Solutions to Exercise Session, April 11, 2016

1. Implicit functions I. Show that the equation

$$
\ln x+e^{\frac{y}{x}}=1
$$

defined in the neighborhood of the point 1 is an implicit function $y=g(x)$ such that $g(1)=0$. Give the equation of the tangent to the curve $y=g(x)$ at 1 .

Solution. We define the function $f: U \longrightarrow \mathbb{R}$ with $U=\mathbb{R}_{+} \backslash\{0\} \times \mathbb{R}$ by

$$
f(x, y)=\ln x+e^{\frac{y}{x}}-1
$$

Then, the function f is of class $C^{1}(U)$ (it is even of class $C^{k}(U)$ for all $k \geq 1$) and for all $(x, y) \in U:$

$$
D_{2} f(x, y)=\frac{e^{\frac{y}{x}}}{x}
$$

Moreover, $f(1,0)=0$ and $D_{2} f(1,0)=1 \neq 0$. So, by the theorem of implicit functions, there exists an interval $I=] 1-\epsilon, 1+\epsilon\left[\right.$ and a unique function $g: I \longrightarrow \mathbb{R}$ of class $C^{1}(I)$ such that $g(1)=0$ and $f(x, g(x))=0$. The derivative of g is given by

$$
g^{\prime}(x)=-\frac{D_{1} f(x, g(x))}{D_{2} f(x, g(x))}=\frac{g(x)}{x}-e^{\frac{-g(x)}{x}}
$$

So $g^{\prime}(1)=-1$. Hence, the equation of the tangent to the curve $y=g(x)$ at $x=1$ is

$$
y=g(1)+g^{\prime}(1)(x-1)=1-x
$$

2. Implicit functions II. Show that the equation

$$
\cos \left(x^{2}+y\right)+\sin (x+y)+e^{x^{3} y}=2
$$

defined in the neighborhood of the point 0 is an implicit function $y=g(x)$ such that $g(0)=$ $\pi / 2$. Show that the function g has a local maximum at 0 .

Solution. We define the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ by

$$
f(x, y)=\cos \left(x^{2}+y\right)+\sin (x+y)+e^{x^{3} y}-2
$$

So, the function f is of class C^{k}, for all $k \geq 1$, and for all $(x, y) \in \mathbb{R}^{2}$:

$$
D_{2} f(x, y)=-\sin \left(x^{2}+y\right)+\cos (x+y)+x^{3} e^{x^{3} y}
$$

Moreover, $f(0, \pi / 2)=0$ and $D_{2} f(0, \pi / 2)=-1 \neq 0$. So, by the theorem of implicit functions, there exists an interval $I=]-\epsilon, \epsilon\left[\right.$ and a unique function $g: I \longrightarrow \mathbb{R}$ of class $C^{1}(I)$ such that $g(0)=\pi / 2$ and $f(x, g(x))=0$. The derivative of g is given by

$$
g^{\prime}(x)=-\frac{D_{1} f(x, g(x))}{D_{2} f(x, g(x))}
$$

and $D_{1} f(x, y)=-2 x \sin \left(x^{2}+y\right)+\cos (x+y)+3 x^{2} y e^{x^{3} y}$. So $g^{\prime}(0)=0$. The second derivative in $x=0$ is

$$
g^{\prime \prime}(0)=-\frac{D_{11} f(0, \pi / 2)}{D_{2} f(0, \pi / 2)}=-3
$$

3. Implicit functions III. Show that the equation

$$
x^{5}+x y z+y^{3}+3 x z^{4}=2
$$

defined in the neighborhood of the point $(1,-1)$ is an implicit function $z=g(x, y)$ such that $g(1,-1)=1$. Give the equation of the plane tangent to the surfuce $z=g(x, y)$ in $(1,-1)$.

Solution. We define the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ by

$$
f(x, y, z)=x^{5}+x y z+y^{3}+3 x z^{4}-2
$$

Then, the function f is of class C^{k}, for all $k \geq 1$, and for all $(x, y, z) \in \mathbb{R}^{3}$:

$$
D_{3} f(x, y, z)=x y+12 x z^{3} .
$$

Moreover, $f(1,-1,1)=0$ and $D_{3} f(1,-1,1)=11 \neq 0$. Then, by the theorem of implicit functions, there exists a neighborhood $B_{\epsilon}(1,-1) \subset \mathbb{R}^{2}$ and a unique function $g: B_{\epsilon}(1,-1) \longrightarrow \mathbb{R}$ of class $C^{k}\left(B_{\epsilon}(1,-1)\right)$ such that $g(1,-1)=1$ and $f(x, y, g(x, y))=0$. The equation of the tangent plane to the surface $z=g(x, y)$ in $(1,-1)$ is given by

$$
0=\left\langle\nabla f(1,-1,1),\left(\begin{array}{c}
x-1 \\
y+1 \\
z-1
\end{array}\right)\right\rangle=0
$$

i.e. using

$$
\nabla f(x, y, z)=\left(\begin{array}{c}
5 x^{4}+y z+3 z^{4} \\
x z+3 y^{2} \\
x y+12 x z^{3}
\end{array}\right)
$$

we find

$$
7 x+4 y+11 z=14
$$

4. Quadratic form. Let $A \in M_{n, n}(\mathbb{R})$ be a positive-definite, symmetric matrix. Let $\mathbf{v} \in \mathbb{R}^{n}$. Show that the function $f(\mathbf{x})$ defined by

$$
f(\mathbf{x})=\frac{1}{2}\langle A \mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{v}, \mathbf{x}\rangle
$$

has a unique stationary point at $\mathbf{a}=A^{-1} \mathbf{v}$. Then show that $f(\mathbf{x})-f(\mathbf{a})>0$ for all $\mathbf{x} \neq \mathbf{a}$.

Solution. Note first that A positive-definite implies that A is invertible. The stationary points of f are given by the solutions of the equation $\nabla f(\mathbf{x})=\mathbf{0}$ so $A \mathbf{x}-\mathbf{v}=\mathbf{0}$. When A is invertible, this equation has as unique solution, the vector $\mathbf{a}=A^{-1} \mathbf{v}$. It is a strict local minimum as $\operatorname{Hess}(f)(\mathbf{a})=A>0$. Moreover,

$$
f(\mathbf{a})=\frac{1}{2}\left\langle A A^{-1} \mathbf{v}, A^{-1} \mathbf{v}\right\rangle-\left\langle\mathbf{v}, A^{-1} \mathbf{v}\right\rangle=-\frac{1}{2}\left\langle\mathbf{v}, A^{-1} \mathbf{v}\right\rangle
$$

and (note that A^{-1} is also symmetric) hence, writing

$$
\langle\mathbf{v}, \mathbf{x}\rangle=\frac{1}{2}\left\langle A \mathbf{x}, A^{-1} \mathbf{v}\right\rangle+\frac{1}{2}\left\langle A A^{-1} \mathbf{v}, \mathbf{x}\right\rangle
$$

we find

$$
f(\mathbf{x})-f(\mathbf{a})=\frac{1}{2}\left\langle A\left(\mathbf{x}-A^{-1} \mathbf{v}\right),\left(\mathbf{x}-A^{-1} \mathbf{v}\right)\right\rangle>0
$$

for all $\mathbf{x} \neq A^{-1} \mathbf{v}$.
5. Study the nature of the stationary points of the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ given by

$$
f(x, y)=\left(1-x^{2}\right) \sin y
$$

Solution. The stationary points are given by the solutions of

$$
\nabla f(x, y)=\mathbf{0} \quad \text { i.e. } \quad \begin{gathered}
-2 x \sin y=0 \\
\left(1-x^{2}\right) \cos y=0
\end{gathered}
$$

The function f has four families of stationary points:

$$
P_{k}=\left(0, \frac{\pi}{2}+2 k \pi\right), Q_{k}=\left(0, \frac{3 \pi}{2}+2 k \pi\right), S_{k}=(-1, k \pi), T_{k}=(1, k \pi)
$$

for $k \in \mathbb{Z}$.
Proof: If $x=0$, then $D_{x} f=0$, and $D_{y} f=0$ if and only if $\cos y=0$ hence the P_{k}, Q_{k}. If $\sin y=0$, then $y=k \pi$ and $D_{y} f=0$ if and only if $x=-1$ or $x=+1$, hence the S_{k}, T_{k}.
To study the stationary points, we calculate the Hessian matrix f :

$$
(\text { Hess } f)(x, y)=\left(\begin{array}{cc}
-2 \sin y & -2 x \cos y \\
-2 x \cos y & -\left(1-x^{2}\right) \sin y
\end{array}\right)
$$

We get

$$
(\operatorname{Hess} f)\left(P_{k}\right)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right)
$$

hence some local maxima,

$$
(\operatorname{Hess} f)\left(Q_{k}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

hence some local minima

$$
(\operatorname{Hess} f)\left(S_{k}\right)=\left(\begin{array}{cc}
0 & \pm 2 \\
\pm 2 & 0
\end{array}\right),(\operatorname{Hess} f)\left(T_{k}\right)=\left(\begin{array}{cc}
0 & \pm 2 \\
\pm 2 & 0
\end{array}\right)
$$

hence some saddle points.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=(x-y)^{3}+4 x^{2}-3 x+3 y
$$

(a) Give the stationary points of f and study their nature. Calculate f at these points.
(b) Let T be the domain given by:

$$
T=\{(x, y) \in \mathbb{R}: y \geq 0, y \leq x \leq 4-y\}
$$

Give the minimum and the maximum of f on T. In particular,
i. Show that T is bounded.
ii. Show that $\partial T \subset T$ and conclude that T is closed.
iii. Show that T is a triangle and give its summits.
iv. Explain why f has its maximum and minimum on T.
v. Give f on the boundary of T, i.e. $\left.f\right|_{\partial T}$ and then study $\left.f\right|_{\partial T}$.
vi. Give the minimum and the maximum of f on T.

Solution. (a)

$$
\begin{aligned}
\nabla f(x, y) & =\binom{3(x-y)^{2}+8 x-3}{-3(x-y)^{2}+3} \\
\operatorname{Hess} f(x, y) & =\left(\begin{array}{cc}
6 x-6 y+8 & -6 x+6 y \\
-6 x+6 y & 6 x-6 y
\end{array}\right)
\end{aligned}
$$

Stationary points: $\nabla f(x, y)=0 \Leftrightarrow x=0,(x-y)^{2}=1$

$$
\begin{gathered}
P_{1}=(0,-1), \quad P_{2}=(0,1) \\
\operatorname{Hess} f(0,-1)=\left(\begin{array}{cc}
14 & -6 \\
-6 & 6
\end{array}\right), \quad \operatorname{Hess} f(0,1)=\left(\begin{array}{cc}
2 & 6 \\
6 & -6
\end{array}\right)
\end{gathered}
$$

P_{1} : min. loc. as det and trace $>0, f(0,-1)=-2$
P_{2} : saddle point as $\operatorname{det}<0, f(0,1)=2$
(b)
(i). The definition of T gives us the inequalities $0 \leq y \leq x \leq 4-y \leq 4$. So

$$
T \subset[0,4] \times[0,4]
$$

which implies that T is bounded.
(ii). The boundary ∂T is given by the segments

$$
\begin{aligned}
S_{1} & =\{(x, y) \in \mathbb{R}: y=0, x \in[0,4]\} \\
S_{2} & =\{(x, y) \in \mathbb{R}: y=4-x, x \in[2,4]\} \\
S_{3} & =\{(x, y) \in \mathbb{R}: y=x, x \in[0,2]\}
\end{aligned}
$$

which are in T (seen by the signs \leq and not $<$ in the definition of T). So T is closed (see exercise 8 of chapter 1).
(iii). The boundary of T is given by 3 segments which have 3 intersection points (the summits):

$$
A=(0,0), B=(4,0), C=(2,2)
$$

(iv). f is continuous (polynomial) and T bounded and closed hence we conclude that f has its min and max on T.
(v).

$$
\begin{gathered}
f_{1}(x):=\left.f\right|_{S_{1}}=f(x, 0)=x^{3}+4 x^{2}-3 x, \quad x \in[2,4] \\
f_{2}(x):=\left.f\right|_{S_{2}}=f(x, 4-x)=8 x^{3}-44 x^{2}+90 x-52, \quad x \in[2,4] \\
f_{3}(x):=\left.f\right|_{S_{3}}=f(x, 4-2 x)=4 x^{2}, \quad x \in[0,2] \\
f_{1}^{\prime}(x):=3 x^{2}+8 x-3, \quad x=1 / 3, f_{1}(0)=0, f_{1}\left(\frac{1}{3}\right)=-14 / 27, f_{1}(4)=116 \\
f_{2}^{\prime}(x):=24 x^{2}-88 x+90, \quad \text { no stationary points., } f_{2}(2)=16, f_{2}(4)=116 \\
f_{3}^{\prime}(x):=8 x, \quad x=0, f_{3}(0)=0, f_{3}(2)=16
\end{gathered}
$$

(vi). $\left.\min f\right|_{T}=-14 / 27,\left.\max f\right|_{T}=116$
7. Calculate the extrema of the function

$$
f(x, y)=x^{4}+y^{4}
$$

under the constrain $g(x, y)=x y-1=0$.
(a) Find the extrema directly (by replacing the constrain g in f).
(b) Find the extrema using Lagrange multiplier.

Solution.

(a) The constrain gives $y=1 / x$. We replace this in f to get

$$
f(x, y(x))=h(x)=x^{4}+x^{-4}
$$

We have

$$
\frac{d h}{d x}=4 x^{3}-4 x^{-5}=0 \Longrightarrow x= \pm 1
$$

If $x= \pm 1$ then $y= \pm 1$ and $f(\pm 1, \pm 1)=2$. Since

$$
\frac{d^{2} h}{d x^{2}}(\pm 1)>0
$$

then both points are minimum points.
(b) We formulate the Lagrange function $L(x, y, \lambda)=f(x, y)-\lambda g(x, y) . \nabla L=0$ gives

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} \\
\frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} \\
g=0
\end{array}\right.
$$

Which gives

$$
\left\{\begin{array}{l}
4 x^{3}=\lambda y \\
4 y^{3}=\lambda x \\
x y-1=0
\end{array}\right.
$$

Equation (iii) gives $y=1 / x$. If we replace this into (i) we get $4 x^{4}=\lambda$. We now replace $y=1 / x$ and $4 x^{4}=\lambda$ in (ii) to get $4=4 x^{8}$ which gives $x= \pm 1$ and $y= \pm 1$ and $\lambda=4$. This is the same result as part (a).
8. Compute the extrema of the function $f(x, y)=x^{2}+y^{2}$ under the constraint $g(x, y)=$ $(x-1)^{2}+(y-1)^{2}-4$.
Solution. We formulate the Lagrange function $L(x, y, \lambda)=f(x, y)-\lambda g(x, y) . \nabla L=0$ gives the equations

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} \\
\frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} \\
g=0
\end{array}\right.
$$

which are

$$
\left\{\begin{array}{l}
2 x=2 \lambda(x-1) \rightarrow x=\lambda /(\lambda-1) \\
2 y=2 \lambda(y-1) \rightarrow y=\lambda /(\lambda-1)=x \\
(x-1)^{2}+(y-1)^{2}-4=0
\end{array}\right.
$$

This system of equations has two solutions $\left(x_{1}, y_{1}\right)=(1-\sqrt{2}, 1-\sqrt{2})$ and $\left(x_{2}, y_{2}\right)=$ $(1+\sqrt{2}, 1+\sqrt{2})$. Also $f(1-\sqrt{2}, 1-\sqrt{2})=6-4 \sqrt{2}$ and $f(1+\sqrt{2}, 1+\sqrt{2})=6+4 \sqrt{2}$, so f attains its minimum at $(1-\sqrt{2}, 1-\sqrt{2})$ and its maximum at $(1+\sqrt{2}, 1+\sqrt{2})$.
9. The atmospheric pressure in a region of space near the origin is given by the formula $P=$ $30+(x+1)(y+2) e^{z}$. Approximately where is the point closest to the origin at which the pressure is 31.1. (Hint: linearize the equation around the origin. Then find the point closest to the origin that satisfy the linearized equation.)
Solution. We have

$$
\nabla P=\left((y+2) e^{z},(x+1) e^{z},(x+1)(y+2) e^{z}\right)
$$

So the first order Taylor's expansion of P is

$$
f(0+\delta x, 0+\delta y, 0+\delta z)=32+2 x+y+2 z
$$

We want $f(\delta x, \delta y, \delta z)=31.1$ so the solution belongs to the plane $2 x+y+2 z=-0.9$. The closest point to the origin will be the solution of the following minimization

$$
\begin{aligned}
& \min x^{2}+y^{2}+z^{2} \\
& \text { subject to } 2 x+y+2 z=-0.9
\end{aligned}
$$

By introducing the Lagrange multiplier λ we construct the Lagrange function

$$
L(x, y, z, \lambda)=x^{2}+y^{2}+z^{2}-\lambda(2 x+y+2 z+0.9)
$$

We seek for points that $\nabla L=0$ so,

$$
\nabla L=(2 x-2 \lambda, 2 y-\lambda, 2 z-2 \lambda, 2 x+y+2 z+0.9)=(0,0,0,0)
$$

These are 4 equations with 4 unknowns which has the unique solution $(x, y, z, \lambda)=(-.2,-.1,-.2,-.2)$. Note that if we actually compute P at $(-.2,-.1,-.2)$ we get $P(-.2,-.1,-.2)=31.2445$ which is a good approximation.

