Solutions to Exercise Session, March 21, 2016

1. Tangent hyperplane. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given by

$$
f(x, y)=x^{2}+y \sin x+y^{2} \cos ^{2} x
$$

(a) Show that f is partially differentiable and give the gradient of f.
(b) Give the equation of the tangent plan at the point $(x, y)=(0,1)$.

Solution. The function is partially differentiable since polynomials and trigonometric functions are differentiable.

$$
\nabla f(x, y)=\binom{2 x+y \cos x-2 y^{2} \sin x \cos x}{\sin x+2 y \cos ^{2} x}
$$

Note that $f(0,1)=1$ and

$$
\nabla f(0,1)=\binom{1}{2}
$$

The equation of the tangent plane is given by

$$
z=1+x+2(y-1)=-1+x+2 y .
$$

2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function of class C^{2}. Let $\mathbf{x} \in \mathbb{R}^{n}$ and $r=\|\mathbf{x}\|_{2}$.
(a) Show that for all $\mathbf{x} \neq \mathbf{0}$ we get

$$
\Delta f(r)=f^{\prime \prime}(r)+\frac{n-1}{r} f^{\prime}(r)
$$

Solution. By the composition rule,

$$
\begin{aligned}
& D_{k} f(r)=f^{\prime}(r) d_{k} r=f^{\prime}(r) \frac{x_{k}}{r} \\
& \begin{aligned}
D_{k k} f(r) & =D_{k}\left(f^{\prime}(r) \frac{x_{k}}{r}\right) \\
& =f^{\prime \prime}(r) \frac{x_{k}}{r} \frac{x_{k}}{r}+f^{\prime}(r) \frac{1}{r}-f^{\prime}(r) \frac{x_{k}^{2}}{r^{3}} \\
& =f^{\prime \prime}(r) \frac{x_{k}^{2}}{r^{2}}+f^{\prime}(r) \frac{1}{r}-f^{\prime}(r) \frac{x_{k}^{2}}{r^{3}}
\end{aligned}
\end{aligned}
$$

So

$$
\Delta f(r)=\sum_{k=1}^{n} D_{k k} f(r)=f^{\prime \prime}(r)+\frac{n-1}{r} f^{\prime}(r)
$$

as $r^{2}=\sum_{k=1}^{n} x_{k}^{2}$.
(b) Let $f^{\prime}(0)=0$. Give

$$
\lim _{r \rightarrow 0} \Delta f(r) .
$$

Solution.

$$
\begin{aligned}
\lim _{r \rightarrow 0} \Delta f(r) & =\lim _{r \rightarrow 0} f^{\prime \prime}(r)+\frac{n-1}{r} f^{\prime}(r) \\
& =f^{\prime \prime}(0)+(n-1) \lim _{r \rightarrow 0} \frac{f^{\prime}(r)-f^{\prime}(0)}{r} \\
& =(n-1) f^{\prime \prime}(0)+f^{\prime \prime}(0) \\
& =n f^{\prime \prime}(0)
\end{aligned}
$$

(c) Let $f: \mathbb{R}^{3} \backslash\{\mathbf{0}\} \longrightarrow \mathbb{R}$ be the function defined by

$$
f(x, y, z)=\frac{\sin \left(\sqrt{x^{2}+y^{2}+z^{2}}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}} .
$$

Calculate $\Delta f(x, y, z)$.

Solution. $\Delta f(x, y, z)=-f(x, y, z)$. Either we calculate the partial derivatives $D_{x x}$, $D_{y y}$ and $D_{z z}$ or we use the fact that f is a function with spherical symmetry:

$$
f(x, y, z)=g(r)=\frac{\sin r}{r}
$$

So

$$
\Delta f(x, y, z)=g^{\prime \prime}(r)+\frac{2}{r} g^{\prime}(r)
$$

The calculation is easier if we note that

$$
g^{\prime \prime}(r)+\frac{2}{r} g^{\prime}(r)=r^{-2}\left(r^{2} g^{\prime}(r)\right)^{\prime}=r^{-2} \frac{d}{d r}\left(r^{2} \frac{d g(r)}{d r}\right)
$$

since

$$
r^{2} g^{\prime}(r)=r \cos r-\sin r
$$

and so

$$
\left(r^{2} g^{\prime}(r)\right)^{\prime}=(r \cos r-\sin r)^{\prime}=-r \sin r .
$$

i.e.

$$
g^{\prime \prime}(r)+\frac{2}{r} g^{\prime}(r)=-\frac{\sin r}{r}=-g(r)
$$

3. Give the Hessian matrix and the Laplacian of

$$
f(x, y)=(x-y) \cos (x+y) .
$$

$$
\begin{aligned}
& \text { Solution. } \\
& \qquad \begin{array}{c}
\nabla f(x, y)=\binom{\cos (x+y)-(x-y) \sin (x+y)}{-\cos (x+y)-(x-y) \sin (x+y)} . \\
\operatorname{Hess}(f)(x, y)=\left(\begin{array}{cc}
-2 \sin (x+y)-(x-y) \cos (x+y) & -(x-y) \cos (x+y) \\
-(x-y) \cos (x+y) & 2 \sin (x+y)-(x-y) \cos (x+y)
\end{array}\right) . \\
\Delta f(x, y)=-2 f(x, y) .
\end{array}
\end{aligned}
$$

4. Partial derivatives.

(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{a}, \mathbf{b} \neq \mathbf{0}, g(\mathbf{x})=\langle\mathbf{x}, \mathbf{a}\rangle, h(\mathbf{x})=\langle\mathbf{x}, \mathbf{b}\rangle$. Show that the function

$$
f(\mathbf{x})=g(\mathbf{x}) h(\mathbf{x})
$$

is of class C^{2}. Give its Hessian matrix and its Laplacian. Give the symmetric matrix $A \in M_{2,2}(\mathbb{R})$ such that $f(\mathbf{x})=\frac{1}{2}\langle\mathbf{x}, A \mathbf{x}\rangle$.

Solution. By exercise 3 in the March 14 sheet:

$$
\frac{\partial f(\mathbf{x})}{\partial x_{k}}=a_{k}\langle\mathbf{b}, \mathbf{x}\rangle+b_{k}\langle\mathbf{a}, \mathbf{x}\rangle
$$

hence

$$
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{j} x_{k}}=a_{k} b_{j}+a_{j} b_{k}
$$

The Laplacian is given by the trace of this matrix, so

$$
\triangle f(\mathbf{x})=\sum_{j=1}^{n} a_{j} b_{j}+a_{j} b_{j}=2\langle\mathbf{a}, \mathbf{b}\rangle
$$

The matrix A that gives the quadratic form is given by $A=\operatorname{Hess}(f)$.
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function of class C^{2}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $f(\mathbf{x})=\sum_{k=1}^{n} g\left(x_{k}\right)$, where x_{k} denotes the $\mathrm{k}^{\text {th }}$ component of the vector $\mathbf{x}, x_{k}=\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle$. Give the Hessian matrix and the Laplacian of f.

Solution. By exercise 3 in the March 9 sheet:

$$
\begin{gathered}
\frac{\partial f(\mathbf{x})}{\partial x_{j}}=g^{\prime}\left(x_{j}\right) \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{j} x_{k}}= \begin{cases}0 & \text { if } j \neq k, \\
g^{\prime \prime}\left(x_{j}\right) & \text { if } j=k .\end{cases}
\end{gathered}
$$

so

Hence, the Hessian matrix is a diagonal matrix:

$$
\operatorname{Hess}(f)(\mathbf{x})=\sum_{k=1}^{n} g^{\prime \prime}\left(x_{k}\right) E_{k k}
$$

and $\triangle f(\mathbf{x})=\sum_{k=1}^{n} g^{\prime \prime}\left(x_{k}\right)$.
5. Let $U \subset \mathbb{R}^{n}$ be an open set. Let $f, g: U \longrightarrow \mathbb{R}$ be two functions of class $C^{2}(U)$. Check that

$$
\Delta(f g)(\mathbf{x})=f(\mathbf{x}) \Delta g(\mathbf{x})+2\langle\nabla f(\mathbf{x}), \nabla g(\mathbf{x})\rangle+g(\mathbf{x}) \Delta f(\mathbf{x})
$$

for all $\mathbf{x} \in U$. Using this identity and exercise 2 (c), then calculate the Laplacian of

$$
h(x, y, z)=g(x, y) f(x, y, z)=\frac{x y}{x^{2}+y^{2}} \frac{\sin \left(\sqrt{x^{2}+y^{2}+z^{2}}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}} .
$$

on $U=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>0\right\}$.

Solution. By the product rule for all $k=1, \ldots, n$.

$$
D_{k k}(f g)=f D_{k k}+2 D_{k} f D_{k} g+g D_{k k} f
$$

The sum on k gives the wanted identity. By exercise $2(\mathrm{c})$, we get

$$
\Delta f(x, y, z)=-f(x, y, z)
$$

Moreover,

$$
\nabla f(x, y, z)=\frac{1}{r}\left(\frac{\sin r}{r}\right)^{\prime}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

We calculate

$$
\nabla g(x, y)=\binom{\frac{-y(x-y)(x+y)}{\left(x^{2}+y^{2}\right)^{2}}}{\frac{x(x-y)(x)}{\left(x^{2}+y^{2}\right)^{2}}}
$$

and

$$
\Delta g(x, y)=-\frac{4 g(x, y)}{x^{2}+y^{2}}
$$

Using $\langle\nabla f(x, y, z), \nabla g(x, y)\rangle=0$ we get

$$
\Delta h(x, y, z)=-h(x, y, z)-\frac{4 h(x, y, z)}{x^{2}+y^{2}}
$$

6. Find:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3\left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}+4}-2}
$$

if it exists.

Solution. We have:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{3\left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}+4}-2}=\lim _{(x, y) \rightarrow(0,0)} \frac{3\left(x^{2}+y^{2}\right)\left(\sqrt{x^{2}+y^{2}+4}+2\right)}{x^{2}+y^{2}}= \\
& =\lim _{(x, y) \rightarrow(0,0)} 3\left(\sqrt{x^{2}+y^{2}+4}+2\right)=12 .
\end{aligned}
$$

7. Find:

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+3 y z^{2}+7 x z^{2}}{x^{2}+y^{2}+z^{4}}
$$

if it exists.

Solution. The limit does not exist because, for example, on the curve $y=z=0$ the function is identically 0 , while on the curve $x=y, z=0$ the function is identically $1 / 2$.
8. Find the Taylor expansion of order two of:

$$
f(x, y)=\cos (x-y)+2 \sin (x-y)
$$

at $(0,0)$.
(a) $2+2 x-2 y-1 / 2 x^{2}+x y+1 / 2 y^{2}$
(b) $1+2 x-2 y-1 / 2 x^{2}-x y-1 / 2 y^{2}$
(c) $1+2 x-2 y-1 / 2 x^{2}+x y-1 / 2 y^{2}$
(d) $2-2 x+2 y-1 / 2 x^{2}-x y+1 / 2 y^{2}$

Solution. The correct answer is (c). The Taylor expansion of order two of f about (0,0) is given by:

$$
f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+1 / 2 f_{x x}(0,0) x^{2}+f_{x y}(0,0) x y+1 / 2 f_{y y}(0,0) y^{2}
$$

Also:

$$
\begin{aligned}
& f_{x}=-\sin (x-y)+2 \cos (x-y) \\
& f_{y}=\sin (x-y)-2 \cos (x-y) \\
& f_{x x}=-\cos (x-y)-2 \sin (x-y) \\
& f_{x y}=\cos (x-y)+2 \sin (x-y) \\
& f_{y y}=\cos (x-y)-2 \sin (x-y)
\end{aligned}
$$

so we find that the Taylor expansion is: $1+2 x-2 y-1 / 2 x^{2}+x y-1 / 2 y^{2}$.
9. Find the Taylor expansion of order two of:

$$
f(x, y)=e^{2 x-y^{2}}
$$

at $(0,0)$.
(a) $1-y-x y+2 y^{2}$
(b) $1+2 x+2 x^{2}-y^{2}$
(c) $1+x+2 x^{2}+y^{2}$
(d) $1-x+2 x^{2}-y^{2}$

Solution. The correct answer is (b). The Taylor expansion of order two of f about $(0,0)$ is given by:

$$
f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+1 / 2 f_{x x}(0,0) x^{2}+f_{x y}(0,0) x y+1 / 2 f_{y y}(0,0) y^{2}
$$

Also:

$$
\begin{aligned}
& f_{x}=2 e^{2 x-y^{2}} \\
& f_{y}=-2 y e^{2 x-y^{2}} \\
& f_{x x}=4 e^{2 x-y^{2}} \\
& f_{x y}=-4 y e^{2 x-y^{2}} \\
& f_{y y}=-2 e^{2 x-y^{2}}+4 y^{2} e^{2 x-y^{2}}
\end{aligned}
$$

so we find that the Taylor expansion is: $1+2 x+2 x^{2}-y^{2}$.

