of the function family F , namely injective invariance
as explained in [Mah18]. This allows us to bring soundness down to 1

4 which, as shown in [ACGH20], can
be amplified by parallel repetition.

7.2.2 The isometry V

Next we define the n-qubit isometry V, and the extracted qubits.

Claim 7.2. Let |ψ〉 ∈ H and for every a, b ∈ {0, 1}n, X(a) and Z(b) observables onH such that all X(a)
(resp. all Z(b)) mutually commute and moreover X(a)X(a′) = X(a + a′) for any a, a′ ∈ {0, 1}n. Let
V : H → HQ ⊗HA ⊗H′ where each of HQ and HA is (C2)⊗n and H′ ' H be defined for all |ϕ〉 ∈ H
as

V|ϕ〉 =
( 1

2n ∑
a,b

Id⊗σX(a)σZ(b)⊗ X(a)Z(b)
)
|φ+〉⊗n|ϕ〉 , (7.3)

where each EPR pair |φ+〉 has one qubit in register Q and the other in register A and the σX and σZ
operators act on register A. Then V is an isometry.

The proof of the claim is immediate and only uses that the family of states{
(σX(a)σZ(b)⊗ Id)|φ+〉⊗n : a, b ∈ {0, 1}n}

is orthonormal. Similarly to Definition 6.5 we can now define the n extracted qubits.

Definition 7.3 (Extracted qubits). Let P be a prover in the verification protocol Vn described in Figure 7.1.
Let |ψ〉 be the state of P after having sent y1, . . . , yn at step 3 of the t-th iteration, for some t ∈ {1, . . . , N}.
Let V be defined in (7.3). Then we call the reduced density of V|ψ〉 on register Q the extracted qubits
(implicitly, at iteration t) and denote them by ρQ1···Qn .

7.3 Measurements on the extracted qubits

We start with the following analogue to Claim 6.4, which gives an explicit formula for the distribution of
measurements in the standard or Hadamard basis on the n extracted qubits as a function of the prover’s state
and observables.
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Claim 7.4. The following hold for any prover, with ρ the n extracted qubits at any iteration (Definition 7.3):

∀b ∈ {0, 1}n , Tr
(
σZ(b)ρ

)
= 〈ψ|Z(b)|ψ〉 , (7.4)

∀a ∈ {0, 1}n , Tr
(
σX(a)ρ

)
=

1
2n ∑

b
(−1)a·b〈ψ|Z(b)X(a)Z(b)|ψ〉 . (7.5)

The claim can be illustrated using the following generalization of (6.5)

H C2 ⊗H′

H C2 ⊗H′

V

Z(b)

Eb∈{0,1}(−1)b·a Z(b)X(a)Z(b)

σZ(b)⊗Id

σX(a)⊗Id

V

(7.6)

Proof. Eq. (7.4) is immediate using that X(a) are observables and 〈φ+|⊗nσX(a′)σZ(b′)⊗ σZ(b)|φ+〉⊗n is
zero unless a′ = 0 and b = b′. Eq. (7.5) is shown similarly by direct calculation, using X(a′)X(a′′) =
X(a′ + a′′) and σZ(b)σX(a)σZ(b) = (−1)a·bσX(a).

The next lemma is the key lemma. It argues that for computationally bounded provers, the quantity on
the right-hand side of (7.5) is close to the simpler quantity 〈ψ|X(a)|ψ〉, that in particular can be inferred in
the protocol from the prover’s outcomes yi and di (for those i such that ai = 1). Before we can state the
lemma we need to introduce one last assumption on the function family F . Intuitively, this assumption is a
natural quantum analogue of the classical property of collision resistance, but is stronger than it.

(F.5) Consider the following abstract game between an arbitrary “adversary” (think prover) and a trusted
(quantum) “challenger” (think verifier). First, the adversary is provided a label pk (generated at ran-
dom by the challenger) and required to prepare an arbitrary state of the form |φ〉 = ∑x αx|x〉, where
x ranges over the domain of fpk. (In general the adversary may keep an additional register entan-
gled with this state. For ease of notation we do not consider such entanglement in this description.)
The adversary hands the state |φ〉 over to the challenger, who evaluates fpk in superposition on |φ〉
and measures the image register, obtaining a y in the range of fpk and the (suitably re-normalized)
post-measurement state |φ′〉 = ∑x: fpk(x)=y αx|x〉. The challenger then returns to the adversary the
string c together with either the state |φ′〉 or the probabilistic mixture ∑x: f (x)=c |αx|2|x〉〈x| obtained
by measuring the same state |φ′〉 in the computational basis (and throwing away the outcome). The
adversary wins if it correctly guesses which is the case. Assumption (F.5) on the function family F
states that for any QPT adversary A there is a negligible function µ such that for any λ, A succeeds
in this game with probability that deviates from 1

2 by at most µ(λ).

Remark 7.5. Assumption (F.5) is referred to as the “collapsing” property for the function family F . This
property was introduced by Unruh as a strengthening of the classical property of collision resistance required
for his work on the security of commitment protocols that are computationally binding against quantum
adversaries [Unr16]. The reason that this assumption implies collision resistance is that, if the function were
not collision resistant, the adversary could identify a colliding pair (x0, x1) and submit |φ〉 = 1√

2
(|x0〉+

|x1〉) to the challenger. It could then measure the challenger’s response in a basis containing the two states
1√
2
(|x0〉 ± |x1〉) and guess that, in case the “−” outcome is obtained, the challenger must have measured;

in the other case, the adversary guesses at random.
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Note that assumption (F.2) also trivially implies collision resistance, since the ability to identify a claw
allows one to generate arbitrary equations in it. It is possible to show that both (F.2) and (F.5) are strictly
stronger than collision resistance. It is likely that the two assumptions are incomparable, but I have not tried
to show this explicitly.

We can now state and prove the key lemma.

Lemma 7.6. Let P be a prover that succeeds with probability 1 in protocol Vn. Let ρ be the n extracted
qubits, as defined in Definition 7.3 (for any iteration). Then the following hold for any i 6= j ∈ {1, . . . , n}:

• (Z-measurement:) The outcome of measuring qubits i and j of ρ in the computational basis is identi-
cally distributed to the bits b(xi) and b(xj) obtained from the prover in case c = 0.

• (X-measurement:) Under assumptions (F.2) and (F.5) the outcome of measuring qubits i and j of ρ
in the Hadamard basis is computationally indistinguishable from the pair of bits di · (xi,0 + xi,1) and
dj · (xj,0 + xj,1) where di and dj are obtained from the prover in case c = 1.

As already noted in the previous lecture, for distributions on two bits the notions of computational and
statistical indistinguishability are essentially equivalent. The lemma generalizes to the joint distribution of
any number of bits, and in this case it is only the weaker computational indistiguishability that is obtained.
For simplicity we restrict ourselves to proving the lemma for the setting of two bits only.

Proof. For the case of a measurement in the computational basis the lemma follows directly from (7.4) in
Claim 7.4 and the definition of the extracted qubits. For the case of a measurement in the Hadamard basis
we proceed in two steps.

In the first step we show that for any b ∈ {0, 1}n the states |ψ〉 and Z(b)|ψ〉 are computationally
indistinguishable. We show this by performing a reduction to an adversary that breaks assumption (F.5). Fix
any i ∈ {1, . . . n} and suppose for contradiction that there exists an efficient observable R such that

∣∣〈ψ|R|ψ〉 − 〈ψ|Z(ei)RZ(ei)|ψ〉
∣∣ > 1

q(λ)
,

for some polynomial q and where the left-hand side should be understood on expectation over the creation
of a state |ψ〉 according to the first three steps of protocol Vn. Let i be a position in which bi 6= 0. Our
goal is to reach a contradiction with (F.5). Towards this we construct an adversaryA to the collapsing game
that underlies assumption (F.5). Upon input pk, A creates the state |ψ〉 and returns to the challenger only
the m-qubit register Xi. Note that the first part of the challenger’s actions in the game does not change |ψ〉,
since the prover has already collapsed it to a pair of preimages. The two cases correspond to the challenger
returning either the mixed state ∑b∈{0,1} Zb,i|ψ〉〈ψ|Zb,i or |ψ〉〈ψ|, where Zb,i = (Id+(−1)bZ(ei))/2. The
adversary A measures R and returns the outcome. The advantage of A in distinguishing the two cases is∣∣∣〈ψ|R|ψ〉 −∑

b
〈ψ|Zb,iRZb,i|ψ〉

∣∣∣ = 1
2

∣∣〈ψ|R|ψ〉 − 〈ψ|Z(ei)RZ(ei)|ψ〉
∣∣ ,

where the equality follows by definition of Zb,i. Since by (F.5) this advantage should be negligible, we
deduce that for every i ∈ {1, . . . , n} and every efficient observable R it must be that

〈ψ|R|ψ〉 ≈ 〈ψ|Z(ei)RZ(ei)|ψ〉 . (7.7)
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Since for any b the observable Z(b)RZ(b) itself is efficient, applying (7.7) n times (with different choices
of R) we deduce that for any b and efficient R,

〈ψ|R|ψ〉 ≈ 〈ψ|Z(b1e1)RZ(b1e1)|ψ〉
≈ 〈ψ|Z(b1e1 + b2e2)RZ(b1e1 + b2e2)|ψ〉
≈ · · ·
≈ 〈ψ|Z(b)RZ(b)|ψ〉 .

We now extend the preceding reasoning to show that for any a of the form a = aiei + ajej with ei, ej the
canonical basis vectors and ai, aj ∈ {0, 1},∣∣∣ 1

2n ∑
b
(−1)a·b〈ψ|Z(b)X(a)Z(b)|ψ〉

− 1
4 ∑

bi ,bj∈{0,1}
(−1)aibi+ajbj〈ψ|Z(biei + bjej)X(a)Z(biei + bjej)|ψ〉

∣∣∣ ≤ µ(λ) , (7.8)

for some negligible function ν. Supposing this were not the case, by the triangle inequality and an averaging
argument there must exist a b such that∣∣〈ψ|Z(b)X(a)Z(b)|ψ〉 − 〈ψ|Z(biei + bjej)X(a)Z(biei + bjej)|ψ〉

∣∣ > 1
q(λ)

,

for some polynomial q. This leads to a contradiction with (F.5) using the same reasoning as before, because
from the point of view of the statement of (F.5) for qubits not in positions i and j, the observable X(a) is
efficient, as its computation only requires trapdoors tdi and tdj.

To obtain the second part of the claim it remains to handle the Z(ei) and Z(ej) operators. For the
positions i and j the associated trapdoor information is used in the computation of X(a), so the preceding
reasoning cannot be applied. Instead, we proceed similarly to the proof of Lemma 6.6, by reduction to the
adaptive hardcore bit property, assumption (F.2). Note that if ai = 0 or aj = 0 then our task is exactly the
task handled in Lemma 6.6. So assume ai = aj = 1. We perform a reduction to Lemma 6.6 via a simple
hybrid argument. Suppose for the sake of contradiction that∣∣∣〈ψ|X(a)|ψ〉 − 1

4 ∑
bi ,bj∈{0,1}

(−1)aibi〈ψ|Z(biei + bjej)X(a)Z(biei + bjej)|ψ〉
∣∣∣ > 1

q(λ)
.

Then by the triangle inequality and averaging it must be that either∣∣∣〈ψ|X(a)|ψ〉 − 1
2 ∑

bi∈{0,1}
(−1)aibi+ajbj〈ψ|Z(biei)X(a)Z(biei)|ψ〉

∣∣∣ > 1
q(λ)

,

or ∣∣∣〈ψ|Z(bj)X(a)Z(bj)|ψ〉 −
1
2 ∑

bi∈{0,1}
(−1)aibi〈ψ|Z(biei + ej)X(a)Z(biei + ej)|ψ〉

∣∣∣ > 1
q(λ)

.

The first case is ruled out directly by Lemma 6.6. The second case is ruled out by the same lemma, simply
considering a prover that creates the state Z(bj)|ψ〉 instead of |ψ〉 at the 3rd step (i.e. the step where |ψ〉 is
defined).
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7.4 An n-qubit verification protocol

The following theorem is the main result of the past four lectures. It generalizes Proposition 6.9 to the case
of an n-qubit Hamiltonian.

Theorem 7.7. Let F be a function family satisfying (F.1), (F.2), (F.3), (F.4’) and (F.5). Let HC be an n-
qubit Hamiltonian of the form (5.3) and δ, ε > 0 accuracy parameters. Then the verification protocol from
Figure 7.1 has the following properties:

1. (Completeness:) For any n-qubit state |ϕ〉, there is a QPT prover that is accepted with probability 1
in the protocol and such that the value o returned by the verifier at the end of the protocol satisfies
E[o] = 〈ϕ|H|ϕ〉.

2. (Soundness:) For any QPT prover that is accepted with probability 1 in the protocol, there is an n-
qubit state ρ such that the value o returned by the verifier at the end of the protocol satisfies Pr(|o−
Tr(Hρ)| > δ) ≤ ε.

Remark 7.8. The protocol in Figure 7.1, as the one in Figure 6.1, involves N repetitions of an elementary
4-message procedure. It is possible to parallelize the protocol to a single repetition in which the prover is
asked to perform measurements on all N qubits of a ground state of HC . This however requires more work,
because in the parallelized protocol the verifier needs to request “mixed” measurements from the prover; see
Remark 7.1.

Remark 7.9. We pause to insist on how amazing Theorem 7.7 is. Due to Kitaev’s circuit-to-Hamiltonian
construction (Section 5.2.1) it is known that, under the widely believed assumption that QMA 6= QCMA
(where QCMA is the class of languages that admit classical proofs verifiable by QPT verifiers), there exist
families of Hamilitonians of the form HC such that any sufficiently low-energy eigenstate of HC cannot have
a simple classical description; in particular, there is no small quantum circuit to prepare such eigenstates,
they must have high entanglement, etc. Yet Theorem 7.7 states that through an efficient classical interaction
with a device that has the ability to prepare such states it is possible to efficiently verify their existence.
There are two ways in which one might aim to strengthen that statement. First, in the spirit of “proofs of
knowledge” we might aim to show that the prover has such a state, and not only that it exists. Showing
this requires a formalization of the notion of the prover “having” a certain quantum state, but it can be done
without any modification to the protocol itself; see [VZ20]. Second, in the spirit of our “test for a qubit”
we might aim to show that the prover has n qubits. This we do not know how to show in the computational
setting: it is an open question.

Remark 7.10. The assumption that the prover succeeds with probability 1 that is made in the soundness
statement is not difficult to relax; see Remark 6.10.

Proof. The completeness statement is entirely analogous to the same statement for Proposition 6.9. In
slightly more detail, at each of the N iterations the honest prover prepares a fresh copy of the state |ϕ〉 and
then applies the procedure described in the proof of Lemma 6.8 independently to each of the n qubits of
|ϕ〉, using the key pki for the i-th qubit and obtaining an outcome yi. For each qubit the post-measurement
state is in an m-qubit register Xi that the prover measures in the standard basis in case of challenge c = 0,
and Hadamard basis in case c = 1. It can then be verified by direct calculation that in case c = 0 for any
pair i 6= j the parity (−1)b(xi)+b(xj) is distributed as a measurement of σZ(ei + ej) on |ϕ〉, and similarly
in case c = 1 for any pair i 6= j the parity (−1)di ·(xi,0+xi,1)+dj·(xj,0+xj,1) is distributed as a measurement of
σX(ei + ej) on |ϕ〉.
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For soundness we use Lemma 7.6. The lemma shows that for any iteration t = 1, . . . , N in the protocol
we can define a state ρt such that averaging over the verifier’s choice of qubits i and j it holds that, whenever
c = 0 then

E
[

Jij (−1)b(xi)(−1)b(xj)
]
= Jij Tr

(
σZ,iσZ,jρt

)
.

and whenever c = 1 then

E
[

Jij (−1)di ·(xi,0+xi,1)(−1)dj·(xj,0+xj,1)
]
≈ Jij Tr

(
σX,iσX,jρt

)
,

where the approximation is up to some negligible quantity in λ. Averaging these two quantities we see that
on average over all the rounds,

E[o] ≈ 1
N

N

∑
t=1

∑
i 6=j

(
− 1

2
Jij Tr

(
σZ,iσZ,jρt

)
− 1

2
Jij Tr

(
σX,iσX,jρt

))
=

1
N

N

∑
t=1

Tr
(

HCρt
)

= Tr
(

HCρ
)

,

where we defined ρ = 1
N ∑t ρt. The more quantitative statement given in the soundness part of the theorem

follows directly by using a martingale concentration argument, provided the constant C in the definition of
N is chosen large enough.

7.5 Construction of a claw-free function family F
The presentation of this section is adapted from [Vid20].

In Section 4.3 we have identified four assumptions (we added a fifth one in Section 7.3) on a family
of functions { fpk(λ) : {0, 1}m(λ) → {0, 1}m(λ)}λ∈N, such that the five assumptions together are sufficient
for the resulting delegated computation protocol to be sound. Can the five assumptions be simultaneously
satisfied? Strictly speaking, we do not know the answer. In this section we sketch a construction that
nearly satisfies the assumptions. The construction appears in [BCM+18], and a mild modification of it is
used in Mahadev’s protocol. Even though the desired assumptions will not all be strictly satisfied by the
construction,2 it is possible to verify that the protocol itself remains sound.

7.5.1 The LWE problem

Our starting point is the Learning with Errors problem, introduced by Regev [Reg09]. The hardness of
this problem has become a widely used computational assumption in cryptography, for at least three rea-
sons. The first is that it is very versatile, allowing the implementation of advanced primitives such as
fully homomorphic encryption [Gen09, BV14], attribute-based encryption [GVW15], program obfusca-
tion [WZ17, GKW17], traitor tracing [GKW18], and many others. The second is that the assumption can be
reduced to the hardness of worst-case computational problems on lattices: an efficient procedure that breaks
the LWE assumption on average can be used to solve the closest vector problem in (almost) any lattice. The

2In particular, we construct functions from Zm
q to Zm

q for some q that is required to be large and may not necessarily be chosen
even. The definition of assumption (F.2) considers equations modulo 2, and this is naturally tailored to the capabilities of a quantum
prover, for whom it is possible to generate such equations by measuring in the Hadamard basis. The family of functions constructed
in this section can be shown to possess the hardcore bit property over Zq, but proving it over Z2 requires more work.
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third reason, that is most relevant to the use of the LWE assumption made here, is that in contrast to the RSA
assumption on the hardness of factoring or the discrete logarithm problem so far it is believed that the LWE
problem may be hard for quantum computers, so that cryptographic schemes based on it remain (to the best
of published knowledge) secure against quantum attacks.

The LWE assumption comes in multiple flavors, all roughly equivalent. Here we formulate the de-
cisional LWE assumption on the difficulty of distinguishing samples from two distributions. To state the
problem, fix a size parameter n ≥ 1, an integer modulus q ≥ 2, a number of equations m ≥ n log q, and an
error distribution χ over Zq.3 Given χ, write χm for the distribution over Zm

q that is obtained by sampling
each entry of a vector independently according to χ. The decisional LWE assumption is the following.

(Decisional LWE, informal) Let A be a uniformly random matrix in Zm×n
q , s a uniformly ran-

dom vector in {0, 1}n, e a random vector in Zm
q drawn from χm, and r a uniformly random

vector in Zm
q . Then no classical or quantum probabilistic polynomial-time procedure can dis-

tinguish (A, As + e) from (A, r).

Note that the distribution of (A, As + e) and the distribution of (A, r) are in general very far from each
other: provided m is sufficiently larger than n a random vector r will not lie in the column span of A, nor
even be close to it. What the (decisional) LWE assumption asserts is that, even though in principle these
distributions are far from each other, it is computationally difficult, given a sample from the one or the other,
to tell which is the case. Note that without the error vector e the task would be easy: given (A, y), solve for
As = y and check whether the solution has coefficients in {0, 1}. The LWE assumption is that the inclusion
of e makes the task substantially more arduous. In particular, it is well-known that Gaussian elimination is
very sensitive to errors, which rules out the most natural approach.

The definition we gave is informal because we have not specified how the parameters n, m and q should
be chosen as a function of the security parameter λ, and we have not specified the distribution χ. In general
one can make the decisional LWE assumption for any choice of these parameters—but for some choices
the assumption will be invalidated by existing algorithms. We comment on come choices of parameters
that are made in cryptography. The integer n should generally be thought of as commensurate with the
security parameter λ, i.e. n = Θ(λ). The modulus q should be at least polynomial in n, but can be as
large as exponential; this will be the case in our construction. The error distribution χ can be chosen in
multiple ways. A common choice is to set χ a discretized centered Gaussian distribution with variance
αq, for some small parameter α (typically chosen as an inverse polynomial function of n); this is generally
denoted DZq,αq. For more details on LWE and its applications, we refer to the survey [P+16].

7.5.2 Construction

To specify the function family F we first describe how public and private parameters for the function are
chosen. Let λ be the security parameter (i.e. the number 2λ is thought of as an estimate of the time required
to break assumptions such as (F.2)).

First, integers n, m and a modulus q are chosen such that n = Ω(λ), q ≥ 2 is a prime, and m =
Ω(n log q). Then, a matrix A ∈ Zm×n

q is sampled at random, together with a “trapdoor” in the form of a
matrix R ∈ Z`×m

q , where n ≤ ` ≤ m is a parameter. The sampling procedure has the property that the
distribution of A is statistically close to uniform, and R is such that G = RA ∈ Z`×n

q is a “nice” matrix, in
the sense that given b = Gs + e, for any s ∈ Zn

q and e small enough, it is computationally easy to recover

3The use of the parameters n, m and q is local to this section. In particular, the m that specifies the domain and range of the
function fpk is not identical to the m here; see below.
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s.4 That such a sampling procedure would exist and be efficiently implementable is non-trivial, and relies
on the underlying lattice structure given by the columns of A; see [MP12]. Finally, a uniformly random
s ∈ {0, 1}n, and a random e ∈ Zm

q distributed according to DZq,αq with α of order 1/(
√

mn log q),5

are sampled. The public information is pk = (A, z = As + e). The trapdoor information is the pair
td = (R, s). Note that pk is not uniformly distributed, but pairs (pk, td) can be sampled in randomized
polynomial time in λ.

Next we discuss how the function f = fpk can be evaluated, given the public parameters pk = (A, z).
We define two functions f0, f1 that should be understood as f (0‖·) and f (1‖·) respectively. Each function
goes from Zwn

2 to Zwm
2 for w = dlog qe. For b ∈ {0, 1} the function fb takes as input an x ∈ Zn

q (that
can be seen as an element of Zwn

2 through its binary representation) and returns Ax + e′ + bz, which is an
element of Zm

q ⊆ Zwm
2 . Here, e′ is a vector sampled at random from a distribution DZq,α′q such that α′

is “much larger” than α. The inclusion of e′ makes f a “randomized” function, which is the main way in
which the construction differs from the requirements expressed in Section 4.3. A formal way around this
is to think of fb as the function that returns not Ax + e′ + bz, but the distribution of Ax + e′ + bz, when
e′ ∼ DZq,α′q and all other variables are fixed. In practice, the evaluation of f on a quantum computer (as
required of the honest prover in the verification protocol) involves preparing a weighted superposition over
all error vectors, and computing the function in superposition.

We would, of course, rather do away with this complication. Why is the error vector necessary? It is
there to satisfy the important requirement that the functions f0 and f1 are injective with overlapping ranges,
so that f itself is 2-to-1. Injectivity follows from the existence of the trapdoor for A and an appropriate
setting of the standard deviation of the error distribution, which guarantee that (given the trapdoor) x can
be recovered from Ax + e′ + bz (with high probability over the choice of e′). To make the function ranges
overlap, we need the distribution of Ax + e′ to be statistically close to the distribution of Ax′ + e′ + z =
A(x′ + s) + (e′ + e). The first distribution considers an arbitrary vector in the column span of A, shifted
by e; the second considers the same, except that the shift is by (e′ + e). For the two distributions to (almost)
match, we need the distribution of e′ to (almost) match the distribution of e + e′. This is possible as long
as the standard deviation σ′ = α′q is substantially larger than the standard deviation σ = αq; provided this
holds it is an exercise to compute the statistical distance between the two Gaussian and verify that it can be
made very close to 1.

With this important caveat in place, we have specified the function f and verified property (F.1). Prop-
erty (F.3) follows from the existence of the secret information td = (R, s). Given a b ∈ {0, 1} and an
element y = Ax + e′ + bz = A(x + bs) + (e′ + be) in the range of fb it is possible to use the trapdoor
matrix R to recover x + bs and subtract bs to deduce the preimage x of z under fb. Property (F.4) holds triv-
ially from the construction. Note that the function f has domain and range that are different. In particular,
here the domain is larger than the range, and in case q is not a power of 2 f is only defined on a subset of its
natural domain Zwn

2 . These points are not very important and can be ignored at the level of our discussion.
Showing the hardcore bit property (F.2) and the collapsing condition (F.5) require more work, and we

refer to [BCM+18] for a detailed exposition.6 Similar “hardcore bit” properties to (F.2) have been shown
for many LWE-based cryptographic schemes (see e.g. [AGV09]). Usually the property states that “for
any vector d ∈ Zn

q\{0}, the value d · s ∈ Zq is indistinguishable from uniform, even given a sample

4One can think of G as a matrix whose rows are almost orthonormal, so that Gaussian elimination on G induces only small
propagation of the errors.

5The precise choice of α is delicate, and the parameters given here should only be treated as indicative; we refer to [BCM+18,
Section 8] for the right setting of parameters.

6The collapsing condition is not shown in [BCM+18]. It is implicitly shown in [Mah18], where it can be seen to follow from
property 2 in Definition 4.4 of an extended trapdoor claw-free family. (The connection is made explicit in [GV19].)
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(A, As + e)”. Our property (F.2) is subtly stronger, in that the adversary may choose the vector d itself,
possibly as a function of the sample (A, As + e). An additional difficulty stems from the specific equation
that the adversary is asked to return. In the definition of Assumption (F.2) this is a d such that d · (x0 + x1) =
0, where x0, x1 are the binary representation of the two preimages in Zn

q of the prover’s first message string
y ∈ Zm

q . (The use of the binary representation comes from the requirements on the honest prover, that
is asked to perform a measurement in the Hadamard basis, yielding a binary string of outcomes.) So here
x0 = (0, r0) and x1 = (1, r1) such that r0, r1 are binary representations for two elements x′0, x′1 ∈ Zn

q
such that x′1 = x′0 − s over Zq. Since the binary representation is not linear the equation obtained is not
directly a linear equation in the secret s. Completing the argument showing that a procedure that returns the
information asked for in Assumption (F.2), i.e. the pair (x = (b, rb), d), can be turned into a procedure that
breaks the decisional LWE assumption, requires a little more work; this is where we need to assume that the
secret vector s is a binary vector.
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Lecture 8

Multiprover interactive proof systems

In lecture 5 we considered the class IP[P ] of languages that can be decided by a BPP verifier interacting
with a prover in class P . We showed how to construct verification protocols for all of BQP in this model:
informally, the result of the previous three lectures is that BQP ∈ IP[BQP] under the Learning with Errors
assumption.1 What if we do not wish to make computational assumptions? A first motivation for this is that
we might simply not wish to rely on relatively untested assumptions — after all, isn’t it likely that a few
decades of algorithmic research (and even less for quantum algorithms) have barely scratched the surface
of the possible ways of approaching a problem such as LWE or even e.g. factoring? A second motivation is
that we could aim for more: firstly, in terms of complexity — almost by definition the class IP[BQP] lies in
BQP (and giving any more power to the prover risks breaking the computational assumption); what if we
are interested in languages outside BQP?2 Secondly, in terms of structural characterizations — in particular,
remember how we stopped short of showing that the prover in the Mahadev protocol “has n qubits”: can we
achieve such a characterization in a different model?

In the next three lectures we switch gears and replace the use of computational assumptions by an as-
sumption of spatial isolation. In this new model the verifier has the ability to interact with two (or more)
provers that are restricted to acting locally on their respective quantum systems. This is the model that we
already encountered in Section ??. As we will see this physical (and, once properly formalized, mathemat-
ical) limitation on prover strategies will allow us to go further along the two motivating directions outlined
in the preceding paragraph.

In this lecture we first introduce the model from a complexity-theoretic standpoint, discuss the recent
characterization MIP∗ = RE, and examine some consequences. In the following two lectures we introduce
techniques that build towards a proof of the equality MIP∗ = RE by developing efficient tests for increasing
numbers of qubits and increasingly complex computations.

8.1 Multiprover interactive proofs with entangled provers

We start with the main complexity-theoretic definition. Recall that a promise language3 L = (Lyes, Lno)
is specified by a pair of disjoint subsets Lyes, Lno of {0, 1}∗ and that a complexity class is a collection of

1To be precise we should state what variant of the LWE assumption the result relies on.
2The practicality of a protocol in which the honest prover lies outside of BQP is almost entirely besides the point — our goal

here is to study the problem of verification per se, and exploring it in the “high-complexity” regime is certain to yield useful insights
which, who knows, may eventually lead to practical consequences of their own.

3Here the promise refers to the fact that it is not required that Lyes ∪ Lno = {0, 1}∗
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languages.

Definition 8.1. The class MIP∗ is the class of promise languages L = (Lyes, Lno) such that there is a
classical polynomial-time Turing machine M that on input 1n returns the description of classical circuits for
the verifier Vn in an interactive protocol with two quantum provers A and B such that:

• (Completeness:) There is a family of quantum provers {An, Bn}n∈N such that for all x ∈ Lyes the
interaction of V|x| and A|x|, B|x| on common input x accepts with probability at least 2

3 .

• (Soundness:) For any family of quantum provers {An, Bn}n∈N, for all x ∈ Lno the interaction of V|x|
and A|x|, B|x| on common input x accepts with probability at most 1

3 .

Some comments on the definition are in order. Following tradition we called the provers A and B rather
than P1 and P2; A stands for “Alice” and B for “Bob”, a personification that is inspired from cryptogra-
phy.4 In general one may allow interaction with more than two provers; however the two-prover setting is
sufficiently intersting for our purposes. (Furthermore, it can be shown that in purely complexity-theoretic
terms there is no gain to considering more than 2 provers.) The number of rounds of interaction is left
implicit in the definition; since Vn is polynomial-size there can be at most polynomially many rounds of
interaction. Soon we will restrict ourselves to single-round protocols, which consist of a message from the
verifier to each prover followed by an answer from each prover; again both for our purposes and in terms of
complexity-theoretic expressive power this is without loss of generality.

Note that we did not (and will not) restrict the computational power of the provers — in fact, we did not
even precisely specify what collection of strategies they may employ. For the time being we stay with the
informal prescription that the provers may employ any quantum strategy that can be implemented locally, in
finite dimension, and without communication — typically, local operations augmented with measurements
on a shared entangled state that may have been agreed on prior to the protocol execution. We will see later
how to formalize this more precisely.

The goal in complexity theory is to relate different classes of languages . This is especially interest-
ing when the classes are defined in very different terms, as relations between them can provide insights
into different models of computation. A pertinent example is the famous equality IP = PSPACE due
to [LFKN92, Sha92]. Among the two classes, PSPACE is the simplest to define: this is the class of all
languages that can be decided using a polynomial amount of space, and arbitrary time. A complete prob-
lem for PSPACE is the quantified Boolean formula (QBF) problem, which is to decide if a formula of the
form ∃x1∀x2∃x3 · · · (x1 ∧ x2 ∧ ¬x3) ∨ (· · · ) is satisfiable. Clearly this can be done in polynomial space
by trying out all possibilities; it is also possible to show that any problem that is solvable in PSPACE can
be reduced to this one, and so we say that QBF is complete for PSPACE. The class IP is defined very
differently: it is the class of languages L such that membership x ∈ Lyes can be decided efficiently by
a randomized polynomial-time verifier interacting with a single infinitely powerful prover (so this is the
single-prover analogue of MIP∗). While it is not too hard to show that IP ⊆ PSPACE, the converse inclu-
sion is not easy at all — to see why, try coming up with a verification protocol for the QBF problem, and
keep in mind that the prover is not to be trusted!

Our goal is to characterize the complexity of MIP∗ in terms of other complexity classes, with the hope
of gaining insights about computation, entanglement, and verification of quantum devices. Before we do
this let’s first review what is known about the classical analogue of MIP∗, in which the provers are restricted

4Indeed the model of multi-prover interactive proof systems is first intoduced by a team of cryptographers [BOGKW19] moti-
vated by the development of zero-knowledge proof systems.
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to classical strategies. This restriction affects both the completeness and soundness requirements in Def-
inition 8.1, and so generally any stipulation of the set of allowed strategies for the provers will lead to a
different complexity class.

8.1.1 Classical multiprover interactive proof systems

The ∗ in MIP∗ refers to the fact that provers are allowed to use entanglement. If we omit it we get the class
MIP of languages that have classical multiprover interactive proof systems. It was shown by Babai, Fortnow
and Lund in the early 1990s that MIP = NEXP. This was shown shortly after the aforementioned result
IP = PSPACE, which characterizes the unexpectedly large verification power of single-prover interactive
proof systems.

Let’s recall how MIP = NEXP is shown. The inclusion of MIP ⊆ NEXP is not hard to obtain.
To show it we give a non-deterministic exponential time algorithm that exactly computes the maximum
acceptance probability of the verifier in an MIP protocol. This algorithm can therefore, given an instance x
and a description of the verifier V|x|, determine whether x ∈ Lyes (the maximum success probability is ≥ 2

3 )
or x ∈ Lno (the maximum success probability is≤ 1

3 ), promised that one of them is the case, and thus decide
any language L ∈ MIP; thus MIP ⊆ NEXP follows. To devise such an algorithm first observe that in order
to do so it suffices to consider the maximum over deterministic strategies, as for any randomized strategy
there is a deterministic one that succeeds with at least the same probability. Now note that a deterministic
strategy is specified by a list of answers to each possible question for each of the provers. There are at most
exponentially many questions because the bit representation of each question must have polynomial length
(since the verifier runs in polynomial time) and similarly for answers. Finally, the success probability of
a deterministic strategy can be computed exactly in exponential time simply by executing the verification
procedure on each possible tuple of questions, weighted by the probability of the question being asked.
Therefore, a non-deterministic algorithm can, in exponential time and space, guess an optimal strategy and
compute its success probability.

The reverse inclusion, NEXP ⊆ MIP, is harder. To get a hint of how it is shown, consider the problem
of verifying that an exponential-size graph is 3-colorable. Formally, an instance x of this problem is specified
by a pair x = (1n, C) where 1n denotes an integer n written in unary, and C is the description of a classical
circuit C : {0, 1}n × {0, 1}n → {0, 1}. Any x that does not take this form is neither in Lyes nor in Lno, and
need not be considered any further.5 The circuit C implicitly specifies a graph Gx = (Vx, Ex) with vertex
set Vx = {0, 1}n and edge set Ex such that (i, j) ∈ Ex if and only if C(i, j) = 1. Then Lyes (resp. Lno) is the
set of all strings x such that Gx is well-defined and is 3-colorable (resp. not 3-colorable). It is known that
the language L = (Lyes, Lno) is complete for NEXP; intuitively this is a “scaled-up” version of the result
that 3-coloring of n-vertex graphs is NP-complete. Now consider the following description for the actions
of the verifier in a candidate multiprover interactive proof system for L:

1. The verifier parses its input x as x = (1n, C).

2. The verifier selects a pair of vertices (i, j) uniformly at random in {0, 1}n × {0, 1}n. She sends i to
Alice and j to Bob.

3. Alice and Bob each reply with a color a, b ∈ {0, 1, 2}.

4. The verifier accepts if and only if any of the following conditions hold: C(i, j) = 0 (there is no edge);
i = j and a = b (same color for identical vertices); C(i, j) = 1 and a 6= b (different colors for

5As usual, we consider that circuits are represented in some given, fixed manner, e.g. as a list of gates and bits that they act on.
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neighboring vertices).6

It is clear that this protocol has completeness 1: whenever Gx is 3-colorable there is a winning strategy for
the provers. Moreover, a moment’s thought will reveal that if Gx is not 3-colorable then there is no perfect
winning strategy; hence the maximum probability of success in this case is at most 1− 2−Ω(n) (because
any strategy must fail on at least one question). While this is a separation between the two cases, it is not
sufficient to establish soundness, which requires that the maximum probability of success for an x ∈ Lno be
at most 1

3 .
What the proof of the inclusion NEXP ⊆ MIP shows is that there is in fact a much better verifier,

somewhat more involved than the one that we described here, which is such that whenever the graph is
not 3-colorable then the maximum success probability is at most 1

3 . Achieving such a protocol essentially
entails finding an efficient method that, informally, maps any graph to another graph of polynomially related
size such that graphs that are 3-colorable are mapped to graphs that remain 3-colorable, but graphs that are
not 3-colorable are mapped to graphs that are very far from 3-colorable. Achieving this can be done using
advanced tools from the theory of error-correcting codes; we will not be able to say more in this lecture and
refer the interested reader to e.g. [AB09].7

8.1.2 Interactive proof systems with entangled provers

Our focus is the class MIP∗. What does the characterization MIP = NEXP say about it? Not much!
The most important point to realize here is that allowing the provers to use entanglement is a double-edged
sword:

First, it can affect the soundness property by allowing the provers to “cheat”, meaning achieve a higher
success probability. We already saw a good example of this with the Magic Square game. While this game
doesn’t quite look like the 3-coloring protocol we introduced in the previous section, by transforming it
it is possible to come up with explicit instances of the latter that are associated with non-colorable graphs
but such that there nevertheless exists a quantum strategy which succeeds with probability 1; see for exam-
ple [Ji13].

As a result we are unable to transfer the lower bound NEXP ⊆ MIP in a “black-box” manner, and
the only trivial lower bound on MIP∗ is PSPACE, as clearly the verifier can ignore all but one of the
provers and execute any classical IP protocol with the remaining prover. In fact it is interesting to note
that such a “collapse” to IP does take place when one allows even more power to the provers, in the form
of arbitrary non-signaling strategies as defined in Section ??. Indeed it is not hard to see that the non-
signaling constraints are linear, so that it is possible to write the optimal success probability of non-signaling
provers in a multiprover interactive proof system as an exponential-size linear program (LP). Using that
linear programs can be solved in time polynomial in their size it can be shown that the class of interactive
proof systems with non-signaling provers, denoted MIPns, lies in EXP. Furthermore, if the number of
provers is fixed to 2 and the number of rounds of interaction to 1 then the class “collapses” even further to
PSPACE, because the associated LP can be solved more efficiently than a general LP; see [Ito10].

Second, entanglement can also affect the completeness property by increasing the power of the provers
in the “honest” case. If we start with a classical protocol for a problem in NEXP this is not so interesting,
because we already know that the provers have a good strategy without entanglement — we are not making

6One may modify this protocol by having the verifier only send pairs (i, j) such that either i = j or (i, j) is an edge, since the
other case is an automatic “free ride” for the provers; we gloss over this point here.

7Technically such a reduction is not obviously necessary, because the definition of MIP allows more complicated protocols
than the 3-coloring game described here. Nevertheless, using appropriate manipulations it is possible to show that any proof of
NEXP ⊆ MIP does imply such a reduction.
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use of the fact that they can do even better with entanglement, and indeed this fact is a new nuisance that
we have to deal with in order to establish the soundness property. But what if we start from a more complex
problem, that does not necessarily lie in NEXP, and attempt to design a protocol such that completeness
requires the use of entanglement?

To see how far one might hope to go in this direction we ought to think about upper bounds on MIP∗.
Recall from the previous section that for MIP we simply enumerated over all possible strategies. In the
quantum setting it is not so direct: since we do not place a priori bounds on the complexity of the provers, it
is unclear what dimension one should choose in order to find an optimal strategy. If one was able to show an
upper bound on the dimension that is sufficient to approach the optimal success probability (as a function of
the size of the protocol) then one would automatically get a corresponding upper bound on the complexity
of MIP∗. However, no such bound is known! The only upper bound on MIP∗ is the following folklore
result:

Lemma 8.2. MIP∗ ⊆ RE, the set of recursively enumerable languages.

Proof. Recall that a language L = (Lyes, Lno) is recursively enumerable if there exists a Turing machine
such that on input x, if x ∈ Lyes then the Turing machine eventually halts and accepts, whereas if x ∈ Lno
then the Turing machine may either halt and reject, or it may never halt.

Consider the Turing machine M that on input x specifying a verifier V|x| searches in increasing di-
mension and with increasing accuracy for a good strategy in the associated protocol. Since we have not
introduced a precise formalism for strategies in MIP∗ protocols — we will do so for two-prover one-round
protocols in Section 8.2.1 — we cannot make this too precise. At present it is sufficient to think intuitively
that each prover is specified by a dimension of the Hilbert space on which they act, and for each possible
question they may receive, in any round, a POVM on their space that is used to determine an answer; these
POVM act on an initial quantum state that lies in the tensor product of the prover’s Hilbert spaces. (Any
unitary actions the provers may take can be incorporated in the POVMs.) For any given dimension d and
accuracy ε the space of strategies in dimension at most d can be discretized to a finite set such that the
optimum success probability over elements of that set will be within an additive ε of the optimum over all
strategies in dimension at most d.

If x ∈ Lyes by definition there must exist a finite dimension d and a strategy in dimension d that succeeds
with probability at least (say) 2

3 −
1

100 ; eventually, taking into account discretization errors M will identify
a strategy that succeeds with probability at least 2

3 −
2

100 and halt with acceptance, having successfully
ruled out the case that x ∈ Lno. However, in case x ∈ Lno the Turing machine will never find a strategy
with success larger than 1

3 +
1

100 (where the 1
100 accounts for possible discretization errors and can be made

arbitrarily small), but it will not be able to rule out the existence of such a strategy either; indeed, for all it
knows such a strategy may exist in “just one more dimension”.

For a long time it was unclear where the complexity of MIP∗ lies, between the two “trivial” extremes
of IP and RE. In 2012 Ito and the author showed that NEXP ⊆ MIP∗ by adapting the proof of NEXP ⊆
MIP by Babai et al. In the past few years better lower bounds were obtained. Quite astonishingly, in
2018 Natarajan and Wright [NW19] showed that NEEXP ⊆ MIP∗. One reason that this is “astonishing”
is because NEEXP is a strictly (unconditionally) larger class that NEXP, and so their result established
unconditionally that the presence of entanglement increases the verifier’s ability to verify languages, even
though the latter’s complexity has not changed at all (it remains classical polynomial-time)! Building on
this result in 2020 Ji et al. [JNV+20a] obtained the following characterization.

Theorem 8.3. MIP∗ = RE.
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A complete problem for the class RE is the halting problem: given the description of a Turing machine
M as input, does M eventually halt? What Theorem 8.3 shows is that this problem, even though it is not
decidable, can be efficiently verified by asking questions to two provers sharing entanglement. In purely
complexity-theoretic terms this is an extremely surprising result in and for itself; note that RE contains any
bounded time or space complexity class — and much more. The following two lectures will be devoted to
a sketch of the main arguments that go in the proof of the theorem; these arguments involve the design of
tests for multiple qubits as well as delegation protocols and so we will be on familiar terrain. Aside from the
complexity theory it turns out that the characterization MIP∗ = RE has some interesting consequences in
the foundations of quantum mechanics as well as in the theory of operator algebras which we discuss next.

8.2 Consequences

Theorem 8.3 is related to a problem in the foundations of quantum non-locality called Tsirelson’s problem,
itself connected to a problem in the theory of von Neumann’s algebra usually referred to as Connes’ Embed-
ding Problem (CEP). Even though they have no bearing on the remainder of the course, for motivation in
this section we explain those connections. We start by (re-)introducing the language of nonlocal games that
we already encountered in lecture ?? and which we will generally use to talk about multiprover interactive
proof systems.

8.2.1 Nonlocal games

As we will see the proof of the “hard” part of Theorem 8.3 shows that RE ⊆ MIP∗(2, 1), where the (2, 1)
refers to verifiers that are restricted to interacting with two provers in a single round. From now on we only
only consider protocols that fall in this category. In this case once an input x has been fixed the associated
verifier V|x| together with x itself implicitly define a two-player one-round game in the sense of lecture ??.
To be fully explicit as well as set notation, a two-player one-round game is specified by a distribution π
on X × Y , where X ,Y are finite sets of questions, and a predicate R : X × Y × A × B → {0, 1}, for
finite sets of answers A and B, usually written as R(a, b|x, y). Using this terminology the specification
of the verifiers {Vn} in a one-round two-prover interactive proof system for a language L = Lyes ∪ Lno is
equivalent to an implicit specification of a family of games {Gx}x∈Lyes∪Lno . Explicitly, for each x we have
Gx = (πx, Rx) where the distribution πx is the distribution according to which the interactive proof verifier
V on input x selects questions to the players and Rx denotes the decision that V makes, accept or reject, as
a function of the questions sent and the answers received.
Remark 8.4. It is known that any multiprover interactive proof system that decides a language L can be
“parallelized” to a single round of interaction [KKMV09]. However, this transformation in general requires
the addition of a prover. It is not known how to modify a proof system with more than two provers to one
with only two provers that decides the same language; it is only known, as a consequence of the inclusions
MIP∗ ⊆ RE (Lemma 8.2) and RE ⊆ MIP∗(2, 1) (which follows from the proof of Theorem 8.3), that such
a transformation exists. It is an open question whether there is a simple, or efficient, such transformation.

In general given a game game G = (π, R), a strategy S for G is specified by a family of distributions
{p(·, ·|x, y)}(x,y)∈X×Y on A×B. The success probability of the strategy S in the game G is

ω(G; S) = ∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)p(a, b|x, y) .

Informally this quantity is the average, over the referee’s choice of questions and the player’s probabilistic
strategy, that the players provide valid answers to the referee. If one fixes a collection of possible strategies

92



S then one can define an associated value ω(G;S) for the game, which is the supremum success probability
achievable using strategies S ∈ S :

ω(G;S) = sup
S∈S

ω(G; S) .

For example, if S is the set of classical local strategies, i.e. all those families of distributions that take the
form (3.3), then ω(G;S) is called the classical value of the game and is usually denoted ω(G). If S is
the set of (tensor) quantum strategies, i.e. all those families of distributions that take the form (3.5), then
ω(G;S) is called the entangled value of the game and is usually denoted ω∗(G). Explicitly,

ω∗(G) = sup
|ψ〉,{Ax

a},{B
y
b}

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ψ|Ax
a ⊗ By

b |ψ〉 , (8.1)

where the supremum is taken over all quantum states |ψ〉 ∈ HA ⊗HB for finite-dimensional HA and HB
and collections of POVMs {Ax

a} and {By
b} on HA and HB respectively, one POVM for each question x or

y to Alice or Bob respectively. Using the language of games the question of characterizing the complexity
of the class MIP∗(2, 1) boils down to determining the complexity of approximating the optimum of the
optimization problem (8.1). This is because for a language L ∈ MIP∗(2, 1) the problem of determining if
some input x ∈ Lyes reduces to evaluating the value ω∗(Gx), where Gx is the game associated with x and
the verifier in a protocol for L, with good enough approximation to differentiate between the cases where
x ∈ Lyes (ω∗(Gx) ≥ 2

3 ) and x ∈ Lno (ω∗(Gx) ≤ 1
3 ).8

8.2.2 Computing upper bounds on ω∗(G)

Let’s put Theorem 8.3 aside for a moment and aim instead to contradict it by devising an algorithm that
approaches the maximum success probability of quantum provers sharing entanglement in a two-prover
one-round interactive proof system with verifier V. Equivalently, suppose that given an explicit game G
we aim to approximate the value ω∗(G) defined in (8.1). In the proof of Lemma 8.2 we already saw an
algorithm, let’s call it algorithm A, that returns an increasing sequence of lower bounds

v1 ≤ v2 ≤ · · · ≤ vk ≤ · · · ≤ ω∗(G)

by enumerating strategies in increasing dimension and with increasing level of accuracy. Using the def-
inition (8.1) of the entangled value it is clear that vk →k→∞ ω∗(G). To make algorithm A into an ac-
tual approximation algorithm we need to have a sense of when to stop, e.g. when can we guarantee that
|vk − ω∗(G)| ≤ 1

100 ?9 A natural approach is to construct a companion algorithm B that constructs a
decreasing sequence of upper bounds

w1 ≥ w2 ≥ · · · ≥ wk ≥ · · · ≥ ω∗(G) .

Given algorithms A and B consider a third algorithm C that given a game G as input runs both algorithms in
an interleaved fashion, computing v1, w1, v2, w2, etc., halts whenever |vk − wk| ≤ 1

100 and returns “YES”
if and only if 1

2 (vk + wk) > 1
2 . Now suppose that both (vk) and (wk) converge to ω∗(G). Then C

8The correspondence is not entirely exact because complexity is measured as a function of the input size; for MIP∗ protocols
the input is directly x, whereas for games G we think of the input as an explicit description of the underlying distribution π and
predicate R. In particular it is possible that the description length of Gx is exponential in the description length of V|x|, since the
latter only specifies π and V implicitly through a circuit that computes them.

9The bound 1
100 is arbitrary; we want it to be small enough to guarantee that the algorithm can eventually distinguish ω∗(G) ≥ 2

3
from ω∗(G) ≤ 1

3 , so any bound < 1
6 would do.
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always terminates. Moreover, if ω∗(G) ≥ 2
3 then wk ≥ 2

3 for all k and so the value returned is at least
1
2 ((

2
3 −

1
100 ) +

2
3 ) =

2
3 −

1
50 > 1

2 , whereas if ω∗(G) ≤ 1
3 it is at most 1

2 (
1
3 + ( 1

3 +
1

100 )) =
1
3 +

1
50 < 1

2 .
Thus C correctly distinguishes between the two cases.

So how do we determine such a sequence of upper bounds (wk)? A general approach to finding an
upper bound on the optimum of some optimization problem is to consider relaxations of the problem, i.e.
optimization problems whose optimum is easier to find and is guaranteed to be at least as large as the original
optimum. For example, consider the following relaxation

ω∗(G) = sup
|ψ〉,{Ax

a},{B
y
b}

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ψ|Ax
a ⊗ By

b |ψ〉

≤ sup
|ux

a 〉,|v
y
b〉

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ux
a |v

y
b〉 , (8.2)

where the supremum on the second line is over all families of vectors |ux
a〉, |v

y
b〉 ∈ HA ⊗HB such that for

every x, the {|ux
a〉}a are orthogonal and ∑a ‖|ux

a〉‖2 = 1; similarly for the |vy
b〉. The inequality (8.2) is

verified by setting |ux
a〉 = Ax

a ⊗ Id |ψ〉 and |vy
b〉 = Id⊗By

b |ψ〉. So (8.2) is a relaxation of (8.1). What did
we gain in the process? Crucially, since the objective function in (8.2) only depends on the inner products
between the vectors, without loss of generality we can restrict the vectors to lie in a Hilbert space H such
that dim(H) ≤ min(|X ||A|, |Y||B|); this is true even if the original HA and HB were much larger. This
means that by exhaustive search we can find arbitrarily good approximations to the optimum (8.2), without
having to go beyond a certain fixed dimension that is determined by the size of the game. In fact, (8.2)
is an optimization problem that falls in the class of semidefinite programs (informally, linear optimization
problems over affine sections of the positive semidefinite cone) and can be solved in time polynomial in its
size (as opposed to exponential for exhaustive search).

So the optimum (8.2) can be determined efficiently. How useful is it, i.e. how good is the inequality
(8.1) ≤ (8.2)? Unfortunately, in general there can be an arbitrarily large (multiplicative) gap between the
two [JP11], and in particular it can be that ω∗(G) ≤ 1

3 but (8.2)≥ 2
3 .10 The relaxation we have devised

is thus too coarse for us to obtain a good algorithm right away. But maybe we can do better? What we
did so far consists in adding a vector variable to represent Ax

a ⊗ Id |ψ〉 and Id⊗By
b |ψ〉. Each of these can

be thought of as a degree-1 monomial in the matrix variables {Ax
a , By

b}, evaluated on |ψ〉. Considering
vectors obtained from higher-degree monomials would allow us to impose more constraints, as for example
we could require that(

〈ψ|Ax
a ⊗ Id

)
·
(

Ax
a ⊗ By

b |ψ〉
)
=
(
〈ψ| Id⊗ Id

)
·
(

Ax
a ⊗ By

b |ψ〉
)

,

due to {Ax
a}a being projective. It is not hard to think of other such constraints. For any integer k ≥ 1 let’s

define
wk = sup

Γ(k)≥0
∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)Γ(k)
xa,yb , (8.3)

where the supremum is taken over all positive semidefinite matrices Γ(k) of dimension (|X ||A|+|Y||B|k ) ×
(|X ||A|+|Y||B|k ). Here we think of the entries of Γ(k) as being labeled by sequences (z1, c1), . . . , (zk, ck)

where zi ∈ X ∪ Y and ci ∈ A ∪ B, and Γ(k) is the Gram matrix of the associated vectors

|u(zi ,ci)1≤i≤k
〉 = Czk

ck · · ·C
z1
c1
|ψ〉 ,

10This fact is not obvious, and constructing such “bad examples” is quite difficult. For some restricted types of games, such as
XOR games or unique games, the inequality can be shown to be exact or close to exact respectively.
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where Cz
c = Az

c ⊗ Id if z ∈ X and c ∈ A, Cz
c = Id⊗Bz

c if z ∈ Y and c ∈ B, and Cz
c = 0 otherwise. In

addition, we add any linear constraint on the entries of Γ that follows from the facts that {Ax
a} and {By

b} are
projective measurements for all x, y, and that they act on different tensor factors and hence commute.

With this definition we can verify that w1 = (8.2); this follows since any positive semidefinite matrix Γ
has a factorization as a matrix of inner produces. Moreover, w1 ≥ w2 ≥ · · · ≥ wk ≥ ω∗(G) since each
successive level in the “hierarchy” consists in adding additional variables and constraints. Finally, using
standard algorithms for semidefinite programs the optimization problem at the k-th level can be solved in
time polynomial in its size, i.e. time (|X ||A|+ |Y||B|)O(k). Let’s call Algorithm B the algorithm that on
input k returns wk.11

8.2.3 The commuting value and Tsirelson’s problem

Unfortunately it is not the case that wk →k→∞ ω∗(G). Indeed, if this were the case algorithm C would
return arbitrarily good approximations to ω∗(G) and thus contradict Theorem 8.3. Nevertheless, since (wk)
is non-increasing and larger than ω∗(G) the sequence must converge to some value. Interestingly, this value
is a natural quantity that is referred to as the commuting value of the game and defined as

ωcom(G) = sup
|ψ〉,{Ax

a},{B
y
b}

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ψ|Ax
a By

b |ψ〉 , (8.4)

where the supremum is taken over all states |ψ〉 ∈ H whereH is a (possibly infinite-dimensional) separable
Hilbert space and families of projective measurements {Ax

a} and {By
b} on H such that for all x, y, a, b, Ax

a
and By

b commute. Since A⊗ Id and Id⊗B always commute it always holds that ω∗(G) ≤ ωcom(G). The
hierarchy of values (wk) is introduced in [NPA08], where they show the following convergence result.

Lemma 8.5. For any game G it holds that limk→∞ wk = ωcom(G).

Proof. First note that by definition ωcom(G) ≤ limk→∞ wk, since none of the constraints imposed on the
definition (8.3) of wk makes use of the tensor product structure other than to say that Ax

a ⊗ Id and Id⊗By
b

commute.
The remainder of the proof shows the reverse inequality. For any k ≥ 1 fix a feasible solution Γ(k) to the

optimization problem (8.3). The entries of Γ(k) are indexed by pairs of monomials m in non-commutative
variables {Ax

a , By
b} of degree at most k. Crucially, the constraints on the optimization problem require

that (i) Γ(k) ≥ 0, and (ii) this matrix satisfies Γ(k)
m1,m2 = Γ(k)

n1,n2 whenever both entries are well-defined and
m1m∗2 = n1n∗2 as monomials in {Ax

a , By
b}, because by definition any such constraint is imposed on the

optimization problem.
For any monomial m and integer k at least as large as the degree of m let τk(m) = Γ(k)

m,1. Extend τk to
a linear form on all non-commutative polynomials by setting τk(m) = 0 if m has degree larger than k and
extending by linearity. Since |τk| ≤ 1 for each k (this can be verified because the diagonal entries of Γ(k)

are all constrained to equal 1, so using (i) all entries of Γ(k) must have modulus at most 1) by the Banach-
Aleoglu theorem the sequence (τk)k≥1 admits a pointwise convergent subsequence (τki)k1≤k2≤···; let τ be
the pointwise limit. Now crucially we observe that τ is a positive linear form. Indeed, for any polynomial

11Technically we need to allow B to return an approximation to wk. Since well-behaved semidefinite programs such as (8.3)
can be solved in time polynomial in their size and in the logarithm of the desired accuracy we could e.g. require that B returns an
additive approximation of wk that is within error at most 2−k; this will suffice for our purposes.
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p = ∑m αmm where m ranges over monomials we have

τ(p∗p) = lim
i

τki(p∗p)

= lim
i

∑
m,m′

α∗mαm′ τki(m
∗m′)

= lim
i

α†Γ(ki)α

≥ 0 ,

where for the first line we used linearity of τki , for the second line we used the definition of τki (the equality
holds for all i such that ki ≥ deg(p)), for the third line we let α = (αm) and used property (ii), and for the
last we used property (i).

At this point we may conclude in a single abstract step by invoking the GNS construction from C∗-
algebra theory: for any positive linear functional τ on a C∗-algebra A there is a ∗-representation π of A on
a Hilbert spaceH and a unit vector |ξ〉 ∈ H such that

∀a ∈ A , τ(a) = 〈ξ|π(a)|ξ〉 . (8.5)

For us A is the algebra of non-commutative polynomials in {Ax
a , By

b} with complex coefficients satisfying
the POVM and commutation conditions, and so the image Ãx

a = π(Ax
a), B̃y

b = π(By
b), together with the

state |ξ〉, immediately gives us a commuting strategy for G with value limk wk:

lim
k→∞

wk = lim
i→∞

wki = lim
i→∞

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)Γ(ki)
xa,yb

= lim
i→∞

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)Γ(ki)
(xa,yb

= lim
i→∞

∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)τki((xa, yb))

= ∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)τ((xa, yb))

= ∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ξ|π(xa, yb)|ξ〉

= ∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ξ|π(xa)π(yb)|ξ〉

= ∑
x,y

π(x, y)∑
a,b

R(a, b|x, y)〈ξ|Ãx
a B̃y

b |ξ〉 ,

where the first line is by definition of wki , the second line by the linear constraints (ii), the third by definition
of τki , the fourth by definition of τ, the fitfth by (8.5), the sixth because π is a representation and the last by
definition of Ãx

a and B̃y
b .

It is also possible to finish the construction more concretely by defining an infinite-dimensional matrix
Γ = limi Γ(ki), where for the limit to make sense we embed each Γ(ki) as the top left corner of an infinite-
dimensional matrix by padding with zeroes. Since all finite minors of Γ are positive semidefinite, it is
positive semidefinite and therefore admits a factorization Γm,m′ = 〈m|m′〉 for some {|m〉} in a Hilbert
space H. We can then define Ãx

a as the projection on the span of all |m〉 such that m = Ax
a m′ for some m′,

i.e. the first variable of monomial m is Ax
a . Using the relations satisfied by the inner products between the

vectors |m〉 (i.e. condition (ii) above) it is possible to verify that the Ãx
a together with analogously defined
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B̃y
b and |ψ〉 = |1〉 satisfy the required conditions for a commuting strategy, and that the associated value is

once again limk wk.

The two values ω∗(G) and ωcom(G) were introduced by Tsirelson in a series of papers laying the
foundations for the mathematical study of non-locality [Tsi93]. Rather than using the language of games
(which at the time was not much in use yet), Tsirelson directly studied the underlying correlation sets
defined as

C∗(n, k) =
{ (
〈ψ, Ax

a ⊗ By
b ψ〉
)

a,b,x,y : HA,HB Hilbert spaces, ψ ∈ HA ⊗HB, ‖ψ‖ = 1,

∀(x, y) ∈ {1, . . . , n}2, {Ax
a}a∈{1,...,k}, {B

y
b}b∈{1,...,k} POVM onHA,HB resp.

}
, (8.6)

Ccom(n, k) =
{ (
〈ψ, Ax

a By
b ψ〉
)

a,b,x,y : H Hilbert space, ψ ∈ H, ‖ψ‖ = 1,

∀(x, y) ∈ {1, . . . , n}2, {Ax
a}a∈{1,...,k}, {B

y
b}b∈{1,...,k} PVOM onH

s.t. [Ax
a , By

b ] = 0 ∀(a, b) ∈ {1, . . . , k}2} .12 (8.7)

By taking direct sums of POVMs and scaled vectors it is not hard to see that both sets are convex subsets
of [0, 1]n

2k2
. Note that in the definition of C∗(n, k) we did not restrict the dimension of HA and HB to be

finite. This is to match Tsirelson’s presentation; for our purposes the distinction is not important as it is not
hard to see that allowing infinite-dimensional strategies in the definition of the entangled value ω∗(G) does
not change the supremum.1314 However, in case the Hilbert spaces in both definitions are taken to be finite-
dimensional then the two sets can be shown to coincide. (This fact essentially follows from von Neumann’s
Double Commutant Theorem, though it can also be shown directly; we skip the proof.) In his paper Tsirelson
states as “fact” the claim that C∗(n, k) = Ccom(n, k) for arbitrary separable Hilbert spaces and all n, k ≥ 1.
Having realized that a proof of the claim seemed elusive (with the inclusion C∗(n, k) ⊆ Ccom(n, k) that we
already observed being the only obvious one), in a subsequent note15 Tsirelson reformulates the “fact” as
an open problem and, realizing that the answer may be negative, formulates as an “even more important”
problem the question of whether the closure C∗(n, k) = Ccom(n, k). (Here the overline designates closure
in the usual topology for Rn2k2

. It is not hard to verify that Ccom is closed.) Two and a half decades after its
introduction Tsirelson’s first problem was solved by Slofstra [Slo19], who used techniques from the theory
of nonlocal games to show the existence of finite n, k such that C∗(n, k) 6= Ccom(n, k). Until the proof of
Theorem 8.3, an apparently purely complexity-theoretic result, Tsirelson’s “even more important problem”
remained open. However, we can now observe the following corollary to Theorem 8.3.

Corollary 8.6. There exists finite n, k ≥ 1 such that C∗(n, k) ( Ccom(n, k).

Proof. Suppose for contradiction that C∗(n, k) = Ccom(n, k) for all n, k ≥ 1. As an immediate conse-
quence, for any game G it holds that ω∗(G) = ωcom(G). Therefore, algorithm C described in Section 8.2.2
always converges in finite time to a correct answer. This contradicts Theorem 8.3, which implies that the
problem “Given a game G, is ω∗(G) ≥ 2

3 or ω∗(G) ≤ 1
3 ?” is undecidable.

13To show this, observe that any state |ψ〉 ∈ HA ⊗HB, even in infinite dimensions, always has a Schmidt decomposition |ψ〉 =
∑i λi|ui〉|ui〉 such that ∑i λ2

i = 1. |ψ〉 can be arbitrarily well approximated in finite dimension by truncating the coefficients;
using that the restriction of a POVM to a subspace is a POVM we find arbitrarily good approximations to the game value in finite
dimension.

14It does change the definition of the set however: as shown in [CS18] some elements of C∗(n, k) cannot be represented in finite
dimensions.

15“Bell inequalities and operator algebras”, available at https://www.tau.ac.il/˜tsirel/download/
bellopalg.pdf.
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Note how indirect the proof of Lemma 8.6 is! In particular, while it asserts the existence of n, k there is
no obvious way to determine what these integers are, or even upper bounds on them, from the proof. In fact
it is possible to tweak the argument to get an explicit construction; we refer to [JNV+20a] for more.

8.2.4 Connes Embedding Problem

Quantum mechanics and the theory of operator algebras have been intertwined since their origin. In the
1930s [VN32] von Neumann laid the foundations for the theory of (what are now known as) von Neumann
algebras with the explicit goal of establishing Heisenberg’s matrix mechanics on a rigorous footing (quoting
from the preface, in the translation by Beyer: “The object of this book is to present the new quantum
mechanics in a unified representation which, so far as it is possible and useful, is mathematically rigorous”).
Following the initial explorations of Murray and von Neumann the new theory took on a life of its own,
eventually leading to multiple applications unrelated to quantum mechanics, such as to free probability or
noncommutative geometry.

In his 1976 paper completing the classification of injective von Neumann algebras [Con76] Connes
made a casual remark that has become a central conjecture in the theory of operator algebras. Since we
do not have the mathematical language to express it precisely, I will paraphrase Connes’ remark as the
comment that “any finite von Neumann algebra ought to be well-approximated by finite-dimensional matrix
algebras.” (In more formal terms, CEP states that every von Neumann algebra type II1 factor embeds into
an ultrapower of the hyperfinite II1 factor.) Although this conjecture may at first seem rather specific (and
in fact as far as I know Connes himself did not pursue the question any further than the remark made in
his paper), in the two decades that followed the problem rose to prominence thanks to the work of other
mathematicians, such as Kirchberg and Voiculescu, who gave equivalent reformulations of the conjecture in
operator algebras and free probability. (See e.g. [Cap15] for more reformulations.) Kirchberg’s formulation
is closest to us: Kirchberg showed that CEP is equivalent to the QWEP conjecture about the equivalence of
the minimal and maximal tensor products on the full group C∗ algebra of a nonabelian free group [Kir93].16

Informally, the minimal and maximal tensor products of two C∗ algebras provide two ways to define the
closure of the algebraic tensor product, with respect to two different norms, the minimal norm

‖x‖min = sup
πA,πB

∥∥πA ⊗ πB(x)
∥∥

where the supremum ranges over all pairs of representations πA : C∗(F2) → B(HA) and πB : C∗(F2) →
B(HB), whereas

‖x‖max = sup
π
‖π(x)‖

where here π : C∗(F2)⊗C∗(F2)→ B(H) is any representation that is such that π(a⊗ b) = πA(a)πB(b)
where πA, πB : C∗(F2) → B(H) are representations with commuting range. Clearly, ‖x‖min ≤ ‖x‖max
always, and these two norms can be seen to be the smallest and largest “reasonable” norms that one may put
on the tensor product of two C∗-algebras.

With this reformulation it may not be surprising that Kirchberg’s QWEP is directly related to Tsirelson’s
problem, and indeed building on work of Fritz [Fri12] and Junge et al. [JNP+11] Ozawa [Oza13a] showed
that Tsirelson’s “even more important” problem is equivalent to CEP. This brings us to a second corollary
of Theorem 8.3.

15The brief discussion in this section is adapted from [Vid19].
16Concretely, a C∗ algebra can always be represented as a sub-algebra of the algebra of bounded linear operators on a Hilbert

space that is closed under taking adjoints, and closed under the norm topology. A von Neumann algebra is further restricted to be
closed under the weak toperator topology.
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Corollary 8.7. CEP has a negative answer, i.e. there exists a von Neumann algebra that is not hyperfinite.

For more background on the relation between Tsirelson’s problem and Kirchberg’s conjecture, presented
in an accessible way, I recommend [Fri12]. For additional results and the connection to CEP, presented in a
less accessible way, I recommend [Oza13b].
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Lecture 9

Compression of nonlocal games

9.1 An overview of the proof of RE ⊆ MIP∗

9.1.1 A cartoon version

At the highest level our proof strategy is as follows. Recall from the previous lecture that for the case
of classical protocols one can show the inclusion NEXP ⊆ MIP. While by itself this is already non-
trivial, let’s take as our starting point the assumption that we are able to show an analogous inclusion for
quantum interactive proofs, i.e. NEXP ⊆ MIP∗(2, 1).1 Observe that this inclusion can be recast as a form
of delegation. Paraphrasing, the inclusion states that any language L ∈ NEXP has a multiprover interactive
proof systems with quantum provers. Now for any Turing Machine M the language LM that consists of all
n such that there is a string y ∈ {0, 1}∗ such that M accepts (n, a) in time at most exp(n) lies in NEXP;2

moreover for some choices of M it is NEXP-complete.3 Thus there is an efficient reduction from Turing
machines M to verifiers V such that for all integer n, on input z such that |z| = n,

∃a : M accepts (z, a) in time ≤ exp(n) (9.1)

then ω∗(Vn(z)) ≥ 2
3 , and if no such a exists then ω∗(Vn(z)) ≤ 1

3 . Now suppose that we’re able to achieve
a somewhat stronger reduction, where for the starting point we replace the condition (9.1) by

On average over x ∼ UN , Pr
x

(
∃a : M accepts (z, x, a) in time ≤ exp(n)

)
≥ 2

3
, (9.2)

where N = 2n and for every n, UN is the uniform distribution on {0, 1}N . (Suppose also that a symmetric
condition holds for soundness.) This would be a form of delegation for (exponential-time) AM (“Arthur-
Merlin”) protocols, where an AM protocol is one in which the verifier can send a uniformly random string
as question to the prover before receiving the proof. Note that the step we just made is highly non-trivial
because of the introduction of a distribution on x; delegating randomized computations like this is hard
because there is no easy means to verify that the computation is being performed with the “right choice” of
the random string x—indeed, we need to make sure to detect cases where it might be that there exists (x, a)

1This inclusion is shown in [IV12] for 5 provers. The 2-prover version follows from the work in [JNV+20b].
2This formulation is a bit unusual due to the use of the letter n to represent the input, which is usually called x; this is for later

convenience. Here n is written in binary. Note that the time bound implies that without loss of generality |y| ≤ exp(n).
3An example would be to take M the Turing machine that parses n as an implicitly represented graph n = (1n′ , C) and expects

y to be an explicit coloring for the 2n′ vertices of the graph; see Section 8.1.1.
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such that M accepts (n, x, a), but it is still very unlikely to be the case when x is chosen at random. As we
will see later the use of quantum provers and entanglement will be useful to achieve this.

Let’s do one last leap of faith and suppose that we have an even stronger reduction, that applies directly
to exponential-size multiprover interactive proofs. Precisely, we’d replace the condition (9.2) by

On avg over (x, y) ∼ UN ×UN , Pr
(x,y)

(
∃(a, b) : M accepts (z, x, y, a, b) in time ≤ exp(n)

)
≥ 2

3
,

(9.3)
where in addition we’d require that (a, b) are generated locally by quantum provers sharing entanglement,
such that the provers are given x and y respectively; formally, given (x, y) the pair (a, b) should be dis-
tributed as 〈ψ|Ax

a ⊗ By
b |ψ〉 for some state |ψ〉 (independent of (x, y)) and POVM {Ax

a} and {By
b}. Once

again we’d also require a symmetric condition with probabilities ≤ 1
3 for soundness.

Let’s call the resulting reduction a “compression” procedure: it takes as input an exponential-time veri-
fier V and returns a polynomial-time verifier VCOMPR that has the same completeness and soundness prop-
erties: if there is a good strategy for Vn there is also one for VCOMPRn and vice-versa. Then I claim that by
iterating this compression procedure we could obtain progressively stronger inclusions, from EXP ⊆ MIP∗

to EEXP ⊆ MIP∗ to .... any time complexity that is a finite tower of exponentials.4 Recall that for well-
chosen M, the problem of given an integer n, does M halt in at most 2n steps is EXP-complete. Now
suppose that e.g. we have a family of verifiers {Vn}, implicitly depending on M, such that ω∗(Vn) ≥ 2

3 if
M halts in ≤ 2n steps, and ω∗(Vn) ≤ 1

3 otherwise; such a family follows from EXP ⊆ MIP∗(2, 1). Now
define {VCOMPR

n } = COMPR({V2n}). Then by definition ω∗(VCOMPR
n ) ≥ 2

3 if ω∗(V2n) ≥ 2
3 if M halts in

≤ 22n
steps, and similarly ω∗(VCOMPR

n ) ≤ 1
3 otherwise. Thus EEXP ⊆ MIP∗. Iterating this procedure

and stretching things a little bit, this would give us the inclusion TIME(T(n)) ⊆ MIP∗ for any computable
function T. And then taking the “limit”, we’d get RE ⊆ MIP∗...?

Obviously there’s a lot of moving pieces in this description. The goal in this lecture is to make them
sufficiently precise as to be believable, and eventually arrive at a core “nugget” that encapsulates the key step
that needs to be proven—which we’ll do in the next lecture. For now we focus on, first, setting things up so
that the above sketch can be made more precise, and second, discussing in more detail the “compression”
procedure, which is the key part where the use of quantum provers is essential.

9.1.2 The Halting problem

Recall from the last lecture that the two main consequences of RE ⊆ MIP∗ that we discussed, negative
answers to Tsirelson’s problem and to Connes’ Embedding Conjecture, both follow from the fact that the
problem “Given a two-player one-round game G such that ω∗(G) ≥ 2

3 or ω∗(G) ≤ 1
3 , which is the case?”

is undecidable. In this lecture we will show that there is a computable map F from Turing Machines M to
games G = GM such that if M halts then ω∗(G) ≥ 2

3 , whereas if M does not halt then ω∗(G) ≤ 1
3 . To

argue that this indeed shows that the aforementioned problem is undecidable, we recall the proof that the
Halting problem is undecidable.

Definition 9.1. The language LHALT is the set of all x ∈ {0, 1}∗ such that x is the description of a Turing
Machine M such that M, when it is executed on an empty tape, eventually halts.

For convenience we use the notation M ∈ {0, 1}∗ to denote the description of a Turing Machine M,
using some canonical representation. Recall that there exists a “universal” Turing machine U that on input

4We could do the same argument for non-deterministic time complexities, but it is easier to present in the deterministic case.
The place where we do need non-determinism is for the compression procedure.
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M and x simulates the execution of M on input x.

Lemma 9.2. The language LHALT is undecidable.

Proof. Suppose for contradiction that there exists a Turing Machine A such that given as input M, A halts
with “YES” in case M halts on the empty tape, and A halts with “NO” otherwise. Now consider the
following Turing Machine B. When run on an empty tape, B first executes A on B. If A halts with “YES”
then B enters an infinite loop. If A halts with “NO” then B halts with “YES”. Does B halt? We have reached
a contradiction, therefore A does not exist.

Note that in the proof of Lemma 9.2 we designed a Turing Machine B that at some point performs an
instruction that depends on its own “source code” B. That this is allowed is a consequence of Kleene’s
recursion theorem, which is basically a generalization of the standard diagonalization argument. We will
use this possibility again later.

9.1.3 Compression

We make more precise what we need of the magical “compression procedure” discussed in Section 9.1.1.
First we introduce a restricted class of verifiers.

Definition 9.3. A normal form verifier is a Turing Machine V that on input n returns the description of a
Turing Machine Rn (the “referee,” or “decision procedure”) that on input (x, y, a, b) ∈ {0, 1}4n returns a
value d ∈ {0, 1}. To Rn we associate a two-player one-round game Gn whose question and answer sets are
X = Y = A = B = {0, 1}n and such that the question distribution π is uniform on {0, 1}n × {0, 1}n and
the referee predicate is given by Rn.

We let TIMEV(n) be the worst-case running time of Rn over all inputs (x, y, a, b). If TIMEV(n) ≤
(λn)λ for some integer λ ≥ 1 and all n ≥ 1 then we say that V is λ-bounded.

Note that in the definition we fixed the question distribution used for the game Gn to the uniform dis-
tribution. At this stage this is mostly for convenience. Later we will realize that this is too restrictive, and
so one should bear in mind that the definition can be generalized to allow various classes of distributions,
where the key point is that the distribution should be fixed and independent of V.

We need one last definition.

Definition 9.4. For a two-player one-round game G and a probability p ∈ [0, 1] let E(G, p) denote the
smallest integer d ≥ 1 such that there exists a strategy (|ψ〉, {Ax

a}, {B
y
b}) for the players in G that has

success probability at least p and such that |ψ〉 ∈ Cd ⊗Cd. If no such strategy exists, then E(G, p) = ∞.

For example, for the Magic Square game (Section 3.3.1) it is possible to show that E(G, 1) = 4 (two
qubits per player), and in fact there is a c < 1 such that E(G, p) = 4 for all p ∈ [c, 1]. For a game that has
a perfect classical strategy we have E(G, p) = 1 for all p ∈ [0, 1].

Let’s make the following specification for a compression procedure.

Claim 9.5. There is a polynomial-time computable mapping COMPR that takes as input a Turing machine
description V and an integer λ written in unary and returns a Turing machine description VCOMPR =
COMPR(V, λ) such that the following conditions hold:

(a) VCOMPR is always a normal form verifier such that TIMEVCOMPR(n) ≤ pCOMPR(λ + n), for some
universal polynomial pCOMPR independent of V.

(b) If V is a normal form λ-bounded verifier then for every n ≥ 1 letting N = 2n the following hold:
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(b.i) If ω∗(RN) = 1 then ω∗(RCOMPR
n ) = 1.

(b.ii) E(GCOMPR
n , 1

2 ) ≥ max
{
E(GN , 1

2 ), N
}

.

The key point about Claim 9.5 is that the running time of RCOMPR
n can be much smaller than that of RN ,

yet it preserves essential properties of it, stated in (b.i) and (b.ii).
We make a few comments on the requirements stated in the claim. First of all, even though eventually

we only need to create a computable mapping F from Turing Machines to games, it will be important that
here COMPR is required to run in polynomial time. Second, it will also be essential that for any input
(V, λ) to COMPR the output VCOMPR is the description of a time-bounded verifier. Note that this is not
hard to enforce in practice by hard-coding some kind of time-out mechanism in the definition of VCOMPR.
Finally, observe that condition (b.ii) states something a little stronger (strictly speaking, incomparable) than
the “soundness preservation” condition we considered in Section 9.1.1. Indeed the fact that we are able to
make a statement about entanglement will play an important role in the final argument. (On the other hand,
that the conditions apply to N = 2n as opposed to e.g. N = n + 1 is not important; since it is what comes
out of the proof we keep it here—what matters is that VCOMPR

n reproduces properties of VN for some N > n
while having complexity comparable to Vn, not VN .) Finally, note that due to condition (b) running COMPR

on a trivial input that always accepts already yields an interesting family of games: due to (b.i) we will have
ω∗(VCOMPR

n ) = 1 for all n, and due to (b.ii) achieving any value larger than 1
2 will necessarily require a

quantum state of local dimension at least N = 2n.
These observations show that designing a procedure COMPR that fulfills all conditions will likely not be

an easy task. Nevertheless, let’s put that task aside for the time being and see how the desired reduction can
be completed assuming the validity of Claim 9.5.

9.1.4 A self-referential verifier

Fix a Turing Machine M and an integer λ ≥ 1 and consider the following normal form verifier V = VM,λ,
that implicitly depends on M and λ (and in fact is efficiently computable from the pair (M, λ)). For any
n ≥ 1, we describe the decision procedure Rn using high-level “pseudocode”. Given (x, y, a, b) ∈ {0, 1}4n,
Rn does the following:

1. Rn simulates M on the empty tape for n steps. If M halts then Rn accepts (i.e. it returns the value ‘1’,
irrespective of its inputs (x, y, a, b). Otherwise, if M has not halted in n steps then Rn proceeds to the
next item.

2. Rn computes VCOMPR = COMPR(V, λ).

3. Rn returns the decision (RCOMPR)n(x, y, a, b) ∈ {0, 1}.

Note that in giving this high-level description of a Turing Machine V, that on input 1n returns the description
Rn, we have referred to the description V itself. That this is possible, i.e. V is a well-defined Turing Machine,
is a consequence of Kleene’s recursion theorem—this is similar to the self-referential call we made for the
definition of algorithm B in the proof of Lemma 9.2.

The following three claims establish the key properties of this construction.

Claim 9.6. For any Turing Machine M there is an integer λ ≥ 1 which is computable from |M| and such
that V is λ-bounded.
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Proof. By definition V on input 1n returns a decision procedure Rn that takes four inputs of length n each,
so it is a normal form verifier. It remains to estimate its running time. First we estimate |V|. Clearly, the
actions to be performed in each of the three steps can be described using poly(|M|, λ) bits. Note that the
description COMPR does not depend on anything, so its size is a constant.

Next we estimate the running time of Rn. The first step, the simulation of M for n steps, takes time
p1(n, M) for some universal polynomial p1. The second step, the computation of VCOMPR, takes time
p2(V, λ), for some universal polynomial p2 that bounds the running time of COMPR. The last step, the
evaluation of RCOMPR

n (x, y, a, b), takes time pCOMPR(λ + n) by property (a) in Claim 9.5.
Overall the running time is poly(n, M, λ) for some universal polynomial. This can be bounded above

by the expression (λn)λ for all n ≥ 1 provided λ is large enough compared to M.

For the remaining two claims we fix λ to the value promised in Claim 9.6 and let {Rn} and {Gn} be the
family of decision procedures and games respectively implied by the verifier V specified from M and λ.

Claim 9.7. Suppose that M halts on an empty input tape. Then ω∗(Rn) = 1 for all n.

Proof. Let T be the number of steps taken by M to halt. Then for all n ≥ T the decision procedure Rn
always accepts its inputs at step 1. Therefore ω∗(Rn) = 1 for all n ≥ T. Now we show by (strong)
downwards induction from m = T to 1 that ω∗(Rm) = 1. We showed the induction hypothesis for m = T
already. Suppose it true up to some value m > 1. Then since M does not halt in (m− 1) steps, the decision
procedure Rm−1 proceeds to step 2. and executes (RCOMPR)m−1. Since 2m−1 > m− 1, it follows from the
induction hypothesis that ω∗(R2m−1) = 1. Using property (b.i) in Claim 9.5 we have that ω∗(Rm−1) = 1,
as desired.

Claim 9.8. Suppose that M does not halt. Then ω∗(Rn) ≤ 1
2 for all n ≥ 1.

Proof. We show that E(Gn, 1
2 ) = ∞ for all n ≥ 1. This shows that no finite strategy can achieve a success

probability larger than 1
2 , and taking the limit that ω∗(Rn) ≤ 1

2 , as desired. Since M does not halt, for any
n, Rn proceeds to step 2. and returns the desision of RCOMPR

N where N = 2n. By property (b.ii) in Claim 9.5
it follows that for all n ≥ 1,

E(Gn,
1
2
) ≥ max

{
E
(
GN ,

1
2
)
, N
}

.

By straightforward induction, E(Gn, 1
2 ) ≥ T for any integer T, so it must be ∞.

9.1.5 A game for the halting problem

We now describe the reduction F . On input M, F first computes the integer λ whose existence is promised
in Claim 9.6. Then F computes a description of the decision procedure R1 from the start of Section 9.1.4,
based on M and λ. Finally, F returns a description of the associated game G = G1.5

Suppose first that M halts. Then by Claim 9.7 it holds that ω∗(G) = 1. Suppose now that M does not
halt. It follows from Claim 9.8 that ω∗(G) ≤ 1

2 . This completes the reduction.6

5It is interesting that ultimately we only need G1, but to arrive at constructing it we had to consider infinite families of games.
6While we promised to obtain a separation between values 2

3 and 1
3 , we only obtained one between 1 and 1

2 . There is nothing in
the line of argument that is special about 1

2 and we could have done the same replacing it by 1
3 , giving us an even stronger reduction

than desired. In general, the values 2
3 and 1

3 can be amplified towards 1 and 0 respectively by applying techniques from parallel
repetition; see e.g. [Yue16].
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Remark 9.9. It is worth pausing to appreciate the significance of this reduction. Beyond the stated inclusion
of complexity classes, it makes quite a striking statement about the complexity that may lurk behind simple,
finite, observable phenomena in quantum mechanics. What the existence of F states is that for any problem
that can be encoded in the halting of a Turing machine there is a game, that moreover is easily computable
from the Turing machine, that “witnesses” this fact. Consider for example the Riemann Hypothesis (RH).
There is a simple Turing Machine M that halts if and only if RH is provable in ZFC (Zermelo-Fraenkel set
theory with the axiom of choice included). Indeed M simply enumerates over all possible proofs in ZFC
and checks if they are (i) valid proofs and (ii) prove RH. Moreover, the Turing machine M is large, but
not absurdly so; probably a few millions of characters are more than enough. This means that we can, in
principle but also in practice, write a simple computer program that will return the rules for a moderately-
sized nonlocal game G = GRH such that ω∗(G) = 1 if and only if RH is provable in ZFC. Isn’t this
amazing?

Remark 9.10. A natural question is what is the commuting value ωcom of the games G = GM,λ. Naturally
this value is always at least ω∗(M), and moreover for some infinite family of M it must be the case that
ωcom(G) = 1 even if M does not halt (and hence ω∗(G) ≤ 1

2 ), as otherwise using algorithm C from the
previous lecture we would be able to solve the Halting problem. We do not know if ωcom(G) = 1 for all
games G in the range of the reduction F .

9.2 The compression procedure

Based on the work completed in the previous section it “only” remains to show the existence of an appro-
priate compression procedure, that satisfies the requirements of Claim 9.5. As it turns out this is quite a tall
order, and we won’t be able to give full details here. Instead we very roughly describe how the design of the
compression procedure eventually boils down to a much more manageable “nugget” that takes the form of
a nonlocal game with good “self-testing” properties.

9.2.1 A test for n qubits

In the next lecture we will give a proof of the following.

Claim 9.11. There is a family of games {Gn}n≥1 such that for each n ≥ 1, the game Gn tests n qubits.

We gave a quite succinct statement for the claim; let’s unpack it a little bit. First, by “the game Gn
tests n qubits” we mean the following: there is a constant c < 1, independent of n, such that for any
n and any two players that succeed in the game Gn with probability at least c, each player must “have
n qubits”. Recalling our definition of n qubits what we mean by this is that to each strategy we should
be able to associate 2n observables (Xi, Zi)i=1,...,n such that whenever the strategy succeeds with high
enough probability the (Xi, Zi) are “close” to satisfying the appropriate commutation and anti-commutation
relations, where closeness is measured in the right state-dependent norm. As it turns out, for the construction
that we give next time a stronger condition will hold, giving us the following somewhat more formal variant
of Claim 9.11.

Claim 9.12. There is a family of games {Gn}n≥1 with the following properties. For each n ≥ 1, in the game
Gn there are questions of the form (X, a) and (Z, b) where X, Z are labels and a, b ∈ {0, 1}n such that
the answer expected from a player upon such a question is a single bit. In addition there are two questions
X and Z such that the expected answer on such a question is n bits long. Furthermore, for each n ≥ 1
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and ε > 0, for any strategy (|ψ〉, {Ax
a}, {B

y
b}) that succeeds with probability tat least 1− ε in the game

there is an isometry VA : HA → (C2)⊗n ⊗H′A such that, if X(a), Z(b) and {AX
a }a, {AZ

b }b are Alice’s
observables and POVM on the aforementioned questions then

max
{

Ea
∥∥(VAX(a)− (σX(a)⊗ IdA′)VA)⊗ IdB |ψ〉

∥∥2 ,

Eb
∥∥(VAZ(b)− (σZ(b)⊗ IdA′)VA)⊗ IdB |ψ〉

∥∥2
}
≤ O(εd) ,

where the expectation is taken over uniformly random a, b ∈ {0, 1}n, and letting {σX
a }a and {σZ

b } denote
POVMs representing an n-qubit measurement in the Hadamard and computational basis respectively,

max
{

∑
a

∥∥(VA AX
a − (σX

a ⊗ IdA′)VA)⊗ IdB |ψ〉
∥∥2 ,

∑
b

∥∥(VA AZ
b − (σZ

b ⊗ IdA′)VA)⊗ IdB |ψ〉
∥∥2
}
≤ O(εd) ,

for some universal constant d > 0. A similar statement holds for Bob’s observables. Finally, there is a state
|aux〉 ∈ H′A ⊗H′B such that ∥∥VA ⊗VB|ψ〉 − |φ+〉⊗n|aux〉

∥∥2 ≤ O(εd) ,

where recall that |φ〉 ∈ C2 ⊗C2 denotes the state of an EPR pair.

The important part of the claim is that the game Gn allows us to “command” either player to measure
n halves of shared EPR pairs in the computational or Hadamard basis, and that whenever asked to do so —
they faithfully do it, up to a local isometry. What is particularly non-trivial about the claim as we stated it is
the fact that the stated error bounds do not depend on n, and this crucial for its usefulness. We will give the
proof of Claim 9.12 in the next lecture; let’s now verify that it encapsulates (almost...) all that we need to
design the compression procedure.

9.2.2 How to delegate a nonlocal game

Recall that the goal of the compression procedure is to turn a verifier Turing Machine V given as input into
a verifier Turing Machine VCOMPR such that VCOMPR

n “simulates” VCOMPR
N for N = 2n, in the sense described

in Claim 9.5. Let’s start by reviewing how the game specified by VN proceeds, assuming VN is normal form:

1. Generate a pair of questions (X, Y) ∈ {0, 1}N × {0, 1}N uniformly at random;

2. Execute each prover’s strategy to obtain answers (A, B) ∈ {0, 1}N × {0, 1}N;

3. Return VN(X, Y, A, B).

Here, the first and last steps are executed by VN and take time polynomial in N, hence exponential in n.
The second step is executed by the provers and can take an arbitrary amount of time. The main idea for
designing VCOMPR

n is to “delegate” these steps to the provers and limit the verifier’s computation to some
form of “verification” that the provers are performing the right computation:

1. Generate a pair of questions (x, y) ∈ {0, 1}n × {0, 1}n uniformly at random.

2. Provers do the following:
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(a) Locally generate X ∈ {0, 1}N and Y ∈ {0, 1}N respectively;

(b) Execute original prover’s strategy to obtain answers (A, B);

(c) Return “proofs” a and b respectively that (i) X and Y have been selected uniformly at random;
(ii) A and B can be obtained locally; (iii) VN(X, Y, A, B) = 1.

3. Given (x, y, a, b), check that (a, b) are a valid proof of (i), (ii) and (iii).

As it turns out the most delicate step in implementing this scheme is the verification of (i). Indeed this is
where we will use the fact that the provers can be forced to share entanglement in an essential way. The
verification of (ii) would be automatic if we asked each prover to report A and B respectively; because we
only ask them for shorter “proofs” a and b this requires more care, but it is not a real problem. Finally, while
the verification of (iii) requires quite some work at its heart it is not substantially different from the efficient
verification of an exponential-time computation; here again the part that is a bit delicate is that the inputs
X, Y, A, B to the computation are not known explicitly to the verifier but only through the “proofs” of items
(i) and (ii).

Focusing on (i) now, observe that the game GN from Claim 9.12 provides us with the means to “force”
the provers to generate uniformly random X and Y: we simply send them, say, question Z in the game, and
request that they use the outcome obtained as their X and Y respectively.

There is one good thing about this, and many bad things. The good thing is that based on Claim 9.12
we know that if the provers succeed in the game GN , a condition which we can imagine checking separately
(meaning that with some probability the verifier VCOMPR

n executes GN and accepts if and only if accepts),
then when one prover is sent the label Z and the other the label X they obtain outcomes a, b which are
statistically close to uniformly distributed and independent from each other; both facts are a consequence
of the fact that computational and Hadamard basis measurements on two halves of the same EPR pair yield
independent uniformly distributed outcomes.

As for the bad things, we point out a few of them:
• While we can request the provers to perform computational basis measurements and thereby obtain

uniformly random X, Y, it is unclear how we can require that these are precisely the inputs that they
use for the evaluation of VN , unless they report X, Y to us—which is not possible since these strings
are too long;

• Furthermore, X, Y are not uniformly random but only close to being so—we need to make sure that
this possible error cannot be maliciously used by the provers to too large an extent;

• The game GN as we described it involves N-bit long questions; however, the verifier VCOMPR
n is only

allowed n-bit long questions;

• We have not examined the running time of VCOMPR
n : this should be bounded by some polynomial in n

and λ, and independent of the running time of VN .
These difficulties are substantial difficulties. They can all be overcome by introducing a more involved
variant of Claim 9.12 that is based on the use of what are called “low-degree tests’ in complexity theory.
Informally, this consists in combining the presentation of VCOMPR that we gave with ideas from the theory
of error-correcting codes so as to (a) reduce the complexity of the referee in the game, and (b) ensure that
the little information that the players provide about X, Y is sufficient to “lock” them into using X, Y, or to
the least strings that are sufficiently close to them, in the other steps (i.e. the proofs of items (ii) and (iii)).
We will not be able to dive into these difficulties here, and instead allocate the last lecture to a proof of
Claim 9.12.

108



Remark 9.13. For the entire lecture we assumed that we could work with verifiers that use a uniform dis-
tribution on their questions. In fact, this is provably not sufficient, and once must necessarily use more
complex question distributions. For this reason the fact that Claim 9.12 allows us to certify measurements
in either computational or Hadamard basis for the provers is crucial: in this way we are able not only to
request that they generate uniform independent (X, Y), by sending them different bases, but also uniform
equal (X, Y), by sending them the same basis. By introducing further variations on this theme it is possible
to “command” the provers to generate (X, Y) according to quite a broad class of distributions.
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Lecture 10

A test for n qubits

Recall from the last lecture that we reduced the proof of MIP∗ = RE to showing a form of “n-qubit test”,
stated as Claim 9.12 and reformulated as a theorem here:

Theorem 10.1. There is a family of games {Gn}n≥1 with the following properties. For each n ≥ 1, in
the game Gn there are questions of the form (X, a) and (Z, b) where X, Z are labels and a, b ∈ {0, 1}n

such that the answer expected from a player upon such a question is a single bit. In addition there are two
questions X and Z such that the expected answer on such a question is n bits long. Furthermore, for each
n ≥ 1 and ε > 0, for any strategy (|ψ〉, {Ax

a}, {B
y
b}) that succeeds with probability tat least 1− ε in the

game Gn there is an isometry VA : HA → (C2)⊗n ⊗H′A such that, if X(a), Z(b) and {AX
a }a, {AZ

b }b are
Alice’s observables and POVM on the aforementioned questions then

max
{

Ea
∥∥(VAX(a)− (σX(a)⊗ IdA′)VA)⊗ IdB |ψ〉

∥∥2 ,

Eb
∥∥(VAZ(b)− (σZ(b)⊗ IdA′)VA)⊗ IdB |ψ〉

∥∥2
}
≤ O(εd) , (10.1)

where the expectation is taken over uniformly random a, b ∈ {0, 1}n, and letting {σX
a }a and {σZ

b } denote
POVMs representing an n-qubit measurement in the Hadamard and computational basis respectively,

max
{

∑
a

∥∥(VA AX
a − (σX

a ⊗ IdA′)VA)⊗ IdB |ψ〉
∥∥2 ,

∑
b

∥∥(VA AZ
b − (σZ

b ⊗ IdA′)VA)⊗ IdB |ψ〉
∥∥2
}
≤ O(εd) , (10.2)

for some universal constant d > 0. A similar statement holds for Bob’s observables. Finally, there is a state
|aux〉 ∈ H′A ⊗H′B such that ∥∥VA ⊗VB|ψ〉 − |φ+〉⊗n|aux〉

∥∥2 ≤ O(εd) , (10.3)

where recall that |φ+〉 ∈ C2 ⊗C2 denotes the state of an EPR pair.

Remark 10.2. The games Gn in Theorem 10.1, as well as all games considered in this lecture, are sym-
metric: X = Y and A = B, the distribution on questions π is invariant under permutation of the
two questions, π(x, y) = π(y, x) for all (x, y), and the verification predicate is symmetric as well, i.e.
Rn(a, b, x, y) = Rn(b, a, y, x) for all (x, y, a, b). Define a strategy (|ψ〉, {Ax

a}, {B
y
b}) to be symmetric if
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HA = HB, |ψ〉 is invariant under exchange of the two subsystems, and Ax
a = Bx

a for all x, a. It is not hard
to verify that whenever a game G is symmetric then for any strategy (|ψ〉, {Ax

a}, {B
y
b}) that succeeds with

some probability 1− ε in the game there is a symmetric strategy (|ψ̃〉, {Ãx
a}) that succeeds with the same

probability, such that moreover “rigidity” statements such as the conclusion of Theorem 10.1 can be “lifted”
from the symmetric strategy back to the original strategy. (The symmetrized strategy uses a state

|ψ̃〉 = |ψ〉AB ⊗
1√
2

(
|0〉A′ |1〉B′ + |1〉A′ |0〉B′

)
∈ HA ⊗HB ⊗C2

A′ ⊗C2
B′ ,

and each player uses its additional qubit to decide whether to compute its answer a to question x using the
“Alice” POVM {Ax

a} or the “Bob” POVM {Bx
a}; formally, for all x, a, Ãx

a = Ax
a ⊗ |0〉〈0|+ Bx

a ⊗ |1〉〈1|.)
Due to this observation in the lecture we limit ourselves to the analysis of symmetric strategies.

There is one important aspect in which the theorem falls short of what we needed in the previous lecture:
its verification procedure is too complex. In the theorem, n qubits are being tested using —as we will see—
questions of length O(n). In order for the test to be of use in the design of the compression procedure
(Claim 9.5) we need the test verifier to run in time� n, so in particular questions cannot be of length O(n).
Achieving such a test is a challenge beyond what we can expose in a single lecture, and so we will focus
on the less efficient version provided by Theorem 10.1. The more efficient version combines the kind of
techniques introduced in this lecture with techniques similar to the use of polynomial error-correcting codes
in the proof of the PCP theorem. For details we refer to [JNV+20b] and [JNV+20a, Appendix A].

Our strategy for the proof of Theorem 10.1 is to derive it from two ingredients. Firstly, in Section 10.1
we introduce a general theory of approximate group representations and note that the consequences of
Theorem 10.1 follow provided that the players’ strategy is, in some sense, an approximate representation of
the n-qubit Pauli group (a finite group which we will define). Secondly, in Section 10.2 we design a game,
or “test”, that enforces that any successful strategy for the players in the game specifies an approximate
representation of the n-qubit Pauli group, so that the results from the first part can be applied to it to conclude
the theorem.

10.1 Approximate group representations

10.1.1 Definitions

We first make a small detour through the theory of group representations. For d-dimensional matrices A, B
and σ such that σ is positive semidefinite, write

〈A, B〉σ = Tr(AB∗σ) ,

where we use B∗ to denote the conjugate-transpose. Note that the matrix trace inner product is recovered
for σ = Id. If σ is the totally mixed state, then we obtain a dimension-normalized variant of the trace inner
product. We will also write ‖A‖σ = 〈A, A〉1/2

σ .
Given an arbitrary finite group G (not necessarily abelian), a group representation of G is a map f :

G → Ud(C), the group of d × d unitary matrices, such that f is a homomorphism: for any x, y ∈ G,
f (x−1y) = f (x)∗ f (y), where we used ∗ to denote the conjugate transpose (which, for unitary matrices,
corresponds to taking the inverse). The following definition introduces a notion of approximate group
representation.
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Definition 10.3. Given a finite group G, an integer d ≥ 1, ε ≥ 0, and a d-dimensional positive semidefinite
matrix σ with trace 1, an (ε, σ)-representation of G is a function f : G → Ud(C), the unitary group of d× d
matrices, such that

Ex,y∈G <
(〈

f (x)∗ f (y), f (x−1y)
〉

σ

)
≥ 1− ε , (10.4)

where the expectation is taken under the uniform distribution over G.

Note that the condition (10.4) is equivalent to

Ex,y∈G
∥∥ f (x−1y)− f (x)∗ f (y)

∥∥2
σ
≤ 2ε . (10.5)

Taking ε = 0 and σ any invertible positive definite matrix, we see that the case ε = 0 corresponds to an
exact representation of G.

Example 10.4. Consider the Weyl-Heisenberg group P , which is the group generated by the Pauli σX and
σZ matrices. It is not hard to verify that this group has 8 elements, which can be decomposed as (−1)cσa

Xσb
Z

for a, b, c ∈ {0, 1}. A qubit (X, Z) according to our first definition (Definition 1.1) can be used to specify a
(0, σ) representation of P for any σ as follows:

f
(
(−1)cσa

Xσb
Z
)
= (−1)cXaZb , (10.6)

for all a, b, c ∈ {0, 1}. It is immediate to verify that for all (x, y) ∈ P we have f (x)∗ f (y) = f (x−1y) and
so (10.4) holds with ε = 0 for any σ.

The example makes explicit the connection between our notion of qubit with group representation the-
ory. In this lecture we will leverage the connection to make use of powerful theorems from representation
theory towards the analysis of an n-qubit test. As a warm-up, the following simple and recommended
exercise asks you to generalize the example to the case of a single ε-approximate qubit.

Exercise 10.1. Let (|ψ〉, X, Z) be a qubit such that |ψ〉 ∈ H. Define f : P 7→ U(H) as in (10.6). Show that
f is an (0, σ)-representation of P for σ = |ψ〉〈ψ|. Now suppose that (|ψ〉, X, Z) is only an ε-approximate
qubit in the sense of Exercise 2.1. Show that f is an (O(

√
ε), σ)-representation of P .

Remark 10.5. The condition (10.4) in Definition 10.3 is very closely related to Gowers’ U2 norm

‖ f ‖4
U2 = Exy−1=zw−1

〈
f (x) f (y)∗, f (z) f (w)∗

〉
σ
.

While a large Gowers norm implies closeness to an affine function, we are interested in testing homomor-
phisms, and the condition (10.4) will arise naturally from our calculations in the next section.

10.1.2 The Gowers-Hatami theorem

There are many possible notions of approximate group representation. Traditionally the most frequently
considered one replaces the norm in Definition 10.3 by the operator norm. An inconvenience of that variant
is that in general approximate representations are not always close to exact representations (see, for example,
the famous problem on “approximately commuting” versus “nearly commuting” operators). In contrast
Gowers and Hatami [GH17] showed that in the case of Definition 10.3, approximate group representations
can always be “rounded” to a nearby exact representation.1 We state and prove a slightly more general, but
quantitatively weaker, variant of the Gowers-Hatami result.

1We are barely scratching the surface of a growing theory of “stability” for group homomorphisms; see e.g. [BC20] for an
introduction and discussion of related notions.
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Theorem 10.6 (Gowers-Hatami). Let G be a finite group, ε ≥ 0, and f : G → Ud(C) an (ε, σ)-
representation of G. Then there exists a d′ ≥ d, an isometry V : Cd → Cd′ , and a representation
g : G → Ud′(C) such that

Ex∈G
∥∥ f (x)−V∗g(x)V

∥∥2
σ
≤ 2 ε.

Gowers and Hatami limit themselves to the case of σ = d−1 Id, which corresponds to the dimension-
normalized Frobenius norm. In this scenario they in addition obtain a tight control of the dimension d′, and
show that one can always take d′ = (1 + O(ε))d in the theorem. We will see a much shorter proof than
theirs (the proof is implicit in their argument) that does not seem to allow to recover this estimate. The
extension to general σ, however, will be necessary for our purposes.

Note that Theorem 10.6 does not in general hold with d′ = d. The reason is that it is possible for G to
have an approximate representation in some dimension d, but no exact representation of the same dimension:
to obtain an example of this, take any group G that has all non-trivial irreducible representations of large
enough dimension, and create an approximate representation in e.g. dimension one less by “cutting off”
one row and column from an exact representation. For sufficiently “smooth” σ (no disproportionately large
singular values) the dimension normalization induced by the norm ‖ · ‖σ will make this barely noticeable, but
it will be impossible to “round” the approximate representation obtained to an exact one without modifying
the dimension.

Example 10.7. Continuing with Example 10.4 we consider the example of G = P . In Example 10.4 we
observed that a qubit (|ψ〉, X, Z) can be used to specify a (0, σ) representation f of P such that moreover
f (−1) = − Id. We now check that the converse holds: for any (0, σ)-representation of P for invertible
σ, if X = f (σX) and Z = f (σZ) then using (10.5), taking x = y = σX and x = y = σZ it follows that
X2 = Z2 = f (1) = Id, and taking x = σX and y = σZ we get that XZ = f (σXσZ) while

ZX = f (σZσX) = f (−σXσZ) = f (−1) f (σXσZ) ,

where the second equality uses that the Pauli anti-commute and the last equality again uses (10.5). Thus
if f (−1) = − Id then {X, Z} = 0, so the (0, σ)-representation f specifies a qubit and in particular
Lemma 2.3 on the structure of a qubit applies. As a result, we have shown that there exists a single repre-
sentation of P such that f (−1) = − Id, and that it is given by the Pauli matrices in dimension 2. 2

Exercise 10.2. Using Exercise 10.1 and Example 10.7, show that Theorem 10.6 for the case where G = P
implies Exercise 2.1.

Exercise 10.3. Show Theorem 10.6 for the case where G = P . [Hint: Adapt the proof “by calculation” of
Proposition 6.2 to take into account ε-approximations.]

The main ingredient for the proof of Theorem 10.6 is an appropriate notion of Fourier transform over
non-abelian groups. Given an irreducible representation ρ : G → Udρ

(C), define

f̂ (ρ) = Ex∈G f (x)⊗ ρ(x). (10.7)

In case G is abelian, we always have dρ = 1, the tensor product is a product, and (10.7) reduces to the usual
definition of Fourier coefficient. The only properties we will need of irreducible representations is that they
satisfy the relation

∑
ρ

dρ Tr(ρ(x)) = |G|δxe , (10.8)

2The condition f (−1) = − Id is necessary, as there are four 1-dimensional representations ofP : all combinations f (σX) = ±1
and f (σZ) = ±1. We have found the right number of irreps: 1 · 22 + 4 · 1 = 8 = |P|.
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for any x ∈ G. Note that plugging in x = e (the identity element in G) yields ∑ρ d2
ρ = |G|.

Proof of Theorem 10.6. Our first step is to define an isometry V : Cd → Cd ⊗ (⊕ρCdρ ⊗Cdρ) by

V : u ∈ Cd 7→
⊕

ρ

d1/2
ρ

dρ

∑
i=1

(
f̂ (ρ)(u⊗ ei)

)
⊗ ei,

where the direct sum ranges over all irreducible representations ρ of G and {ei} is the canonical basis.3

Note what V does: it “embeds” any vector u ∈ Cd into a direct sum, over irreducible representations ρ, of a
d-dimensional vector of dρ× dρ matrices. Each (matrix) entry of this vector can be thought of as the Fourier
coefficient of the corresponding entry of the vector f (x)u associated with ρ. The fact that V is an isometry
follows from the appropriate extension of Parseval’s formula:

V∗V = ∑
ρ

dρ ∑
i
(I ⊗ e∗i ) f̂ (ρ)∗ f̂ (ρ)(I ⊗ ei)

= Ex,y f (x)∗ f (y)∑
ρ

dρ ∑
i
(e∗i ρ(x)Tρ(y)ei)

= ∑
ρ

d2
ρ

|G| I = I,

where for the second line we used the definition (10.7) of f̂ (ρ) and for the third we used (10.8) and the fact
that f takes values in the unitary group.

Next define
g(x) =

⊕
ρ

(
Id ⊗ Idρ

⊗ ρ(x)
)
,

a direct sum over all irreducible representations of G (hence itself a representation). Lets’ first compute the
“pull-back” of g by V: following a similar calculation as above, for any x ∈ G,

V∗g(x)V = ∑
ρ

dρ ∑
i,j
(I ⊗ e∗i ) f̂ (ρ)∗ f̂ (ρ)(I ⊗ ej)⊗ e∗i ρ(x)ej)

= Ez,y f (z)∗ f (y)∑
ρ

dρ ∑
i,j
(e∗i ρ(z)Tρ(y)ej)

(
e∗i ρ(x)ej

)
= Ez,y f (z)∗ f (y)∑

ρ

dρTr
(
ρ(z)Tρ(y)ρ(x)T)

= Ez,y f (z)∗ f (y)∑
ρ

dρTr
(
ρ(z−1yx−1)

)
= Ez f (z)∗ f (zx),

where the last equality uses (10.8). It then follows that

Ex
〈

f (x), V∗g(x)V
〉

σ
= Ex,zTr

(
f (x) f (zx)∗ f (z)σ

)
.

This relates correlation of f with V∗gV to the quality of f as an approximate representation and proves the
theorem.

3Observe that this expression directly generalizes (6.1).
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10.1.3 Application: rigidity for the Magic Square game

Recall the Magic Square game from Section 3.3.1. In Lemma 3.12 we analyzed perfect strategies in this
game and showed that any perfect strategy must “have a qubit”. Remembering the proof, we had seen that
Bob’s observables in a perfect strategy must form an operator solution to the underlying system of equations,
and that any such operator solution must contain two anti-commuting observables. Using Theorem 10.6 we
can extend our earlier result to the case of approximate strategies with very little extra work. (This was first
shown in [WBMS16] using a more direct proof.)

Theorem 10.8. Let ε > 0, and suppose that a strategy for the players in the Magic Square game, using
a bipartite state |ψ〉 ∈ Cd ⊗ Cd and observables B1, . . . , B9 for Bob succeeds with probability 1− ε, for
some ε ≥ 0. Then (|ψ〉, B2, B4) is an O(

√
ε)-approximate qubit. Moreover, there are local isometries

VA, VB : Cd → C2 ⊗Cd′ such that

∥∥VA ⊗VB|ψ〉 − |φ+〉 ⊗ |ψ′〉
∥∥ = O(

√
ε) , (10.9)

and ∥∥(VA ⊗VB)(Id⊗B2)|ψ〉 − (σZ ⊗ Id)|φ+〉 ⊗ |ψ′〉
∥∥ = O

(√
ε
)

, (10.10)

and a similar relation holds with B2 replaced by B4 and σZ replaced by σX.

Note that this is a slightly weaker variant of Theorem 3.16 that we stated without proof, because it only
characterizes a single qubit of the strategy, instead of two for the case of Theorem 3.16. This will suffice for
our purposes.

Proof. For the first step of the proof we follow the proof of Claim 3.11, except that all equalities must be
made approximate equalities. Assume without loss of generality that Alice’s strategy is specified by six
4-outcomes projective measurements {Ai

a1,a2,a3
}, where a1, a2, a3 ∈ {±1} range over the four possible

assignments that satisfy the constraint associated with the i-th row (i ∈ {1, 2, 3}) or (i − 3)-th column
(i ∈ {4, 5, 6}). (We can assume that Alice always returns a valid assignment because she knows that she
will lose if not, so we do not even need to include a symbol for such evidently wrong answers in the game.)

For any i ∈ {1, . . . , 9}, in addition to Bob’s observable Bi associated with question i we define two
observables from Alice’s strategy, obtained by recording her answer associated to entry i when she is asked
the unique row containing i — call this observable Ci — or the unique column containing i — call this
observable C′i . Formally, C1 = ∑a1,a2,a3∈{±1} a1A1

a1,a2,a3
, and similar relations can be used to define each

Ci and C′i . Due to the parity constraints enforced on Alice’s answers it is always the case that C1C2C3 =
+ Id, . . . , C3C6C9 = − Id.

By definition, success of the strategy in the game implies 18 equations of the form

〈ψ|Ci ⊗ Bi|ψ〉 ≥ 1− 18ε and 〈ψ|C′i ⊗ Bi|ψ〉 ≥ 1− 18ε , (10.11)

for all i ∈ {1, . . . , 9}. Indeed, each such equation represents the probability that the players return valid
answers, conditioned on each of the 18 possible pairs of questions in the game. These relations allow us to
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mimic the proof of Claim 3.11, as follows:

B2B4|ψ〉 ≈ C4 ⊗ B2|ψ〉
= C5C6 ⊗ B2|ψ〉
≈ C5C6C2 ⊗ Id |ψ〉
= C5C6C3C1 ⊗ Id |ψ〉
≈ C5C6C3 ⊗ B1|ψ〉
≈ C5C6 ⊗ B1B3|ψ〉
≈ C5C′6 ⊗ B1B3|ψ〉
≈ C5C′6C′3 ⊗ B1|ψ〉
= C5C′9 ⊗ B1|ψ〉 ,

where here we use the notation |u〉 ≈ |v〉 to mean ‖|u〉 − |v〉‖2 = O(ε). Here, each of the approximations
is obtained by bounding the squared norm of the difference using the Cauchy-Scharz inequality and the
required relation; for example, for the first approximation we write∥∥(Id⊗B2B4 − C4 ⊗ B2)|ψ〉

∥∥2
=
∥∥(Id⊗B2)(Id⊗B4 − C4 ⊗ Id)|ψ〉

∥∥2

=
∥∥(Id⊗B4 − C4 ⊗ Id)|ψ〉

∥∥2

= 2− 2〈ψ|B4 ⊗ C4|ψ〉
≤ 36ε ,

where the derivation uses that B2, B4 and C4 are Hermitian and square to identity. Using a similar chain of
approximations starting from B4B2|ψ〉, it follows that (|ψ〉, B2, B4) is an O(

√
ε)-approximate qubit.

As already observed in Exercise 10.1, it follows that B2 and B4 induce an approximate representation of
P by setting

f (± Id) = ± Id, f (±σZ) = ±B2, f (±σX) = ±B4, f (±σXσZ) = ±B4B2 .

Note that this is a legal definition, since B2, B4, and B2B4 are all unitary. Moreover, using only the ap-
proximate anti-commutation and the fact that B2 and B4 are observables it is immediate to verify that the
conditions of Theorem 10.6 are satisfied, i.e. f is an (O(ε), ρB)-representation of P , where ρB denotes the
reduced density of |ψ〉 onHB.

Applying the theorem, there must exist an exact representation g of P to which f is close. However, as
we saw in Example 10.7 the representation theory of P is not complicated. It has four 1-dimensional irre-
ducible representations, but all of them map− Id to 1, so they cannot be close to f . Since any representation
is a direct sum of irreducible representations, and all irreducible representations of P are far from f , g must
be a direct sum of multiple copies of the unique irreducible 2-dimensional representation of P , which is
precisely given by the Pauli matrices, together with possibly a small (relative to the total dimension) number
of 1-dimensional relations. Ignoring the presence of such representations for simplicity,4 g(σZ) = σZ ⊗ Id
and g(σX) = σX ⊗ Id, which gives (10.10).

To conclude (10.9) we observe that the relations (10.11) imply that also (ρA, C2, C4) is an O(
√

ε)-
approximate qubit. This allows us to define an approximate representation of P on HA, and apply Theo-
rem 10.6 again to obtain on isometry VA which maps (ρA, C2, C4) close to an exact qubit. Letting

|ψ′〉 = VA ⊗VB|ψ〉 ∈ (C2 ⊗H′A)⊗ (C2 ⊗H′B)
4To account for them we would select the “corner” of the range of the isometry V that includes only copies of the 2-dimensional

irrep; this is a simple technicality.
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we see from (10.11) and (10.10) that∣∣〈ψ|(σX ⊗ σX ⊗ IdA′B′ +σZ ⊗ σZ ⊗ IdA′B′
)
|ψ〉
∣∣ ≥ 1−O(ε) .

To conclude note that 1
2 (σX ⊗ σX + σZ ⊗ σZ) is an observable with a single eigenvalue 1, with associated

eigenvector |φ+〉, and all other eigenvalues equal to 0 or −1.

10.2 Testing n qubits

The intuition we gained from analyzing the Magic Square game provides us with a clear roadmap for
the design of a test for n qubits: (i) design a game such that success in the game requires the players to
share observables that satisfy all relations that we expect from elements of the group generated by n quits
(X1, Z1), . . . , (Xn, Zn), (ii) apply Theorem 10.6 to obtain closeness of the strategy to an exact representa-
tion of this group, and (iii) use that, hopefully, all non-trivial representations gives us what we want, i.e. n
exact qubits.

We start in Section 10.2.1 by studying the underlying group of n qubits. Then in Section 10.2.2 we
design “tests” for the group product relation.

10.2.1 The Weyl-Heisenberg group

Denote by Pn the “n-qubit Weyl-Heisenberg group,” i.e. the matrix group generated by n-fold tensor prod-
ucts of single-qubit σX and σZ matrices. The group Pn has cardinality 2 · 4n, and elements of Pn have a
unique representative of the form ±σX(a)σZ(b) for a, b ∈ {0, 1}n.

The irreducible representations of Pn are easily computed from those of P ; for us the only thing that
matters is that the only irreducible representation which satisfies g(− Id) = −g(Id) has dimension 2n and
is given by the defining matrix representation (in fact, it is the only irreducible representation in dimension
larger than 1).

With the upcoming application to a qubit test in mind, we state a version of the Gowers-Hatami theorem
tailored to the group Pn and a specific choice of presentation for the group relations.

Corollary 10.9. Let n, d be integer, ε ≥ 0, |ψ〉 ∈ Cd ⊗ Cd a permutation-invariant state, σ the reduced
density of |ψ〉 on either system, and f : {X, Z} × {0, 1}n → U(Cd). For a, b ∈ {0, 1}n let X(a) =
f (X, a), Z(b) = f (Z, b), and assume X(a)2 = Z(b)2 = Id for all a, b. Suppose that the following
inequalities hold: consistency

Ea 〈ψ|
(
X(a)⊗ X(a)

)
|ψ〉 ≥ 1− ε , Eb 〈ψ|

(
Z(b)⊗ Z(b)

)
|ψ〉 ≥ 1− ε , (10.12)

linearity

Ea,a′
∥∥X(a)X(a′)− X(a + a′)

∥∥2
σ
≤ ε , Eb,b′

∥∥Z(b)Z(b′)− Z(b + b′)
∥∥2

σ
≤ ε , (10.13)

and anti-commutation
Ea,b

∥∥X(a)Z(b)− (−1)a·bX(a)Z(b)
∥∥2

σ
≤ ε . (10.14)

Then there exists a d′ ≥ d, an isometry V : Cd → Cd′ , and a representation g : Pn → Ud′(C) such that
g(−I) = −Id′ and

Ea,b
∥∥X(a)Z(b)−V∗g(σX(a)σZ(b))V

∥∥2
σ
= O(ε) .
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Note that the conditions (10.13) and (10.14) in the corollary are very similar to the conditions required of
an approximate representation of the group Pn; in fact it is easy to convince oneself that their exact analogue
suffices to imply all the group relations. The reason for choosing those specific relations is that they can
be checked using games; see the next subsection for this. Condition (10.12) is necessary to derive the
conditions for the application of the Gowers-Hatami theorem from (10.13) and (10.14), and is also testable;
see the proof. The conclusion of the corollary implies the conclusion of Theorem 10.1 simply by using the
aforementioned fact on non-trivial representations of Pn (see details at the end of Section 10.2.3).

Remark 10.10. Corollary 10.9 can be seen as an extension of the Blum-Luby-Rubinfeld linearity test [BLR93].
The latter makes a similar statement, but for the commutative group {±σX(a)| a ∈ {0, 1}n}.

Proof. To apply the Gowers-Hatami theorem we need to construct an (ε, σ)-representation f of the group
Pn. Using that any element of Pn has a unique representative of the form ±σX(a)σZ(b) for a, b ∈ {0, 1}n,
we define f (±σX(a)σZ(b)) = ±X(a)Z(b). Next we need to verify that f is an approximate representation.
Let x, y ∈ Pn be such that x = σX(ax)σZ(bx) and y = σX(ay)σZ(by) for n-bit strings (ax, bx) and (ay, by)
respectively. Up to phase, we can exploit successive cancellations to decompose ( f (x) f (y)∗− f (xy−1))⊗
I as (

X(ax)Z(bx)X(ay)Z(by)− (−1)ay·bx X(ax + ay)Z(bx + by)
)
⊗ I

= X(ax)Z(bx)X(ay)
(
Z(by)⊗ I − I ⊗ Z(by)

)
+X(ax)

(
Z(bx)X(ay)− (−1)ay·bx X(ay)Z(bx)

)
⊗ Z(by)

+(−1)ay·bx
(
X(ax)X(ay)⊗ Z(by)

)(
Z(bx)⊗ I − I ⊗ Z(bx)

)
+(−1)ay·bx

(
X(ax)X(ay)⊗ Z(by)Z(bx)− X(ax + ay)⊗ Z(bx + by)

)
+(−1)ay·bx

(
X(ax + ay)⊗ I

)(
I ⊗ Z(bx + by)− Z(bx + by)⊗ I

)
.

(It is worth staring at this sequence of equations for a little bit. In particular, note the “player-switching” that
takes place in the 2nd, 4th and 6th lines; this is used as a means to “commute” the appropriate unitaries, and
is the reason for including (10.12) among the assumptions of the corollary.) Evaluating each term on the
state |ψ〉, taking the squared Euclidean norm, and then the expectation over uniformly random ax, ay, bx, by,
the inequality ‖AB|ψ〉‖ ≤ ‖A‖‖B|ψ〉‖ and the assumptions of the theorem let us bound the overlap of
each term in the resulting summation by O(ε). Using ‖(A⊗ I)|ψ〉‖ = ‖A‖σ by definition and the triangle
inequality we have obtained the bound

Ex,y
∥∥ f (x) f (y)∗ − f (xy−1)

∥∥2
σ
= O(ε).

We are now in a position to apply the Gowers-Hatami theorem, which gives an isometry V and exact
representation g such that

Ea,b

∥∥∥X(a)Z(b)− 1
2

V∗
(

g(σX(a)σZ(b))− g(−σX(a)σZ(b))
)
V
∥∥∥2

σ
= O(ε). (10.15)

Using that g is a representation, g(−σX(a)σZ(b)) = g(−I)g(σX(a)σZ(b)). It follows from (10.15) that
‖g(−I) + I‖2

σ = O(ε), so we may restrict the range of V to the subspace where g(−I) = −I without
introducing much additional error.
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10.2.2 Testing the Weyl-Heisenberg group relations

Corollary 10.9 makes three assumptions about the observables X(a) and Z(b): that they satisfy approximate
consistency (10.12), linearity (10.13), and anti-commutation (10.14). To complete our test, we need to show
how these relations can be “certified” in a two-player game. There are multiple ways this can be done; we
give one. We start by introducing two stand-alone “tests” that we later combine to define the game Gn.

Linearity test:

(a) The referee selects W ∈ {X, Z} and a, a′ ∈ {0, 1}n uniformly at random. She sends
(W, a, a′) to one player and (W, a), (W, a′), or (W, a + a′) to the other.5

(b) The first player replies with two bits, and the second with a single bit. The referee accepts
if and only if the player’s answers are consistent.

As always in this section, the test treats both players symmetrically. As a result (see Remark 10.2
we can assume that the players’ strategy is symmetric, and is specified by a permutation-invariant state
|ψ〉 ∈ Cd ⊗ Cd and a measurement for each question: an observable W(a) associated to questions of the
form (W, a), and a four-outcome measurement {Wa,a′} associated with questions of the form (W, a, a′).

The linearity test described above is almost identical to the BLR linearity test, except for the use of the
basis label W ∈ {X, Z}. The following lemma states conditions that a strategy must satisfy in order to
succeed with high probability in the test.

Lemma 10.11. Suppose that a family of observables {W(a)} for W ∈ {X, Z} and a ∈ {0, 1}n, generates
outcomes that succeed in the linearity test with probability 1− ε, when applied on a symmetric bipartite
state |ψ〉 ∈ Cd ⊗Cd with reduced density matix σ. Then the following hold: approximate consistency

Ea 〈ψ|
(
X(a)⊗ X(a)

)
|ψ〉 = 1−O(ε), Eb 〈ψ|

(
Z(b)⊗ Z(b)

)
|ψ〉 ≥ 1−O(ε),

and linearity

Ea,a′
∥∥X(a)X(a′)− X(a + a′)

∥∥2
σ
= O(ε), Eb,b′

∥∥Z(b)Z(b′)− Z(b + b′)
∥∥2

σ
= O(ε).

Exercise 10.4. Prove the lemma. (In the case of classical strategies, the conditions are an immediate refor-
mulation of the test. The proof for quantum strategies is not much harder.)

Testing anti-commutation can be done using the Magic Square game.

Anti-commutation test:

(a) The referee selects a, b ∈ {0, 1}n uniformly at random under the condition that a · b = 1.
She plays the Magic Square game with both players, with the following modifications: if
the question to the second player is 2 or 4 she sends (X, a) or (Z, b) instead; in all other
cases he sends the original label of the question in the Magic Square game together with
both strings a and b.

(b) Each player provides answers as in the Magic Square game. The referee accepts if and
only if the player’s answers would have been accepted in the game.

Using Theorem 10.8 it is straightforward to show the following.

5Elements such as (W, a) are labels sent to the players as their question, and carry no other intrinsic meaning.
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Lemma 10.12. Suppose a strategy for the players succeeds in the anti-commutation test with probability
at least 1− ε, when performed on a symmetric bipartite state |ψ〉 ∈ Cd ⊗Cd with reduced density matrix
σ. Then the observables X(a) and Z(b) applied by the player upon receipt of questions (X, a) and (Z, b)
respectively satisfy

Ea,b: a·b=1
∥∥X(a)Z(b)− (−1)a·bZ(b)X(a)

∥∥2
σ
= O

(√
ε
)
. (10.16)

10.2.3 Application: an n-qubit test

We are ready to put all the pieces together and make explicit the game Gn that underlies Theorem 10.1. For
historical reasons we call this game the “n-qubit Pauli braiding test”.

n-qubit Pauli braiding test: With probability 1/3 each,

(a) Execute the linearity test;

(b) Execute the anti-commutation test;

(c) Execute the following consistency test: Send one player a label W ∈ {X, Z} uniformly
at random, and to the other (W, a) for a ∈ {0, 1}n chosen uniformly at random. Expect
answers c ∈ {0, 1}n and c′ ∈ {0, 1} respectively. Accept if and only if a · c = c′.

Proof sketch of Theorem 10.1. For any integer n ≥ 1 let Gn be the n-qubit Pauli braiding test. Suppose that
a family of observables W(a), for W ∈ {X, Z} and a ∈ {0, 1}n, together with projective measurements
{AX

a }a∈{0,1}n and {AZ
b }b∈{0,1}n and a state |ψ〉 ∈ Cd ⊗ Cd specify a symmetric strategy that succeeds in

with probability at least 1− ε in the game.
Using Lemma 10.11 and Lemma 10.12, success with probability 1− ε implies that conditions (10.12),

(10.13) and (10.14) in Corollary 10.9 are all satisfied, up to error O(
√

ε). (In fact, Lemma 10.12 only
implies (10.14) for strings a, b such that a · b = 1. The condition for string such that a · b = 0 follows
from the other conditions.) The conclusion of the corollary is that there exists an isometry V such that the
observables X(a) and Z(b) satisfy

Ea,b
∥∥X(a)Z(b)−V∗g(σX(a)σZ(b))V

∥∥2
σ
= O(

√
ε) ,

for some non-trivial representation g of Pn. Using what we know of non-trivial representations, (10.1)
follows. To obtain (10.2) we use success in part (c) of the test, which using σX

a = Eb(−1)a·bσX(b) and
similarly for σZ

b immediately translates into the desired relation.
Finally, using the consistency relations (10.12) that follow from part (a) of the test together with the

above we get

Ea,b 〈ψ|(V ⊗V)∗
(
σX(a)σZ(b)⊗ σX(a)σZ(b)

)
(V ⊗V)|ψ〉 = 1−O(

√
ε).

Using similar reasoning as the end of the proof of Theorem 10.8, (10.3) follows.
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