Exercise Session, April 11, 2016

1. Implicit functions I. Show that the equation

$$
\ln x+e^{\frac{y}{x}}=1
$$

defined in the neighborhood of the point 1 is an implicit function $y=g(x)$ such that $g(1)=0$. Give the equation of the tangent to the curve $y=g(x)$ at 1 .
2. Implicit functions II. Show that the equation

$$
\cos \left(x^{2}+y\right)+\sin (x+y)+e^{x^{3} y}=2
$$

defined in the neighborhood of the point 0 is an implicit function $y=g(x)$ such that $g(0)=$ $\pi / 2$. Show that the function g has a local maximum at 0 .
3. Implicit functions III. Show that the equation

$$
x^{5}+x y z+y^{3}+3 x z^{4}=2
$$

defined in the neighborhood of the point $(1,-1)$ is an implicit function $z=g(x, y)$ such that $g(1,-1)=1$. Give the equation of the plane tangent to the surfuce $z=g(x, y)$ in $(1,-1)$.
4. Quadratic form. Let $A \in M_{n, n}(\mathbb{R})$ be a positive-definite, symmetric matrix. Let $\mathbf{v} \in \mathbb{R}^{n}$. Show that the function $f(\mathbf{x})$ defined by

$$
f(\mathbf{x})=\frac{1}{2}\langle A \mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{v}, \mathbf{x}\rangle
$$

has a unique stationary point at $\mathbf{a}=A^{-1} \mathbf{v}$. Then show that $f(\mathbf{x})-f(\mathbf{a})>0$ for all $\mathbf{x} \neq \mathbf{a}$.
5. Study the nature of the stationary points of the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ given by

$$
f(x, y)=\left(1-x^{2}\right) \sin y
$$

6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=(x-y)^{3}+4 x^{2}-3 x+3 y .
$$

(a) Give the stationary points of f and study their nature. Calculate f at these points.
(b) Let T be the domain given by:

$$
T=\{(x, y) \in \mathbb{R}: y \geq 0, y \leq x \leq 4-y\}
$$

Give the minimum and the maximum of f on T. In particular,
i. Show that T is bounded.
ii. Show that $\partial T \subset T$ and conclude that T is closed.
iii. Show that T is a triangle and give its summits.
iv. Explain why f has its maximum and minimum on T.
v. Give f on the boundary of T, i.e. $\left.f\right|_{\partial T}$ and then study $\left.f\right|_{\partial T}$.
vi. Give the minimum and the maximum of f on T.
7. Calculate the extrema of the function

$$
f(x, y)=x^{4}+y^{4}
$$

under the constrain $g(x, y)=x y-1=0$.
(a) Find the extrema directly (by replacing the constrain g in f).
(b) Find the extrema using Lagrange multiplier.
8. Compute the extrema of the function $f(x, y)=x^{2}+y^{2}$ under the constraint $g(x, y)=$ $(x-1)^{2}+(y-1)^{2}-4$.
9. The atmospheric pressure in a region of space near the origin is given by the formula $P=$ $30+(x+1)(y+2) e^{z}$. Approximately where is the point closest to the origin at which the pressure is 31.1. (Hint: linearize the equation around the origin. Then find the point closest to the origin that satisfy the linearized equation.)

