

Exercise Session, April 25, 2016

1. Divergence, Curl and Laplacian

- (a) Let $\mathbf{f} : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as $\mathbf{f}(x, y, z) = (y + x^2, z, x^2)$. Compute $\nabla \cdot \mathbf{f}$, $\nabla(\nabla \cdot \mathbf{f})$ and $\nabla \times f$.
- (b) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be $f(x, y, z) = x^3 + y^2 + z$. Find $\Delta f + \nabla \cdot (\nabla \times (\nabla f))$.
- 2. Let $\mathbf{f}(x, y, z) = (3xyz^2, 2xy^3, -x^2yz)$ and $\phi(x, y, z) = 3x^2 yz$. Find $\nabla \cdot \mathbf{f}, \nabla \times \mathbf{f}, \mathbf{f} \cdot \nabla \phi, \nabla \cdot (\nabla \phi)$ and $\nabla \cdot (\phi \mathbf{f})$ at point (1, -1, 1).
- 3. Transport equation (aka. convection-diffusion equation) is used in physics and engineering to describe phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion (spreading) and convection (movement). The general transport equation is

$$\frac{\partial c}{\partial t} + \nabla \cdot (c \vec{v}) = \nabla \cdot (D \nabla c) + S$$

where $\vec{v} = (v_1, v_2, v_3)$ and c, D, S, v_1, v_2 and v_3 are all real functions of t, x, y and z.

- (a) Write the equation without using the gradient operator ∇ and the divergence operator $(\nabla \cdot)$.
- (b) Verify that $c(x, y, z) = x^2 + y^2 + z$ satisfy the steady state equation, i.e. when all derivatives with respect to time t is zero, when D = 5, v = (1, 2, 2) and S = 2x + 4y 18.
- 4. Verify that

$$\nabla \times \nabla \times \mathbf{f} = \nabla (\nabla \cdot \mathbf{f}) - \Delta \mathbf{f}$$

where $\mathbf{f}(x, y, z) = (f_1, f_2, f_3)$ and $\Delta \mathbf{f} = (\Delta f_1, \Delta f_2, \Delta f_3)$.

5. Study the change of variable given by

$$x = \sin s \cosh t, \quad y = \cos s \sinh t.$$

Give the Jacobian matrix, denoted $J_{\mathbf{v}}$, and calculate $J_{\mathbf{v}}^T J_{\mathbf{v}}$. Let $f(x, y) = f(\sin s \cosh t, \cos s \sinh t)$ a function of class C^2 . Calculate

$$\frac{\partial^2 f(x,y)}{\partial s^2} + \frac{\partial^2 f(x,y)}{\partial t^2}.$$

Use this result to give the Laplacian of a function f(x, y) of class C^2 in terms of coordinates (s, t).

6. Change of coordinates between spherical and Cartesian coordinates in \mathbb{R}^3 . On $U := \{(r, \theta, \phi) : (r > 0, 0 < \theta < \pi, 0 < \phi < 2\pi\}$ we consider the map

$$x = v_1(r, \theta, \phi) = r \sin \theta \cos \phi$$
$$y = v_2(r, \theta, \phi) = r \sin \theta \sin \phi$$
$$z = v_3(r, \theta, \phi) = r \cos \theta$$

Show that **v** is locally invertible. Then show that for $(x, y, z) \in W := \{(x, y, z) : x > 0, y > 0, z > 0\}$ the reciprocal map $\mathbf{w} = \mathbf{v}^{-1}$ is given by

$$r = w_1(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = w_2(x, y, z) = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$\phi = w_3(x, y, z) = \arcsin \frac{y}{\sqrt{x^2 + y^2}}$$

Calculate the Jacobian matrix and the Jacobian determinant \mathbf{w} . Give the set $\mathbf{w}(W)$.

7. Change of coordinates between spherical and Cartesian coordinates in \mathbb{R}^3 . On $U := \{(r, \theta, \phi) : (r > 0, 0 < \theta < \pi, 0 < \phi < 2\pi\}$ we consider the map

$$x = v_1(r, \theta, \phi) = r \sin \theta \cos \phi$$
$$y = v_2(r, \theta, \phi) = r \sin \theta \sin \phi$$
$$z = v_3(r, \theta, \phi) = r \cos \theta$$

Let $g(r, \theta, \phi)$ be a function of class $C^2(U)$. Using the previous exercise ,calculate

$$\|\nabla_{x,y,z} g(r,\theta,\phi)\|_2^2$$

Show that

$$\Delta_{x,y,z} g(r,\theta,\phi) = \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\left(\frac{\partial^2}{\partial \theta^2} + \cot\theta\frac{\partial}{\partial \theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\right)\right]g(r,\theta,\phi).$$

8. For each of the following, compute J_f , J_g and $J_{f \circ g}$.

(a)

$$f(x,y) = \begin{pmatrix} \sin x \\ x - y \\ xy \end{pmatrix}, \quad g(x,y) = \begin{pmatrix} x + y \\ xy \end{pmatrix}$$

(b)

$$f(x,y) = \begin{pmatrix} x+y\\ x^3+2xy \end{pmatrix}, \quad g(x) = \begin{pmatrix} x\\ x^2 \end{pmatrix}$$

9. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as

$$f(x,y) = \begin{pmatrix} \frac{x^2 + y^2}{2} \\ \frac{x^2 - y^2}{2} \end{pmatrix}, \quad g(x,y) = \begin{pmatrix} \sqrt{x+y} \\ \sqrt{x-y} \end{pmatrix}$$

Compute J_f , J_g and $J_{f \circ g}$. Is g the inverse function of f?