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1. Jacobian matrix. Find the Jacobian matrix of the following maps:

(a) Let u : R2 −→ R3 be defined as:

u(x, y) =

 −yx
x+ y


(b) Let v : R2 −→ R3 and w : R3 −→ R2 be defined as:

v(x, y) =

−yx
xy


w(x, y, z) =

(
x2 + y2 − 2z
x2 + y2 + 2z

)
Find the Jacobian matrix of w ◦ v by (i) computing the composition and then its
Jacobian matrix; (ii) using the chain rule.

(c) Let v : R3 −→ R2 and w : R2 −→ R2 be given by

v(x, y, z) =

(
ey+2z

x2 + yz

)
w(x, y) =

(
cosx
sin y

)
Find the Jacobian matrix of w ◦ v by (i) computing the composition and then its
Jacobian matrix; (ii) using the chain rule.

2. Jacobian matrix. Let v : R3 −→ R3 be defined as

v(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ).

Find the Jacobian matrix Jv and the Jacobian, i.e., the determinant det Jv.

3. Find the Jacobian matrices of the following maps:

v : R2 −→ R3, v(x, y) =


2x

1+x2+y2

2y
1+x2+y2

1−x2−y2

1+x2+y2 ,


w : R3 −→ R2, w(x, y, z) =

( x
1+z
y

1+z ,

)
f : R2 −→ R, f(x, y) = 〈v(x, y),v(x, y)〉

and
w ◦ v : R2 −→ R2

Give an interpretation of this result. (Hint: interpret w as a bijection from S2 \ {0, 0,−1}
onto R2. Then, since the Jacobian matrix of the composition is the identity, the relation
between w and v is obvious.)



4. Let f : R2 → R be

f(x, y) =
x2y sin(

√
x2 + y2)

(x2 + y2)3/2
, (x, y) 6= (0, 0)

Then

(a) lim(x,y)→(0,0) f(x, y) = 1

(b) lim(x,y)→(0,0) f(x, y) = y

(c) lim(x,y)→(0,0) f(x, y) does not exist

(d) lim(x,y)→(0,0) f(x, y) = 0

5. Let f : R2 → R be

f(x, y) =


y2√
y4 + x2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Then

(a) lim(x,y)→(0,0)
∂f
∂x (x, y) = 1

(b) lim(x,y)→(0,0)
∂f
∂x (x, y) = 0

(c) lim(x,y)→(0,0)
∂f
∂x (x, y) does not exist

(d) lim(x,y)→(0,0)
∂f
∂x (x, y) = +∞

6. Let f : R2 → R be f(x, y) = x3 − 2xy + y2. Then the point p = (2/3, 2/3)

(a) is a local maximum of f

(b) is not a stationary point of f

(c) is a saddle point of f

(d) is a local minimum of f

7. Let f ∈ C2(R2) and p ∈ R2. If Hessf (p) =

(
2 0
0 0

)
then

(a) p is necessarily a local maximum

(b) p is necessarily a local minimum

(c) p is necessarily a saddle point

(d) None of above

8. Let the function f : R3 → R be f(x, y, z) = 2x2y3z4 + 2x3y2 − 3y2z − 1 and consider
p = (1, 1, 1). Since f(p) = 0 and ∂f/∂x(p) 6= 0, the equation f(x, y, z) = 0 defines in
the neighbourhood of (y, z) = (1, 1) a function x = g(y, z) which satisfies g(1, 1) = 1 and
f(g(y, z), y, z) = 0 as well as:

(a) ∂g
∂z (1, 1) = − 4

5

(b) ∂g
∂z (1, 1) = − 1

2

(c) ∂g
∂z (1, 1) = −2

(d) ∂g
∂z (1, 1) = 1

2

9. Let D = {(x, y) ∈ R2 : x > 1 and y > −1} and let the function f : D → R be f(x, y) =
ln(x2 + y). Then a vector v in the perpendicular direction to the level curve of f passing
through point (2, 0) is
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(a) v = (−1/4,−1)T

(b) v = (−4, 1)T

(c) v = (4, 1)T

(d) v = (1,−4)T

10. State if the following statements are true or false.

(a) Let f : R2 → R be such that f(0, 0) = 0. If for all m ∈ R we have limx→0 f(x,mx) = 0,
then f is continuous at (0, 0).

(b) Let f : R2 → R. If f ∈ C2(R2), then for all points p ∈ R2 we have

∂2f

∂x∂y
(p) =

∂2f

∂y∂x
(p)

(c) Let f : R2 → R such that f ∈ C2(R2) and let a point p ∈ R2. If p is a stationary point
of f and if determinant of the Hessian matrix Hf (p) is strictly positive, then f admits
a minimum at p.

(d) Let f : R2 → R. If f ∈ C2(R2), then

∂f

∂x
(x, y) = lim

(h,k)→(0,0)

f(x+ h, y + k)− f(x, y)√
h2 + k2

(e) Let f : R2 → R be a function and p ∈ R2. Then f is differentiable at p if and only if
∂f/∂x and ∂f/∂y exist at p.

(f) if f : R2 → R be a function. If f is differentiable at all points of R2, then f is of class
C1(R2)

(g) Let f : R3 → R, be a function that is differentiable at a point p ∈ R3. Then the vector

v = (−∂f
∂x

(p),−∂f
∂y

(p),−∂f
∂z

(p), 1)

is perpendicular to the tangent hyperplane to the graph of f at the point (p, f(p)).
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