Exercise Session, April 25, 2016

1. Divergence, Curl and Laplacian

(a) Let $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $\mathbf{f}(x, y, z)=\left(y+x^{2}, z, x^{2}\right)$. Compute $\nabla \cdot \mathbf{f}, \nabla(\nabla \cdot \mathbf{f})$ and $\nabla \times f$.
(b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be $f(x, y, z)=x^{3}+y^{2}+z$. Find $\Delta f+\nabla \cdot(\nabla \times(\nabla f))$.
2. Let $\mathbf{f}(x, y, z)=\left(3 x y z^{2}, 2 x y^{3},-x^{2} y z\right)$ and $\phi(x, y, z)=3 x^{2}-y z$. Find $\nabla \cdot \mathbf{f}, \nabla \times \mathbf{f}, \mathbf{f} \cdot \nabla \phi$, $\nabla \cdot(\nabla \phi)$ and $\nabla \cdot(\phi \mathbf{f})$ at point $(1,-1,1)$.
3. Transport equation (aka. convection-diffusion equation) is used in physics and engineering to describe phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion (spreading) and convection (movement). The general transport equation is

$$
\frac{\partial c}{\partial t}+\nabla \cdot(c \vec{v})=\nabla \cdot(D \nabla c)+S
$$

where $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and c, D, S, v_{1}, v_{2} and v_{3} are all real functions of t, x, y and z.
(a) Write the equation without using the gradient operator ∇ and the divergence operator $(\nabla \cdot)$.
(b) Verify that $c(x, y, z)=x^{2}+y^{2}+z$ satisfy the steady state equation, i.e. when all derivatives with respect to time t is zero, when $D=5, v=(1,2,2)$ and $S=2 x+4 y-18$.
4. Verify that

$$
\nabla \times \nabla \times \mathbf{f}=\nabla(\nabla \cdot \mathbf{f})-\Delta \mathbf{f}
$$

where $\mathbf{f}(x, y, z)=\left(f_{1}, f_{2}, f_{3}\right)$ and $\Delta \mathbf{f}=\left(\Delta f_{1}, \Delta f_{2}, \Delta f_{3}\right)$.
5. Study the change of variable given by

$$
x=\sin s \cosh t, \quad y=\cos s \sinh t
$$

Give the Jacobian matrix, denoted $J_{\mathbf{v}}$, and calculate $J_{\mathbf{v}}^{T} J_{\mathbf{v}}$. Let $f(x, y)=f(\sin s \cosh t, \cos s \sinh t)$ a function of class C^{2}. Calculate

$$
\frac{\partial^{2} f(x, y)}{\partial s^{2}}+\frac{\partial^{2} f(x, y)}{\partial t^{2}}
$$

Use this result to give the Laplacian of a function $f(x, y)$ of class C^{2} in terms of coordinates (s, t).
6. Change of coordinates between spherical and Cartesian coordinates in \mathbb{R}^{3}. On $U:=\{(r, \theta, \phi):(r>0,0<\theta<\pi, 0<\phi<2 \pi\}$ we consider the map

$$
\begin{aligned}
& x=v_{1}(r, \theta, \phi)=r \sin \theta \cos \phi \\
& y=v_{2}(r, \theta, \phi)=r \sin \theta \sin \phi \\
& z=v_{3}(r, \theta, \phi)=r \cos \theta
\end{aligned}
$$

Show that \mathbf{v} is locally invertible. Then show that for $(x, y, z) \in W:=\{(x, y, z): x>0, y>$ $0, z>0\}$ the reciprocal map $\mathbf{w}=\mathbf{v}^{-1}$ is given by

$$
\begin{aligned}
& r=w_{1}(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \theta=w_{2}(x, y, z)=\arccos \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \phi=w_{3}(x, y, z)=\arcsin \frac{y}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Calculate the Jacobian matrix and the Jacobian determinant w. Give the set $\mathbf{w}(W)$.
7. Change of coordinates between spherical and Cartesian coordinates in \mathbb{R}^{3}. On $U:=\{(r, \theta, \phi):(r>0,0<\theta<\pi, 0<\phi<2 \pi\}$ we consider the map

$$
\begin{aligned}
& x=v_{1}(r, \theta, \phi)=r \sin \theta \cos \phi \\
& y=v_{2}(r, \theta, \phi)=r \sin \theta \sin \phi \\
& z=v_{3}(r, \theta, \phi)=r \cos \theta
\end{aligned}
$$

Let $g(r, \theta, \phi)$ be a function of class $C^{2}(U)$. Using the previous exercise ,calculate

$$
\left\|\nabla_{x, y, z} g(r, \theta, \phi)\right\|_{2}^{2}
$$

Show that

$$
\begin{aligned}
& \Delta_{x, y, z} g(r, \theta, \phi) \\
& =\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)\right] g(r, \theta, \phi)
\end{aligned}
$$

8. For each of the following, compute J_{f}, J_{g} and $J_{f \circ g}$.
(a)

$$
f(x, y)=\left(\begin{array}{c}
\sin x \\
x-y \\
x y
\end{array}\right), \quad g(x, y)=\binom{x+y}{x y}
$$

(b)

$$
f(x, y)=\binom{x+y}{x^{3}+2 x y}, \quad g(x)=\binom{x}{x^{2}}
$$

9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined as

$$
f(x, y)=\binom{\frac{x^{2}+y^{2}}{2}}{\frac{x^{2}-y^{2}}{2}}, \quad g(x, y)=\binom{\sqrt{x+y}}{\sqrt{x-y}}
$$

Compute J_{f}, J_{g} and $J_{f \circ g}$. Is g the inverse function of f ?

