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1. Implicit functions I. Show that the equation
Inz+es =1

defined in the neighborhood of the point 1 is an implicit function y = g(x) such that g(1) = 0.
Give the equation of the tangent to the curve y = g(x) at 1.

Solution. We define the function f: U — R with U =Ry \ {0} xR by

f(z,y) =lnz+er —1

Then, the function f is of class C*(U) (it is even of class C*(U) for all k > 1) and for all
(z,y) € U:

8

Dgf(1'7y) = %

Moreover, f(1,0) = 0 and D2f(1,0) = 1 # 0. So, by the theorem of implicit functions, there
exists an interval I =]1 —¢, 1+ ¢[ and a unique function g : I — R of class C(I) such that
g(1) =0 and f(z,g(x)) = 0. The derivative of g is given by
Sy = D90 _go) e
DQf(x7 g(.’l?)) €

So ¢’(1) = —1. Hence, the equation of the tangent to the curve y = g(x) at x =1 is

y=g(1)+gd()(z—-1)=1—u=.

2. Implicit functions II. Show that the equation
cos(z? + y) + sin(x + y) + e’V =2

defined in the neighborhood of the point 0 is an implicit function y = g(x) such that g(0) =
/2. Show that the function g has a local maximum at 0.

Solution. We define the function f: R? — R by
f(z,y) = cos(x? + y) + sin(z + y) + e’ — 2
So, the function f is of class C¥, for all k > 1, and for all (z,y) € R2:
Dyf(x,y) = —sin(z? + y) 4 cos(z + y) + eV,

Moreover, f(0,7/2) = 0 and Dy f(0,7/2) = —1 # 0. So, by the theorem of implicit functions,
there exists an interval I =] — ¢,¢[ and a unique function g : I — R of class C1(I) such
that ¢(0) = 7/2 and f(z,g(x)) = 0. The derivative of g is given by

1y~ Dif(z g(@)
9@ == By (. 9(@))

and Dy f(z,y) = —2a sin(22 +y) +cos(z+y) + 3z2ye™ . So ¢’(0) = 0. The second derivative

inx=0Iis
. D11f(0,71'/2) o

9O == 0.z ~ >



3. Implicit functions III. Show that the equation
z® +zyz +y° + 3zt =2

defined in the neighborhood of the point (1, —1) is an implicit function z = g(z,y) such that
g(1,—1) = 1. Give the equation of the plane tangent to the surfuce z = g(x,y) in (1, —1).

Solution. We define the function f:R3 — R by
fx,y,2) = a° + zyz +y° + 322" — 2
Then, the function f is of class C*, for all k > 1, and for all (z,y, z) € R3:
Dsf(z,y,2) =ay + 12223,

Moreover, f(1,—1,1) = 0and D3 f(1,—1,1) = 11 # 0. Then, by the theorem of implicit func-
tions, there exists a neighborhood B, (1, —1) C R? and a unique function g : B.(1,—-1) — R
of class C*(B.(1, 1)) such that g(1,—1) = 1 and f(z,y,g(z,y)) = 0. The equation of the
tangent plane to the surface z = g(x,y) in (1, —1) is given by

rz—1
z—1
i.e. usin
¢ 5zt + yz + 32*
Vi(z,y,z2) = xz + 3y°
xy + 12223

we find
Tr+4y + 11z = 14.

4. Quadratic form. Let A € M, ,,(R) be a positive-definite, symmetric matrix. Let v € R™.
Show that the function f(x) defined by

1

£ = 5 (4x,%) = (v,%)

has a unique stationary point at a = A~!'v. Then show that f(x) — f(a) > 0 for all x # a.

Solution. Note first that A positive-definite implies that A is invertible. The stationary
points of f are given by the solutions of the equation Vf(x) = 0 so Ax — v = 0. When A
is invertible, this equation has as unique solution, the vector a = A~'v. It is a strict local
minimum as Hess (f)(a) = A > 0. Moreover,

L 1
fla) = 5 (AATV, A7) = (v, A7ly) = — o (v, A7ly)
and (note that A~! is also symmetric) hence, writing
1 1
(v,x) = 5 (Ax, A7'v) + 3 (AA v, x)

we find

fx) = fla) = 5 (Alx - A7), (x = A7'v)) > 0

NN

for all x # A~ v,

5. Study the nature of the stationary points of the function f : R?> — R given by

flz,y)=(1- x2) siny.



Solution. The stationary points are given by the solutions of

—2xsiny =0

Vfi(x,y) =0 ie. (1—22)cosy =0

The function f has four families of stationary points:

P, = (0,%4‘2/{7(), Qk = (0,3?7T +2]€7T), S, = (—1,k7T), Ty = (1,k’ﬂ')

for k € Z.

Proof: If x = 0, then D, f =0, and D, f = 0 if and only if cosy = 0 hence the Py, Q. If
siny = 0, then y = kr and Dy f = 0 if and only if x = —1 or x = 41, hence the S, T}.

To study the stationary points, we calculate the Hessian matrix f:

(Hess f)(z,y) = ( —2siny —2x cosy )

—2zcosy —(1—a?)siny
We get

-2 0

(Hess f)(Py) = ( 0 1 )
hence some local maxima,
2 0
tess @0 = (3 7)

hence some local minima

(Hess f)(S)) = ( io2 102) , (Hess f)(Ty) = <f2 §2>

hence some saddle points.
6. Let f: R? — R be defined by
f(z,y) = (x —y)* +42* — 3z + 3y.
(a) Give the stationary points of f and study their nature. Calculate f at these points.
(b) Let T be the domain given by:

Give the minimum and the maximum of f on 7. In particular,
i. Show that T is bounded.
ii. Show that 9T C T and conclude that T is closed.
iii. Show that T is a triangle and give its summits.
iv. Explain why f has its maximum and minimum on 7.
v. Give f on the boundary of T', i.e. f|sr and then study f|or.
vi. Give the minimum and the maximum of f on 7.

Solution. (a)
[ 3z —-y)?+8r—3
Vi(z,y) = ( _3(my_y)2+3 )

6r — 6y +8 —6x+6
Hessf(x,y) = ( —6x —f 6y 6z — ny )



Stationary points: Vf(z,y) =02 =0,(z —y)? =1
PIZ(O,—l), P2:(0a1)
14 -6 2 6
Hessf(0,—1) = ( 6 6 ), Hessf(0,1) = ( 6 —6 >

P;: min. loc. as det and trace > 0, f(0,—1) = —2
Py: saddle point as det < 0, f(0,1) =2

(b)

(i). The definition of T' gives us the inequalities 0 <y <z <4 —y <4. So
T c [0,4] x [0,4]
which implies that T is bounded.

(ii). The boundary 9T is given by the segments

S :{(x,y) ER:y=0,z¢€ [074]}
So={(x,y) eR:y=4—z,x €[2,4]}
S3={(z,y) eR:y ==,z €0,2]}

which are in T (seen by the signs < and not < in the definition of T'). So T is closed (see
exercise 8 of chapter 1).

(iii). The boundary of T is given by 3 segments which have 3 intersection points (the
summits):
A=(0,0),B=(4,0),C =(2,2)

(iv). f is continuous (polynomial) and T bounded and closed hence we conclude that f has
its min and max on 7.

(v).
fl(:c) 5:f|51:f(£c,0):l'3+4$273$, IE[2,4}
fo(z) == fls, = f(x,4 — x) = 82° — 442® + 90z — 52, 2 € [2,4]
f3(z) == fls, = f(x,4 —22) =42*, 2 €[0,2]

fi(z) == 32% + 8z — 3, a:::1/3,j1(0)::O,jl(%)::Afl4/27,f1@Q =116
fo(x) := 242 — 88z + 90, no stationary points., fo(2) = 16, fo(4) = 116
fi(@) =82, x=0,f3(0) =0, f3(2) = 16
(vi). min f|p = —14/27, max f|p = 116
. Calculate the extrema of the function
flay) =o' +y*
under the constrain g(z,y) =2y — 1 =0.

(a) Find the extrema directly (by replacing the constrain g in f).

(b) Find the extrema using Lagrange multiplier.

Solution.



(a) The constrain gives y = 1/x. We replace this in f to get

f(@,y(@)) = h(z) = " + 2~

We have dh
— =42 4P =0 =z ==+1
dx
If ¢ = £1 then y = +1 and f(£1,£1) = 2. Since
d*h
@(il) >0

then both points are minimum points.
(b) We formulate the Lagrange function L(z,y,A) = f(z,y) — Ag(z,y). VL = 0 gives

07 o
or Oox
of _ 9
y dy
g=20

Which gives )

42° = \y (7)

4y = dx (id)

xy—1=0 (i)
Equation (iii) gives y = 1/x. If we replace this into (i) we get 42* = \. We now replace
y=1/x and 42* = X in (i) to get 4 = 428 which gives = +1 and y = 1 and \ = 4.
This is the same result as part (a).

8. Compute the extrema of the function f(x,y) = 2% + y? under the constraint g(z,y) =
(z -1+ (y—1)? —4.
Solution. We formulate the Lagrange function L(z,y, \) = f(x,y) — Ag(x,y). VL = 0 gives
the equations

of _ 9%
or Oz
of _\9
dy oy
g=0

which are
=2z —-1) = x=X/(A—-1)

2u=2\y—-1)—=y=X/(A-1) =z
(z—1)2+(@y—-1)2-4=0
This system of equations has two solutions (z1,71) = (1 — V2,1 — v/2) and (z2,12) =

(1+v2,14+v2). Also f(1—+v2,1—v2)=6—-4v2and f(1+v2,1+v2) =6+4v2,50 f
attains its minimum at (1 — V2,1 - \/i) and its maximum at (1 + V2,14 \/5)

9. The atmospheric pressure in a region of space near the origin is given by the formula P =
30+ (z + 1)(y + 2)e®. Approximately where is the point closest to the origin at which the
pressure is 31.1. (Hint: linearize the equation around the origin. Then find the point closest
to the origin that satisfy the linearized equation.)

Solution. We have

VP = ((y+2)e7, (x+ 1), (z + 1)(y + 2)¢7)



So the first order Taylor’s expansion of P is
f(O+ 62,04+ 0y,04+062) =32+ 2z +y+ 22

We want f(dz,dy,dz) = 31.1 so the solution belongs to the plane 2z + y + 2z = —0.9. The
closest point to the origin will be the solution of the following minimization

min z2 + y? + 22
subject to 2z +y 4+ 2z = —0.9

By introducing the Lagrange multiplier A we construct the Lagrange function
L(z,y,2,\) =22 + > + 2% = A2z +y + 22+ 0.9)
We seek for points that VL = 0 so,
VL = (2x — 2,2y — \,2z — 2\, 22z + y + 22 + 0.9) = (0,0,0,0)

These are 4 equations with 4 unknowns which has the unique solution (z,y, z, \) = (-.2,—.1,—.2, —.2).
Note that if we actually compute P at (—.2,—.1,—.2) we get P(—.2,—.1,—.2) = 31.2445
which is a good approximation.



