Exercise Session, April 18, 2015

1. Jacobian matrix. Find the Jacobian matrix of the following maps:
(a) Let $\mathbf{u}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be defined as:

$$
\mathbf{u}(x, y)=\left(\begin{array}{c}
-y \\
x \\
x+y
\end{array}\right)
$$

(b) Let $\mathbf{v}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ and $\mathbf{w}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be defined as:

$$
\begin{gathered}
\mathbf{v}(x, y)=\left(\begin{array}{c}
-y \\
x \\
x y
\end{array}\right) \\
\mathbf{w}(x, y, z)=\binom{x^{2}+y^{2}-2 z}{x^{2}+y^{2}+2 z}
\end{gathered}
$$

Find the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.
(c) Let $\mathbf{v}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ and $\mathbf{w}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be given by

$$
\begin{aligned}
\mathbf{v}(x, y, z) & =\binom{e^{y+2 z}}{x^{2}+y z} \\
\mathbf{w}(x, y) & =\binom{\cos x}{\sin y}
\end{aligned}
$$

Find the Jacobian matrix of $\mathbf{w} \circ \mathbf{v}$ by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.
2. Jacobian matrix. Let $\mathbf{v}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be defined as

$$
\mathbf{v}(r, \theta, \phi)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)
$$

Find the Jacobian matrix $J_{\mathbf{v}}$ and the Jacobian, i.e., the determinant $\operatorname{det} J_{\mathbf{v}}$.
3. Find the Jacobian matrices of the following maps:

$$
\begin{gathered}
\mathbf{v}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}, \quad \mathbf{v}(x, y)=\left(\begin{array}{c}
\frac{2 x}{1+x^{2}+y^{2}} \\
\frac{2 y}{1+x^{2}+y^{2}} \\
\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}},
\end{array}\right) \\
\mathbf{w}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}, \quad \mathbf{w}(x, y, z)=\binom{\frac{x}{1+z}}{\frac{y}{1+z}} \\
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad f(x, y)=\langle\mathbf{v}(x, y), \mathbf{v}(x, y)\rangle
\end{gathered}
$$

and

$$
\mathbf{w} \circ \mathbf{v}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

Give an interpretation of this result. (Hint: interpret \mathbf{w} as a bijection from $\mathbb{S}^{2} \backslash\{0,0,-1\}$ onto \mathbb{R}^{2}. Then, since the Jacobian matrix of the composition is the identity, the relation between \mathbf{w} and \mathbf{v} is obvious.)
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be

$$
f(x, y)=\frac{x^{2} y \sin \left(\sqrt{x^{2}+y^{2}}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \quad(x, y) \neq(0,0)
$$

Then
(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1$
(b) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=y$
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist
(d) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be

$$
f(x, y)= \begin{cases}\frac{y^{2}}{\sqrt{y^{4}+x^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Then
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=1$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=0$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)$ does not exist
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=+\infty$
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be $f(x, y)=x^{3}-2 x y+y^{2}$. Then the point $p=(2 / 3,2 / 3)$
(a) is a local maximum of f
(b) is not a stationary point of f
(c) is a saddle point of f
(d) is a local minimum of f
7. Let $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and $\mathbf{p} \in \mathbb{R}^{2}$. If $\operatorname{Hess}_{f}(\mathbf{p})=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ then
(a) \mathbf{p} is necessarily a local maximum
(b) \mathbf{p} is necessarily a local minimum
(c) \mathbf{p} is necessarily a saddle point
(d) None of above
8. Let the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be $f(x, y, z)=2 x^{2} y^{3} z^{4}+2 x^{3} y^{2}-3 y^{2} z-1$ and consider $p=(1,1,1)$. Since $f(p)=0$ and $\partial f / \partial x(p) \neq 0$, the equation $f(x, y, z)=0$ defines in the neighbourhood of $(y, z)=(1,1)$ a function $x=g(y, z)$ which satisfies $g(1,1)=1$ and $f(g(y, z), y, z)=0$ as well as:
(a) $\frac{\partial g}{\partial z}(1,1)=-\frac{4}{5}$
(b) $\frac{\partial g}{\partial z}(1,1)=-\frac{1}{2}$
(c) $\frac{\partial g}{\partial z}(1,1)=-2$
(d) $\frac{\partial g}{\partial z}(1,1)=\frac{1}{2}$
9. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x>1\right.$ and $\left.y>-1\right\}$ and let the function $f: D \rightarrow \mathbb{R}$ be $f(x, y)=$ $\ln \left(x^{2}+y\right)$. Then a vector v in the perpendicular direction to the level curve of f passing through point $(2,0)$ is
(a) $v=(-1 / 4,-1)^{T}$
(b) $v=(-4,1)^{T}$
(c) $v=(4,1)^{T}$
(d) $v=(1,-4)^{T}$
10. State if the following statements are true or false.
(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(0,0)=0$. If for all $m \in \mathbb{R}$ we have $\lim _{x \rightarrow 0} f(x, m x)=0$, then f is continuous at $(0,0)$.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f \in C^{2}\left(\mathbb{R}^{2}\right)$, then for all points $p \in \mathbb{R}^{2}$ we have

$$
\frac{\partial^{2} f}{\partial x \partial y}(p)=\frac{\partial^{2} f}{\partial y \partial x}(p)
$$

(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and let a point $p \in \mathbb{R}^{2}$. If p is a stationary point of f and if determinant of the Hessian matrix $H_{f}(p)$ is strictly positive, then f admits a minimum at p.
(d) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f \in C^{2}\left(\mathbb{R}^{2}\right)$, then

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{(h, k) \rightarrow(0,0)} \frac{f(x+h, y+k)-f(x, y)}{\sqrt{h^{2}+k^{2}}}
$$

(e) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function and $p \in \mathbb{R}^{2}$. Then f is differentiable at p if and only if $\partial f / \partial x$ and $\partial f / \partial y$ exist at p.
(f) if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. If f is differentiable at all points of \mathbb{R}^{2}, then f is of class $C^{1}\left(\mathbb{R}^{2}\right)$
(g) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, be a function that is differentiable at a point $p \in \mathbb{R}^{3}$. Then the vector

$$
v=\left(-\frac{\partial f}{\partial x}(p),-\frac{\partial f}{\partial y}(p),-\frac{\partial f}{\partial z}(p), 1\right)
$$

is perpendicular to the tangent hyperplane to the graph of f at the point $(p, f(p))$.

