Analysis II Prof. Jan Hesthaven Spring Semester 2014–2015

Exercise Session, April 18, 2015

- 1. Jacobian matrix. Find the Jacobian matrix of the following maps:
 - (a) Let $\mathbf{u}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be defined as:

$$\mathbf{u}(x,y) = \begin{pmatrix} -y \\ x \\ x+y \end{pmatrix}$$

(b) Let $\mathbf{v}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ and $\mathbf{w}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be defined as:

$$\mathbf{v}(x,y) = \begin{pmatrix} -y \\ x \\ xy \end{pmatrix}$$
$$\mathbf{w}(x,y,z) = \begin{pmatrix} x^2 + y^2 - 2z \\ x^2 + y^2 + 2z \end{pmatrix}$$

Find the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.

(c) Let $\mathbf{v}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $\mathbf{w}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be given by

$$\mathbf{v}(x, y, z) = \begin{pmatrix} e^{y+2z} \\ x^2 + yz \end{pmatrix}$$
$$\mathbf{w}(x, y) = \begin{pmatrix} \cos x \\ \sin y \end{pmatrix}$$

Find the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.

2. Jacobian matrix. Let $\mathbf{v} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined as

$$\mathbf{v}(r,\theta,\phi) = (r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta).$$

Find the Jacobian matrix $J_{\mathbf{v}}$ and the Jacobian, i.e., the determinant det $J_{\mathbf{v}}$.

3. Find the Jacobian matrices of the following maps:

$$\mathbf{v}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, \quad \mathbf{v}(x, y) = \begin{pmatrix} \frac{2x}{1+x^2+y^2} \\ \frac{2y}{2y} \\ \frac{1}{1+x^2+y^2} \\ \frac{1-x^2-y^2}{1+x^2+y^2}, \end{pmatrix}$$
$$\mathbf{w}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \quad \mathbf{w}(x, y, z) = \begin{pmatrix} \frac{x}{1+z} \\ \frac{y}{1+z}, \end{pmatrix}$$
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x, y) = \langle \mathbf{v}(x, y), \mathbf{v}(x, y) \rangle$$
$$\mathbf{w} \circ \mathbf{v}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

and

Give an interpretation of this result. (Hint: interpret **w** as a bijection from $\mathbb{S}^2 \setminus \{0, 0, -1\}$ onto \mathbb{R}^2 . Then, since the Jacobian matrix of the composition is the identity, the relation between **w** and **v** is obvious.)

4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be

$$f(x,y) = \frac{x^2 y \sin(\sqrt{x^2 + y^2})}{(x^2 + y^2)^{3/2}}, \quad (x,y) \neq (0,0)$$

Then

- (a) $\lim_{(x,y)\to(0,0)} f(x,y) = 1$
- (b) $\lim_{(x,y)\to(0,0)} f(x,y) = y$
- (c) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist
- (d) $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be

$$f(x,y) = \begin{cases} \frac{y^2}{\sqrt{y^4 + x^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Then

- (a) $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = 1$
- (b) $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = 0$
- (c) $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y)$ does not exist
- (d) $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = +\infty$
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x, y) = x^3 2xy + y^2$. Then the point p = (2/3, 2/3)
 - (a) is a local maximum of f
 - (b) is not a stationary point of f
 - (c) is a saddle point of f
 - (d) is a local minimum of f

7. Let
$$f \in C^2(\mathbb{R}^2)$$
 and $\mathbf{p} \in \mathbb{R}^2$. If $\operatorname{Hess}_f(\mathbf{p}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ then

- (a) **p** is necessarily a local maximum
- (b) **p** is necessarily a local minimum
- (c) **p** is necessarily a saddle point
- (d) None of above
- 8. Let the function $f : \mathbb{R}^3 \to \mathbb{R}$ be $f(x, y, z) = 2x^2y^3z^4 + 2x^3y^2 3y^2z 1$ and consider p = (1, 1, 1). Since f(p) = 0 and $\partial f/\partial x(p) \neq 0$, the equation f(x, y, z) = 0 defines in the neighbourhood of (y, z) = (1, 1) a function x = g(y, z) which satisfies g(1, 1) = 1 and f(g(y, z), y, z) = 0 as well as:
 - (a) $\frac{\partial g}{\partial z}(1,1) = -\frac{4}{5}$
 - (b) $\frac{\partial g}{\partial z}(1,1) = -\frac{1}{2}$
 - (c) $\frac{\partial g}{\partial z}(1,1) = -2$
 - $(\cdot) \partial_z (-, -)$
 - (d) $\frac{\partial g}{\partial z}(1,1) = \frac{1}{2}$
- 9. Let $D = \{(x, y) \in \mathbb{R}^2 : x > 1 \text{ and } y > -1\}$ and let the function $f : D \to \mathbb{R}$ be $f(x, y) = \ln(x^2 + y)$. Then a vector v in the perpendicular direction to the level curve of f passing through point (2, 0) is

(a) $v = (-1/4, -1)^T$ (b) $v = (-4, 1)^T$ (c) $v = (4, 1)^T$ (d) $v = (1, -4)^T$

10. State if the following statements are true or false.

- (a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that f(0,0) = 0. If for all $m \in \mathbb{R}$ we have $\lim_{x\to 0} f(x,mx) = 0$, then f is continuous at (0,0).
- (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$. If $f \in C^2(\mathbb{R}^2)$, then for all points $p \in \mathbb{R}^2$ we have

$$\frac{\partial^2 f}{\partial x \partial y}(p) = \frac{\partial^2 f}{\partial y \partial x}(p)$$

- (c) Let $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f \in C^2(\mathbb{R}^2)$ and let a point $p \in \mathbb{R}^2$. If p is a stationary point of f and if determinant of the Hessian matrix $H_f(p)$ is strictly positive, then f admits a minimum at p.
- (d) Let $f : \mathbb{R}^2 \to \mathbb{R}$. If $f \in C^2(\mathbb{R}^2)$, then

$$\frac{\partial f}{\partial x}(x,y) = \lim_{(h,k) \to (0,0)} \frac{f(x+h,y+k) - f(x,y)}{\sqrt{h^2 + k^2}}$$

- (e) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function and $p \in \mathbb{R}^2$. Then f is differentiable at p if and only if $\partial f/\partial x$ and $\partial f/\partial y$ exist at p.
- (f) if $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. If f is differentiable at all points of \mathbb{R}^2 , then f is of class $C^1(\mathbb{R}^2)$
- (g) Let $f: \mathbb{R}^3 \to \mathbb{R}$, be a function that is differentiable at a point $p \in \mathbb{R}^3$. Then the vector

$$v = (-\frac{\partial f}{\partial x}(p), -\frac{\partial f}{\partial y}(p), -\frac{\partial f}{\partial z}(p), 1)$$

is perpendicular to the tangent hyperplane to the graph of f at the point (p, f(p)).