Solutions to Exercise Session, April 18, 2015

1. Jacobian matrix. Calculate the Jacobian matrix of the following maps:
(a) Let $\mathbf{u}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be given by

$$
\begin{aligned}
& \mathbf{u}(x, y)=\left(\begin{array}{c}
-y \\
x \\
x+y
\end{array}\right) \\
D_{\mathbf{u}}(x, y) & =\left(\begin{array}{ll}
D_{1} u_{1}(x, y) & D_{2} u_{1}(x, y) \\
D_{1} u_{2}(x, y) & D_{2} u_{2}(x, y) \\
D_{1} u_{3}(x, y) & D_{2} u_{3}(x, y)
\end{array}\right) \\
= & \left(\begin{array}{cc}
D_{x} u_{1}(x, y) & D_{y} u_{1}(x, y) \\
D_{x} u_{2}(x, y) & D_{y} u_{2}(x, y) \\
D_{x} u_{3}(x, y) & D_{y} u_{3}(x, y)
\end{array}\right) \\
= & \left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

(b) Let $\mathbf{v}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ and $\mathbf{w}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be given by

$$
\begin{gathered}
\mathbf{v}(x, y)=\left(\begin{array}{c}
-y \\
x \\
x y
\end{array}\right) \\
\mathbf{w}(x, y, z)=\binom{x^{2}+y^{2}-2 z}{x^{2}+y^{2}+2 z}
\end{gathered}
$$

Calculate the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by calculating first this composition and then by the rule of composition.

$$
J_{\mathbf{v}}(x, y)=\left(\begin{array}{ll}
D_{1} v_{1}(x, y) & D_{2} v_{1}(x, y) \\
D_{1} v_{2}(x, y) & D_{2} v_{2}(x, y) \\
D_{1} v_{3}(x, y) & D_{2} v_{3}(x, y)
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
y & x
\end{array}\right)
$$

and

$$
J_{\mathbf{w}}(x, y, z)=\left(\begin{array}{ccc}
D_{1} w_{1}(x, y, z) & D_{2} w_{1}(x, y, z) & D_{3} w_{1}(x, y, z) \\
D_{1} w_{2}(x, y, z) & D_{2} w_{2}(x, y, z) & D_{3} w_{2}(x, y, z)
\end{array}\right)=\left(\begin{array}{ccc}
2 x & 2 y & -2 \\
2 x & 2 y & 2
\end{array}\right)
$$

So

$$
\begin{aligned}
J_{\mathbf{w o v}}(x, y) & =\left(\begin{array}{lll}
2 v_{1}(x, y) & 2 v_{2}(x, y) & -2 \\
2 v_{1}(x, y) & 2 v_{2}(x, y) & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
y & x
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-2 y & 2 x & -2 \\
-2 y & 2 x & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
y & x
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 x-2 y & 2 y-2 x \\
2 x+2 y & 2 x+2 y
\end{array}\right)
\end{aligned}
$$

By calculating $\mathbf{w} \circ \mathbf{v}$, we can easily check this result:

$$
(\mathbf{w} \circ \mathbf{v})(x, y)=\binom{x^{2}+y^{2}-2 x y}{x^{2}+y^{2}+2 x y}
$$

(c) Let $\mathbf{v}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ and $\mathbf{w}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by

$$
\begin{aligned}
\mathbf{v}(x, y, z) & =\binom{e^{y+2 z}}{x^{2}+y z} \\
\mathbf{w}(x, y) & =\binom{\cos x}{\sin y}
\end{aligned}
$$

Calculate the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by calculating first this composition and then by using the rule of composition.
Then,

$$
J_{\mathbf{v}}(x, y, z)=\left(\begin{array}{ccc}
0 & e^{y+2 z} & 2 e^{y+2 z} \\
2 x & z & y
\end{array}\right)
$$

and

$$
J_{\mathbf{w}}(x, y)=\left(\begin{array}{cc}
-\sin x & 0 \\
0 & \cos y
\end{array}\right)
$$

So

$$
\begin{aligned}
J_{\mathbf{w o v}}(x, y, z) & =\left(\begin{array}{cc}
-\sin v_{1}(x, y) & 0 \\
0 & \cos v_{2}(x, y)
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & e^{y+2 z} & 2 e^{y+2 z} \\
2 x & z & y
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\sin \left(e^{y+2 z}\right) & 0 \\
0 & \cos \left(x^{2}+y z\right)
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & e^{y+2 z} & 2 e^{y+2 z} \\
2 x & z & y
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -e^{y+2 z} \sin \left(e^{y+2 z}\right) & -2 e^{y+2 z} \sin \left(e^{y+2 z}\right) \\
2 x \cos \left(x^{2}+y z\right) & z \cos \left(x^{2}+y z\right) & y \cos \left(x^{2}+y z\right)
\end{array}\right)
\end{aligned}
$$

By calculating $\mathbf{w} \circ \mathbf{v}$ we easily check the result:

$$
(\mathbf{w} \circ \mathbf{v})(x, y)=\binom{\cos \left(v_{1}(x, y, z)\right)}{\sin \left(v_{2}(x, y, z)\right)}=\binom{\cos \left(e^{y+2 z}\right)}{\sin \left(x^{2}+y z\right)}
$$

2. Jacobian matrix. The Jacobian matrix of \mathbf{v} defined by

$$
\mathbf{v}(r, \theta, \phi)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)
$$

is

$$
J_{\mathbf{v}}(r, \theta, \phi)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right)
$$

So

$$
\begin{aligned}
\operatorname{det} J_{\mathbf{v}}(r, \theta, \phi)= & r \cos \theta \cos \phi r \sin \theta \cos \phi \cos \theta \\
& +r \sin \theta \sin \phi \sin \theta \sin \phi r \sin \theta \\
& +r \sin \theta \sin \phi r \cos \theta \sin \phi \cos \theta \\
& +\sin \theta \cos \phi r \sin \theta \cos \phi r \sin \theta \\
= & r^{2} \sin \theta\left(\cos ^{2} \phi \cos ^{2} \theta+\sin ^{2} \phi \sin ^{2} \theta\right. \\
& \left.+\cos ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi \sin ^{2} \theta\right) \\
= & r^{2} \sin \theta
\end{aligned}
$$

3.

$$
\begin{aligned}
J_{\mathbf{v}}(x, y) & =\left(\begin{array}{ll}
D_{x} v_{1}(x, y) & D_{y} v_{1}(x, y) \\
D_{x} v_{2}(x, y) & D_{y} v_{2}(x, y) \\
D_{x} v_{3}(x, y) & D_{y} v_{3}(x, y)
\end{array}\right) \\
& =\frac{1}{\left(1+x^{2}+y^{2}\right)^{2}}\left(\begin{array}{ccc}
2\left(1-x^{2}+y^{2}\right) & -4 x y \\
-4 x y & 2\left(1+x^{2}-y^{2}\right) \\
-4 x & -4 y
\end{array}\right) \\
J_{\mathbf{w}}(x, y, z) & =\left(\begin{array}{lll}
D_{x} w_{1}(x, y, z) & D_{y} w_{1}(x, y, z) & D_{z} w_{1}(x, y, z) \\
D_{x} w_{2}(x, y, z) & D_{y} w_{2}(x, y, z) & D_{z} w_{2}(x, y, z)
\end{array}\right) \\
& =\frac{1}{(1+z)^{2}}\left(\begin{array}{ccc}
1+z & 0 & -x \\
0 & 1+z & -y
\end{array}\right)
\end{aligned}
$$

We note that $f(x, y)=\langle\mathbf{v}(x, y), \mathbf{v}(x, y)\rangle=1$ and hence

$$
J_{f}(x, y)=(0,0)
$$

By the composition rule

$$
\begin{aligned}
J_{\mathbf{w} \circ \mathbf{v}}(x, y)= & \frac{1}{\left(1+v_{3}(x, y)\right)^{2}}\left(\begin{array}{ccc}
1+v_{3}(x, y) & 0 & -v_{1}(x, y) \\
0 & 1+v_{3}(x, y) & -v_{2}(x, y)
\end{array}\right) \\
& \cdot \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}}\left(\begin{array}{cc}
2\left(1-x^{2}+y^{2}\right) & -4 x y \\
-4 x y & 2\left(1+x^{2}-y^{2}\right) \\
-4 x & -4 y
\end{array}\right) \\
= & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The map \mathbf{v} is a map from the plane to the unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ since $\langle\mathbf{v}(x, y), \mathbf{v}(x, y)\rangle=1$. More precisely, the image of \mathbf{v} is the whole sphere except the south pole $(0,0,-1)$. The map \mathbf{w} restricted to $\mathbb{S}^{2} \backslash\{(0,0,-1)\}$ gives the reciprocal map of \mathbf{v}. The map $\mathbf{w}: \mathbb{S}^{2} \backslash$ $\{(0,0,-1)\} \longrightarrow \mathbb{R}^{2}$ is called the stereographic projection.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be

$$
f(x, y)=\frac{x^{2} y \sin \left(\sqrt{x^{2}+y^{2}}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \quad(x, y) \neq(0,0)
$$

Then
(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1$
(b) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=y$
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist
(d) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$

Solution. (d) is correct.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y \sin \left(\sqrt{x^{2}+y^{2}}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\lim _{r \rightarrow 0} \frac{r^{3} \cos ^{2} \theta \sin \theta \sin r}{r^{3}}=\lim _{r \rightarrow 0} \cos ^{2} \theta \sin \theta \sin r=0
$$

5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be

$$
f(x, y)= \begin{cases}\frac{y^{2}}{\sqrt{y^{4}+x^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Then
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=1$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=0$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)$ does not exist
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=+\infty$

Solution. (c) is correct.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{-y^{2} x}{\left(y^{4}+x^{2}\right)^{3 / 2}}=\lim _{r \rightarrow 0} \frac{-r^{3} \sin ^{2} \theta \cos \theta}{\left(r^{4} \sin ^{4} \theta+r^{2} \sin ^{2} \theta\right)^{3 / 2}}=\lim _{r \rightarrow 0} \frac{-\sin ^{2} \theta \cos \theta}{\left(r^{2} \sin ^{4} \theta+\cos ^{2} \theta\right)^{3 / 2}}
$$

The right hand side depend on θ.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be $f(x, y)=x^{3}-2 x y+y^{2}$. Then the point $p=(2 / 3,2 / 3)$
(a) is a local maximum of f
(b) is not a stationary point of f
(c) is a saddle point of f
(d) is a local minimum of f

Solution. (d) is correct. We have

$$
\begin{gathered}
\nabla f=\binom{3 x^{2}-2 y}{-2 x+2 y}, \quad \nabla f(2 / 3,2 / 3)=0 \\
\operatorname{Hess}_{f}(x, y)=\left(\begin{array}{cc}
6 x & -2 \\
-2 & 2
\end{array}\right)=\left(\begin{array}{cc}
4 & -2 \\
-2 & 2
\end{array}\right)
\end{gathered}
$$

We have that $\operatorname{det}\left(\operatorname{Hess}_{f}(2 / 3,2 / 3)\right)>0$ and $f_{x x}>0$ so $(2 / 3,2 / 3)$ is a local minimum.
7. Let $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and $\mathbf{p} \in \mathbb{R}^{2}$. If $\operatorname{Hess}_{f}(\mathbf{p})=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ then
(a) \mathbf{p} is necessarily a local maximum
(b) \mathbf{p} is necessarily a local minimum
(c) \mathbf{p} is necessarily a saddle point
(d) None of above

Solution. (d) is correct. Take $f(x, y)=x^{3}$ at point $(1 / 3,0)$. This function has no maximum or minimum.
8. Let the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be $f(x, y, z)=2 x^{2} y^{3} z^{4}+2 x^{3} y^{2}-3 y^{2} z-1$ and consider $p=(1,1,1)$. Since $f(p)=0$ and $\partial f / \partial x(p) \neq 0$, the equation $f(x, y, z)=0$ defines in the neighbourhood of $(y, z)=(1,1)$ a function $x=g(y, z)$ which satisfies $g(1,1)=1$ and $f(g(y, z), y, z)=0$ as well as:
(a) $\frac{\partial g}{\partial z}(1,1)=-\frac{4}{5}$
(b) $\frac{\partial g}{\partial z}(1,1)=-\frac{1}{2}$
(c) $\frac{\partial g}{\partial z}(1,1)=-2$
(d) $\frac{\partial g}{\partial z}(1,1)=\frac{1}{2}$

Solution. (b) is correct. $\frac{\partial g}{\partial z}(1,1)=-F_{z}(1,1,1) / F_{x}(1,1,1)$ where $F(x, y, z)=2 x^{2} y^{3} z^{4}+$ $2 x^{3} y^{2}-3 y^{2} z-1$
9. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x>1\right.$ and $\left.y>-1\right\}$ and let the function $f: D \rightarrow \mathbb{R}$ be $f(x, y)=$ $\ln \left(x^{2}+y\right)$. Then a vector v in the perpendicular direction to the level curve of f passing through point $(2,0)$ is
(a) $v=(-1 / 4,-1)^{T}$
(b) $v=(-4,1)^{T}$
(c) $v=(4,1)^{T}$
(d) $v=(1,-4)^{T}$

Solution. (c) is correct. $\nabla f(2,0)=(1,1 / 4)$ which is perpendicular to the level curve of f at $(2,0)$.
10. State if the following statements are true or false.
(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(0,0)=0$. If for all $m \in \mathbb{R}$ we have $\lim _{x \rightarrow 0} f(x, m x)=0$, then f is continuous at $(0,0)$.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f \in C^{2}\left(\mathbb{R}^{2}\right)$, then for all points $p \in \mathbb{R}^{2}$ we have

$$
\frac{\partial^{2} f}{\partial x \partial y}(p)=\frac{\partial^{2} f}{\partial y \partial x}(p)
$$

(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and let a point $p \in \mathbb{R}^{2}$. If p is a stationary point of f and if determinant of the Hessian matrix $H_{f}(p)$ is strictly positive, then f admits a minimum at p.
(d) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f \in C^{2}\left(\mathbb{R}^{2}\right)$, then

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{(h, k) \rightarrow(0,0)} \frac{f(x+h, y+k)-f(x, y)}{\sqrt{h^{2}+k^{2}}}
$$

(e) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function and $p \in \mathbb{R}^{2}$. Then f is differentiable at p if and only if $\partial f / \partial x$ and $\partial f / \partial y$ exist at p.
(f) if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. If f is differentiable at all points of \mathbb{R}^{2}, then f is of class $C^{1}\left(\mathbb{R}^{2}\right)$
(g) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, be a function that is differentiable at a point $p \in \mathbb{R}^{3}$. Then the vector

$$
v=\left(-\frac{\partial f}{\partial x}(p),-\frac{\partial f}{\partial y}(p),-\frac{\partial f}{\partial z}(p), 1\right)
$$

is perpendicular to the tangent hyperplane to the graph of f at the point $(p, f(p))$.

Solution.

(a) False, take $f(x, y)=\frac{x^{2} y}{x^{3}}$. Along the line $y=m x$

$$
\lim x \rightarrow 0 \frac{x^{2} y}{x^{3}}=\lim x \rightarrow 0 \frac{m x^{3}}{x^{3}}=m
$$

But along the curve $y=x^{2}$

$$
\lim x \rightarrow 0 \frac{x^{2} y}{x^{3}}=\lim x \rightarrow 0 \frac{x^{4}}{x^{3}}=0
$$

(b) True
(c) False, depending in the sign of $f_{x x}$ the point can be either a local minimum or a local maximum.
(d) False, definition of partial derivative is

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

(e) False, take as an example $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

This function is differentiable everywhere except for $(0,0)$. On x axis $(y=0)$ the function is identical to zeros, and on y axis the function is identical to zero. This implies that $\partial f / \partial x(0,0)=0$ and $\partial f / \partial y(0,0)=0$. On the other hand f is not continuous at $(0,0)$:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{r^{2} \cos \theta \sin \theta}{r^{2}}=\cos \theta \sin \theta
$$

which depends on θ. So f is not differentiable at $(0,0)$.
(f) False, this is false because $C^{1}\left(\mathbb{R}^{2}\right)$ is the class of functions that are differentiable with continuous partial derivatives.
(g) True, perpendicular vector to the tangent hyperplane to f is given by $n=\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p),-1\right)$. We see that $n=-v$ so v must be also perpendicular to the tangent hyper plane.

