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ÉC O L E  P O L Y T E C H N I Q U E
FÉ DÉR A L E  D E  L A U S A N N E

Solutions to Exercise Session, March 21, 2016

1. Tangent hyperplane. Let f : R2 −→ R be the function given by

f(x, y) = x2 + y sinx + y2 cos2 x.

(a) Show that f is partially differentiable and give the gradient of f .

(b) Give the equation of the tangent plan at the point (x, y) = (0, 1).

Solution. The function is partially differentiable since polynomials and trigonometric func-
tions are differentiable.

∇f(x, y) =

(
2x + y cosx− 2y2 sinx cosx

sinx + 2y cos2 x

)
Note that f(0, 1) = 1 and

∇f(0, 1) =

(
1
2

)
The equation of the tangent plane is given by

z = 1 + x + 2(y − 1) = −1 + x + 2y.

2. Let f : R −→ R be a function of class C2. Let x ∈ Rn and r = ||x||2.

(a) Show that for all x 6= 0 we get

∆f(r) = f ′′(r) +
n− 1

r
f ′(r)

Solution. By the composition rule,

Dkf(r) = f ′(r)dkr = f ′(r)
xk

r

Dkkf(r) = Dk

(
f ′(r)

xk

r

)
= f ′′(r)

xk

r

xk

r
+ f ′(r)

1

r
− f ′(r)

x2
k

r3

= f ′′(r)
x2
k

r2
+ f ′(r)

1

r
− f ′(r)

x2
k

r3

So

∆f(r) =

n∑
k=1

Dkkf(r) = f ′′(r) +
n− 1

r
f ′(r)

as r2 =
∑n

k=1 x
2
k.

(b) Let f ′(0) = 0. Give
lim
r→0

∆f(r).
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Solution.

lim
r→0

∆f(r) = lim
r→0

f ′′(r) +
n− 1

r
f ′(r)

= f ′′(0) + (n− 1)lim
r→0

f ′(r)− f ′(0)

r

= (n− 1)f ′′(0) + f ′′(0)

= nf ′′(0)

(c) Let f : R3 \ {0} −→ R be the function defined by

f(x, y, z) =
sin(

√
x2 + y2 + z2)√

x2 + y2 + z2
.

Calculate ∆f(x, y, z).

Solution. ∆f(x, y, z) = −f(x, y, z). Either we calculate the partial derivatives Dxx,
Dyy and Dzz or we use the fact that f is a function with spherical symmetry:

f(x, y, z) = g(r) =
sin r

r

So

∆f(x, y, z) = g′′(r) +
2

r
g′(r)

The calculation is easier if we note that

g′′(r) +
2

r
g′(r) = r−2(r2g′(r))′ = r−2

d

dr

(
r2

d g(r)

dr

)
since

r2g′(r) = r cos r − sin r

and so
(r2g′(r))′ = (r cos r − sin r)′ = −r sin r.

i.e.

g′′(r) +
2

r
g′(r) = − sin r

r
= −g(r).

3. Give the Hessian matrix and the Laplacian of

f(x, y) = (x− y) cos(x + y).

Solution.

∇f(x, y) =

(
cos(x + y)− (x− y) sin(x + y)
− cos(x + y)− (x− y) sin(x + y)

)
.

Hess (f)(x, y) =

(
−2 sin(x + y)− (x− y) cos(x + y) −(x− y) cos(x + y)

−(x− y) cos(x + y) 2 sin(x + y)− (x− y) cos(x + y)

)
.

∆f(x, y) = −2f(x, y).

4. Partial derivatives.

(a) Let a,b ∈ Rn, a,b 6= 0, g(x) = 〈x,a〉, h(x) = 〈x,b〉. Show that the function

f(x) = g(x)h(x)

is of class C2. Give its Hessian matrix and its Laplacian. Give the symmetric matrix
A ∈M2,2(R) such that f(x) = 1

2 〈x, Ax〉.
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Solution. By exercise 3 in the March 14 sheet:

∂f(x)

∂xk
= ak〈b,x〉+ bk〈a,x〉

hence
∂2f(x)

∂xjxk
= akbj + ajbk.

The Laplacian is given by the trace of this matrix, so

4f(x) =

n∑
j=1

ajbj + ajbj = 2〈a,b〉.

The matrix A that gives the quadratic form is given by A = Hess (f).

(b) Let g : R→ R be a function of class C2. Let f : Rn → R be given by f(x) =

n∑
k=1

g(xk),

where xk denotes the kth component of the vector x, xk = 〈ek,x〉. Give the Hessian
matrix and the Laplacian of f .

Solution. By exercise 3 in the March 9 sheet:

∂f(x)

∂xj
= g′(xj)

so
∂2f(x)

∂xjxk
=

{
0 if j 6= k,

g′′(xj) if j = k.

Hence, the Hessian matrix is a diagonal matrix:

Hess (f)(x) =

n∑
k=1

g′′(xk)Ekk

and 4f(x) =

n∑
k=1

g′′(xk).

5. Let U ⊂ Rn be an open set. Let f, g : U −→ R be two functions of class C2(U). Check that

∆(fg)(x) = f(x)∆g(x) + 2〈∇f(x),∇g(x)〉+ g(x)∆f(x)

for all x ∈ U . Using this identity and exercise 2 ( c), then calculate the Laplacian of

h(x, y, z) = g(x, y)f(x, y, z) =
xy

x2 + y2
sin(

√
x2 + y2 + z2)√

x2 + y2 + z2
.

on U = {(x, y, z) ∈ R3 : x > 0, y > 0}.

Solution. By the product rule for all k = 1, ..., n.

Dkk(fg) = fDkk + 2DkfDkg + gDkkf.

The sum on k gives the wanted identity. By exercise 2 ( c), we get

∆f(x, y, z) = −f(x, y, z)
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Moreover,

∇f(x, y, z) =
1

r
(
sin r

r
)′

x
y
z

 .

We calculate

∇g(x, y) =

(−y(x−y)(x+y)
(x2+y2)2

x(x−y)(x+y)
(x2+y2)2

)
and

∆g(x, y) = −4g(x, y)

x2 + y2
.

Using 〈∇f(x, y, z),∇g(x, y)〉 = 0 we get

∆h(x, y, z) = −h(x, y, z)− 4h(x, y, z)

x2 + y2
.

6. Find:

lim
(x,y)→(0,0)

3(x2 + y2)√
x2 + y2 + 4− 2

if it exists.

Solution. We have:

lim
(x,y)→(0,0)

3(x2 + y2)√
x2 + y2 + 4− 2

= lim
(x,y)→(0,0)

3(x2 + y2)(
√
x2 + y2 + 4 + 2)

x2 + y2
=

= lim
(x,y)→(0,0)

3(
√
x2 + y2 + 4 + 2) = 12.

7. Find:

lim
(x,y,z)→(0,0,0)

xy + 3yz2 + 7xz2

x2 + y2 + z4

if it exists.

Solution. The limit does not exist because, for example, on the curve y = z = 0 the
function is identically 0, while on the curve x = y, z = 0 the function is identically 1/2.

8. Find the Taylor expansion of order two of:

f(x, y) = cos(x− y) + 2 sin(x− y)

at (0, 0).

(a) 2 + 2x− 2y − 1/2x2 + xy + 1/2y2

(b) 1 + 2x− 2y − 1/2x2 − xy − 1/2y2

(c) 1 + 2x− 2y − 1/2x2 + xy − 1/2y2

(d) 2− 2x + 2y − 1/2x2 − xy + 1/2y2
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Solution. The correct answer is (c). The Taylor expansion of order two of f about (0, 0)
is given by:

f(0, 0) + fx(0, 0)x + fy(0, 0)y + 1/2fxx(0, 0)x2 + fxy(0, 0)xy + 1/2fyy(0, 0)y2.

Also:

fx = − sin(x− y) + 2 cos(x− y)

fy = sin(x− y)− 2 cos(x− y)

fxx = − cos(x− y)− 2 sin(x− y)

fxy = cos(x− y) + 2 sin(x− y)

fyy = cos(x− y)− 2 sin(x− y)

so we find that the Taylor expansion is: 1 + 2x− 2y − 1/2x2 + xy − 1/2y2.

9. Find the Taylor expansion of order two of:

f(x, y) = e2x−y
2

at (0, 0).

(a) 1− y − xy + 2y2

(b) 1 + 2x + 2x2 − y2

(c) 1 + x + 2x2 + y2

(d) 1− x + 2x2 − y2

Solution. The correct answer is (b). The Taylor expansion of order two of f about (0, 0)
is given by:

f(0, 0) + fx(0, 0)x + fy(0, 0)y + 1/2fxx(0, 0)x2 + fxy(0, 0)xy + 1/2fyy(0, 0)y2.

Also:

fx = 2e2x−y
2

fy = −2ye2x−y
2

fxx = 4e2x−y
2

fxy = −4ye2x−y
2

fyy = −2e2x−y
2

+ 4y2e2x−y
2

so we find that the Taylor expansion is: 1 + 2x + 2x2 − y2.
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