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1. Jacobian matrix. Find the Jacobian matrix of the following maps:
(a) Let u:R? — R3 be defined as:
-y
u(z,y)=| =

T+y

(b) Let v : R? — R3 and w : R* — R? be defined as:

-y
viz,y)=| =
Ty
x4+ y? -2z
W(Q?,y,Z) = (SC2 +y2+22

Find the Jacobian matrix of w o v by (i) computing the composition and then its
Jacobian matrix; (i) using the chain rule.

(c) Let v : R® — R? and w : R?> — R? be given by

6y+2z
v = (57, . )

COS T
w(z,y) = siny

Find the Jacobian matrix of w o v by (i) computing the composition and then its
Jacobian matrix; (i7) using the chain rule.

2. Jacobian matrix. Let v : R3 — R? be defined as
v(r,0,¢) = (rsinf cos ¢, rsin 0 sin ¢, r cos 6).
Find the Jacobian matrix .J, and the Jacobian, i.e., the determinant det J,.

3. Find the Jacobian matrices of the following maps:

2z
1+z2+y?
2 3 2y
v:RT— R v(z,y) = | 152212
1—£2—y
1+$2+y27

x
w: R — RY  w(z,y,2) = (1y+z>
1+2z?

fiRP— R, f(z,y) = (v(z,y),v(z,y))

and

wov:R? — R?
Give an interpretation of this result. (Hint: interpret w as a bijection from S$? \ {0,0, —1}
onto R?. Then, since the Jacobian matrix of the composition is the identity, the relation
between w and v is obvious.)



) = 22y sin(\/22 + y2) (2,1) % (0,0)

(22 +42)3/2

(a) limg ) (0,0) f(,
(b) lim ) (0,0) f(,
(¢) lim(z y)—(0,0) f(2,
(d) lim () (0,0) f(z,
. Let f:R%2 = R be

Y)
Y)
Y) does not exist
Y)

y
——— if (x,y) # (0,0)
flx,y) =4 Vy*+a?
0 if (x,y) = (0,0)
Then
(2) lim(ay)-(0.0) 5 am T,y) =
(b) lim, ) oo)a x,y) =

) L(z,y)
) L(z,y)

(¢) lim(z, ) (0,0) 6 (x, y) does not exist
) L(z,y)

(d) lim(z ) (0,0) (% x, +00

. Let f:R? = R be f(z,y) = 2° — 22y + y>. Then the point p = (2/3,2/3)

(a) is a local maximum of f

(b) is not a stationary point of f
(¢) is a saddle point of f

(d) is a local minimum of f

. Let f € C?(R?) and p € R%. If Hesss(p) = (g 8) then

P is necessarily a local maximum

(a
(b

)

) p is necessarily a local minimum
(c) p is necessarily a saddle point

)

(d) None of above

. Let the function f : R® — R be f(z,y,2) = 22%y%2* + 223y? — 3y?2 — 1 and consider

= (1,1,1). Since f(p) = 0 and Jf/0z(p) # 0, the equation f(z,y,z) = 0 defines in
the neighbourhood of (y,z) = (1,1) a function @ = ¢(y, z) which satisfies g(1,1) = 1 and
flg(y, 2),y,2) =0 as well as:

(a) %(171) = _%
(b) 22(1,1)= -1
(c) 2¢(1,1) = -2
(d) 32(1,1) =3

. Let D = {(x,y) € R? : 2 > 1 and y > —1} and let the function f : D — R be f(z,y) =
In(z? + y). Then a vector v in the perpendicular direction to the level curve of f passing
through point (2,0) is
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v=(-1/4,-1)T
v=(—41)T
v=(4,1)T
v=(1,-4)T

10. State if the following statements are true or false.

(a)
(b)

Let f : R? — R be such that f(0,0) = 0. If for all m € R we have lim,_.q f(z, mz) = 0,
then f is continuous at (0, 0).

Let f:R? = R. If f € C?(R?), then for all points p € R? we have
0% f 0% f
0x0y (n) = Oyozx 9

Let f : R? — R such that f € C?(R?) and let a point p € R?. If p is a stationary point
of f and if determinant of the Hessian matrix H(p) is strictly positive, then f admits
a minimum at p.

Let f:R? = R. If f € C?(R?), then

ox (hak)—(0,0) i
Let f : R? — R be a function and p € R?. Then f is differentiable at p if and only if
Of /0x and Of /Dy exist at p.

if f:R%2 — R be a function. If f is differentiable at all points of R?, then f is of class
C1(R?)

Let f:R? = R, be a function that is differentiable at a point p € R3. Then the vector
of of of
= (— — — 1
v= (=5, 9y (), =5 (p): 1)

is perpendicular to the tangent hyperplane to the graph of f at the point (p, f(p)).
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