

PV-LAB SCHOOL ONE WEEK INTENSIVE TRAINING ON THIN FILM SILICON PHOTOVOLTAICS

Especially designed to provide participants
with a high level understanding of thin film silicon
photovoltaic devices, processes
and market challenges

Next dates - To be discussed

Location Institut de microtechnique IMT, EPFL

Rue A.L. Breguet 2

2000 Neuchâtel, Switzerland

Contact/Requests Dr. Vanessa Terrazzoni

tel. +41 32 718 3366,

vanessa.terrazzoni@epfl.ch

http://pvlab.epfl.ch/

Highlights

- State of the art on thin film PV and market situation
- Deposition techniques
- Thin film silicon
- Amorphous and micro or nano silicon materials
- Photovoltaic devices
- Back end; Encapsulation and testing
- TCO and light trapping
- Tandem solar cells
- Series interconnection, lasering
- Cell design and diagnostic
- Characterisation methods (spectroscopy, electrical measurements, shunts analysis...)
- Photovoltaic installations

PV-LAB

- A leading laboratory in PV
- Many PV-LAB school organised in the last years
- Pioneer in very high frequency deposition processes, micromorph technology, high performance TCO

Interactive

- Lab tour
- Cell diagnostic (IV, EQE measurements)
- Demonstration of various characteriation methods like Raman spectroscopy, thermo-lock-in shunt analysis, UV-Vis spectroscopy, dark conductivity measurements

Details

Early rate 2200 € + VAT (7.6%) / participant*
Standard rate 2500 € + VAT (7.6%) / participant

Rates include the support training material (Paper version at the beginning of each lesson + CD at the end of the week), 1 welcome aperitif, coffee breaks, lunches for five days.

Accommodation is not included in the course price. Information on accommodation will be sent upon registration.

- * The lecture will take place with a minimum of 10 participants. A maximum of 16 participants per session is accepted
- * Early rate means registration at least 1 month before the beginning of the session.

Detailed program

See typical training program on next page

PV-LAB

PV-Lab school program

Timetable	8h ⁰⁰ -8h ⁴⁵	9h ⁰⁰ -9h ⁴⁵	10h ⁰⁰ -10h ⁴⁵	11h ⁰⁰ -12h ⁰⁰	Lunch	13h ³⁰ -14h ¹⁵	14h ³⁰ -15h ¹⁵	15h ³⁰ -16h ¹⁵	16h ³⁰ -17h ¹⁵	
Monday	General intro to Thin Film PV School Introduction to PV Different PV technologies Thin Film Si vs. c-Si Market situation					General deposition techniques Plasma physics and deposition Reactor design Prospects			Lab tour Deposition systems Diagnosis tools	Apero
Tuesday	Thin Film Silicon Definitions Semiconductor physics, bandgap Optical properties Microstructure Stability, Staebler-Wronski effect			Laser scribing Intro Choice of laser Monolithic interconnection Issues		Modules, encapsulation & testing Module production steps (thin-films) Equipment Material properties (delamination issues) Standards and testing Effects when measuring thin-film modules			PV installation Stand-alone Grid connection Batteries, converters	
Wednesday	Intro to PE-CVD CVD vs PECVD Plasma discharge & deposition systems, monitoring Where is the industry today: systems and electrode designs VHF vs 13.56 MHz Film properties vs plasma parameters			Lock-in thermo-graphy Intro Set-up Software and options Practice		Amorphous silicon (a-Si:H) Defect density DOS, localized and extended states, absorption processes Transport mechanisms, doping Recombination Stability Practical examples			Dark conductivity Important parameters Typical values Set-up Examples of meas.	-
Thursday	pin & nip devices Physics principle Diode equation Efficiency limits, losses p-i-n vs. p-n p-i-n vs. n-i-p stability issues, requirements for cell design (light-trapping)			Raman spectro-scopy • Intro • Theory • Practice		TCO & light trapping TCO material family TCO for thin-film silicon solar cells Characterization techniques Light trapping management			UV-Vis Spectro-scopy Principle Set-up Examples of meas.	
Friday	Microcrystalline silicon (μc-Si:H) Influence of the substrate (or underlayers) on growth State-of the art efficiency Advantages of μc-Si:H for photovoltaics Practical examples Tandem cells Concept State of the art Constraints on current r Stability vs single-junction			n current matching		Cell design and cell diagnosis IV, QE: intro & practice P-i-n cell design (e.g. p-a-Si, p-a-SiC,) Diagnosis for bad cell performances (shunts, interfaces,) Simulations: intro to "SunShine" software			Multiple choice, Questions, Discussion	