Solutions to Exercise Session, March 14, 2016

1. Level curves. Find the equation of the level curve of the function $f(x, y)$ that passes through the given point.
(a) $f(x, y)=16-x^{2}-y^{2},(2 \sqrt{2}, \sqrt{2})$

Solution. $\quad f(2 \sqrt{2}, \sqrt{2})=6$, So the level curve have the equation $x^{2}+y^{2}=10$.
(b) $f(x, y)=\sqrt{x^{2}-1},(1,0)$

Solution. $f(1,0)=0$, so the level curve have the equation $x^{2}=1$ which consist of two lines $x=1$ and $x=-1$.
(c) $f(x, y)=\int_{x}^{y} \frac{d \theta}{\sqrt{1-\theta^{2}}},(0,1)$

Solution. We have that

$$
\int_{x}^{y} \frac{d \theta}{\sqrt{1-\theta^{2}}}=\arcsin y-\arcsin x
$$

where $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$. We also have that $f(0,1)=\pi / 2$. In order for $\operatorname{arc} \sin y-\arcsin x$ to be equal to $\pi / 2$ we must have $0 \leq \operatorname{arc} \sin y \leq \pi / 2$ and $-\pi / 2 \leq$ $\operatorname{arc} \sin x \leq 0$ meaning $0 \leq y \leq 1$ and $-1 \leq x \leq 0$. So the equation of the curve is given by

$$
\arcsin y-\arcsin x=\frac{\pi}{2} \Longrightarrow y=\sin \left(\frac{\pi}{2}-\arcsin x\right) \Longrightarrow y=\sqrt{1-x^{2}}, \quad x \leq 0
$$

2. Continuous functions.

(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{a}, \mathbf{b} \neq \mathbf{0}$. Show that the function $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle \cdot\langle\mathbf{b}, \mathbf{x}\rangle$ is continuous for all $\mathbf{x} \in \mathbb{R}^{n}$.

Solution . It is the product of two continuous functions (linear forms), so we get the continuity of f. Indeed, let $\mathbf{x}, \mathbf{x}_{j} \in \mathbb{R}^{n}$ s.t. $\lim _{j \rightarrow \infty} \mathbf{x}_{j}=\mathbf{x}$. Then, by continuity of linear forms

$$
\lim _{j \rightarrow \infty}\left\langle\mathbf{a}, \mathbf{x}_{j}\right\rangle=\langle\mathbf{a}, \mathbf{x}\rangle, \quad \lim _{j \rightarrow \infty}\left\langle\mathbf{b}, \mathbf{x}_{j}\right\rangle=\langle\mathbf{b}, \mathbf{x}\rangle
$$

hence $\lim _{j \rightarrow \infty} f\left(\mathbf{x}_{j}\right)=f(\mathbf{x})$ since it is the product of two convergent numerical sequences.
(b) For $A \in M_{n, n}(\mathbb{R})$ let $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bilinear form given by $b(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, A \mathbf{y}\rangle$. Show that b is continuous for all $\binom{\mathbf{x}}{\mathbf{y}} \in \mathbb{R}^{2 n}$.

Solution-1. For all sequences of vectors $\binom{\mathbf{x}_{j}}{\mathbf{y}_{j}} \in \mathbb{R}^{2 n}$ that converge to $\binom{\mathbf{x}}{\mathbf{y}} \in$ $\mathbb{R}^{2 n}$, we have $\lim _{j \rightarrow \infty} \mathbf{x}_{j}=\mathbf{x}$ and $\lim _{j \rightarrow \infty} \mathbf{y}_{j}=\mathbf{y}$ in \mathbb{R}^{n}, ie $\lim _{j \rightarrow \infty}\left\|\mathbf{x}_{j}-\mathbf{x}\right\|_{2}=0, \lim _{j \rightarrow \infty}\left\|\mathbf{y}_{j}-\mathbf{y}\right\|_{2}=$ 0 (with the Euclidean norm in \mathbb{R}^{n}). In particular, $\left\|\mathbf{x}_{j}\right\|_{2},\left\|\mathbf{y}_{j}\right\|_{2}$ are bounded. By bilinearity of b :

$$
b\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)-b(\mathbf{x}, \mathbf{y})=b\left(\mathbf{x}_{j}-\mathbf{x}, \mathbf{y}_{j}\right)+b\left(\mathbf{x}, \mathbf{y}_{j}-\mathbf{y}\right)
$$

By Cauchy-Schwarz's inequality and the inequality $\|A \mathbf{x}\|_{2} \leq\|A\|_{2}\|\mathbf{x}\|_{2}$ (see lecture, ch.1.6.1, p.14) we get:

$$
\left|b\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)-b(\mathbf{x}, \mathbf{y})\right| \leq\|A\|_{2}\left\|\mathbf{y}_{j}\right\|_{2}\left\|\mathbf{x}_{j}-\mathbf{x}\right\|_{2}+\|A\|_{2}\|\mathbf{x}\|_{2}\left\|\mathbf{y}_{j}-\mathbf{y}\right\|_{2} \rightarrow 0
$$

hence the result.

Solution-2. The game $\epsilon-\delta$. We have to show that for all $\epsilon<0$ there exists $\delta<0$ such that for all vectors $\binom{\mathbf{h}}{\mathbf{k}} \in \mathbb{R}^{2 n}$ of Euclidean norm smaller than δ we get

$$
|b(\mathbf{x}+\mathbf{h}, \mathbf{y}+\mathbf{k})-b(\mathbf{x}, \mathbf{y})|<\epsilon
$$

Note that for the Euclidean norm in $\mathbb{R}^{2 n}$:

$$
\left\|\binom{\mathbf{h}}{\mathbf{k}}\right\|_{2}^{2}=\|\mathbf{h}\|_{2}^{2}+\|\mathbf{k}\|_{2}^{2}
$$

with the norms on the right taken in \mathbb{R}^{n}. By estimation of the solution 1 above, for all $\mathbf{x}, \mathbf{y}, \mathbf{h}, \mathbf{k} \in \mathbb{R}^{n}$:

$$
|b(\mathbf{x}+\mathbf{h}, \mathbf{y}+\mathbf{k})-b(\mathbf{x}, \mathbf{y})| \leq\|A\|_{2}\|\mathbf{y}+\mathbf{k}\|_{2}\|\mathbf{h}\|_{2}+\|A\|_{2}\|\mathbf{x}\|_{2}\|\mathbf{k}\|_{2} .
$$

We can assume that $\|\mathbf{y}+\mathbf{k}\|_{2}<C,\|\mathbf{x}\|_{2}<C$ for a constant $C>0$. Then,

$$
|b(\mathbf{x}+\mathbf{h}, \mathbf{y}+\mathbf{k})-b(\mathbf{x}, \mathbf{y})| \leq C\|A\|_{2}\left(\|\mathbf{h}\|_{2}+\|\mathbf{k}\|_{2}\right) \leq C\|A\|_{2} \sqrt{2\|\mathbf{h}\|_{2}^{2}+2\|\mathbf{k}\|_{2}^{2}}
$$

by the inequality $a+b \leq \sqrt{2 a^{2}+2 b^{2}}$ for all $a, b \geq 0$. We choose $\delta=\frac{\epsilon}{\sqrt{2} C\|A\|_{2}}$.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=$ $\sum_{k=1}^{n} g\left(x_{k}\right)$, where x_{k} denotes the $\mathrm{k}^{t h}$ component of the vector $\mathbf{x}, x_{k}=\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle$, is a continuous function for all $\mathbf{x} \in \mathbb{R}^{n}$.

Solution. Either by sequences or by

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\sum_{k=1}^{n} g\left(x_{k}+h_{k}\right)-g\left(x_{k}\right)
$$

and $\left|h_{k}\right| \leq\|\mathbf{h}\|_{2}$, applying the continuity of g :

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\sum_{k=1}^{n} \lim _{h_{k} \rightarrow 0} g\left(x_{k}+h_{k}\right)-g\left(x_{k}\right)=0
$$

Alternatively we can argue that the functions $h_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $h_{k}(\mathbf{x})=g\left(\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle\right)$ are continuous on \mathbb{R}^{n} (it is the composition of a continuous function with a continuous linear form- see exercise under) and f is a finite sum of continuous functions.
(d) Let $g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous functions. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=g(h(\mathbf{x}))$ is a continuous function for all $\mathbf{x} \in \mathbb{R}^{n}$.

Solution. Let $\mathbf{x}, \mathbf{x}_{j} \in \mathbb{R}^{n}$ s.t. $\lim _{j \rightarrow \infty} \mathbf{x}_{j}=\mathbf{x}$. Then, by continuity of h, the numerical sequence $a_{j}:=\left(h\left(\mathbf{x}_{j}\right)\right)_{j}$ is convergent and has for limit $a:=h(\mathbf{x})$. By the continuity of $g: \lim _{j \rightarrow \infty} g\left(a_{j}\right)=g(a)$, ie

$$
\lim _{j \rightarrow \infty} f\left(\mathbf{x}_{j}\right)=f(\mathbf{x})
$$

3. Limits of real functions.

(a) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Solution. The limit doesn't exist since $f(0, y)=-1$ for $y \neq 0$ and $f(x, 0)=1$ if $x \neq 0$.
(b) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Solution. Note that

$$
\left|x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right| \leq|x y| \leq x^{2}+y^{2}
$$

Hence

$$
\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0
$$

(c) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-\frac{1}{\sqrt{x^{2}+y^{2}}}}}{x^{2}+y^{2}}
$$

Solution. We use polar coordinates. We substitute $x=r \cos \theta$ and $y=r \sin \theta$ and investigate the limit of resulting expression as $r \rightarrow 0$.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-\frac{1}{\sqrt{x^{2}+y^{2}}}}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{e^{-\frac{1}{r}}}{r^{2}}=0
$$

(d) Show that the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

has no limit as (x, y) approaches $(0,0)$. In particular show the value of the limit take varies between -1 and 1 along curves $y=k x^{2}$.

Solution. We take the limit along the curve $y=k x$. If $x \neq 0$

$$
\left.f(x, y)\right|_{y=k x^{2}}=\frac{2 k x^{4}}{\left(1+k^{2}\right) x^{4}}=\frac{2 k}{1+k^{2}}
$$

So

$$
\lim _{\text {along } y=k x^{2}} f(x, y)=\left.\lim _{(x, y) \rightarrow(0,0)} f(x, y)\right|_{y=k x^{2}}=\frac{2 k}{1+k^{2}}
$$

This limit varies with the path of approach. Now take $k=\tan \theta$ then

$$
\frac{2 k}{1+k^{2}}=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta
$$

And $\sin 2 \theta$ varies between -1 and 1 .
(e) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the continuous function defined by

$$
f(x, y)= \begin{cases}\frac{\sin (x y)}{x y} & \text { if } x y \neq 0 \\ 1 & \text { if } x y=0\end{cases}
$$

Show that f is partially differentiable and give its partial derivatives.

Solution. If $x y \neq 0$, then

$$
\begin{aligned}
& D_{x} \frac{\sin (x y)}{x y}=\frac{x y^{2} \cos (x y)-y \sin (x y)}{x^{2} y^{2}} \\
& D_{y} \frac{\sin (x y)}{x y}=\frac{x^{2} y \cos (x y)-x \sin (x y)}{x^{2} y^{2}}
\end{aligned}
$$

If $x y=0$, there are three cases: $x=0, y \neq 0$ or $x \neq 0, y=0$ or also $x=0, y=0$. For example, for the first case:

$$
D_{x} f(0, y)=\lim _{h \rightarrow 0} \frac{f(h, y)-f(0, y)}{h}=0
$$

and

$$
D_{y} f(0, y)=\lim _{h \rightarrow 0} \frac{f(0, y+h)-f(0, y)}{h}=0
$$

4. Continuity. Study continuity of following functions as a function of $\alpha>0$.
(a)

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{x^{2 \alpha}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq 0 \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Solution. For $(x, y) \neq(0,0)$ the denominator is non-zero and f is a combination of continuous functions. Therefor for all $\alpha>0, f(x, y)$ is continuous $\forall(x, y) \neq(0,0)$. We check the continuity at $(x, y)=(0,0)$. Using polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2 \alpha}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{r^{2 \alpha} \cos ^{2 \alpha} \theta}{r^{2}}
$$

The value of the limit depends on α :

- case $\alpha>1$: The limit is 0 because $\left|r^{2 \alpha} \cos ^{2 \alpha} \theta\right| \leq\left|r^{2 \alpha}\right| \rightarrow 0$
- case $\alpha=1$: The value of the limit is $1 \cdot \cos \theta$
- case $0<\alpha<1$: The limit is $+\infty$ if $\cos \theta \neq 0$ and the limit is 0 if $\cos \theta=0$.

So f is continuous on \mathbb{R}^{2} if $\alpha>1$ and is continuous on $\mathbb{R}^{2} \backslash(0,0)$ when $0<\alpha \leq 1$
(b)

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{x y}{\left(x^{2}+y^{2}\right)^{\alpha}}, & \text { if }(x, y) \neq 0 \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Solution. For $(x, y) \neq(0,0)$ the denominator is non-zero and f is a combination of continuous functions. Therefor for all $\alpha>0, f(x, y)$ is continuous $\forall(x, y) \neq(0,0)$. We check the continuity at $(x, y)=(0,0)$. Using polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\left(x^{2}+y^{2}\right)^{\alpha}}=\lim _{r \rightarrow 0} r^{2(1-\alpha)} \cos \theta \sin \theta
$$

The value of the limit depends on α :

- $\alpha=1$: the limit is $\cos \theta \sin \theta$.
- $0<\alpha<1$: the limit is 0 .
- $\alpha>1$: depending on θ it can be $0,+\infty$ and $-\infty$.

So f is continuous on \mathbb{R}^{2} if $0<\alpha<1$ and is continuous on $\mathbb{R}^{2} \backslash(0,0)$ when $\alpha \geq 1$

5. Partial derivatives.

(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{a}, \mathbf{b} \neq \mathbf{0}$. Show that the function $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle \cdot\langle\mathbf{b}, \mathbf{x}\rangle$ is partially differentiable for all $\mathbf{x} \in \mathbb{R}^{n}$ and give its gradient.

Solution-1. $\quad f=g \cdot h$ is the product of two partially differentiable functions $g(\mathbf{x})=$ $\langle\mathbf{a}, \mathbf{x}\rangle$ and $h(\mathbf{x})=\langle\mathbf{b}, \mathbf{x}\rangle$. By the product rule:

$$
\begin{equation*}
\nabla f(\mathbf{x})=\nabla(g h)(\mathbf{x})=h(\mathbf{x}) \nabla g(\mathbf{x})+g(\mathbf{x}) \nabla h(\mathbf{x}) \tag{1}
\end{equation*}
$$

It follows that $\nabla g(\mathbf{x})=\mathbf{a}, \nabla h(\mathbf{x})=\mathbf{b}$:

$$
\nabla f(\mathbf{x})=\langle\mathbf{b}, \mathbf{x}\rangle \mathbf{a}+\langle\mathbf{a}, \mathbf{x}\rangle \mathbf{b}
$$

Solution-2. For all $k=1, \ldots, n, t \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$:

$$
f\left(\mathbf{x}+t \mathbf{e}_{k}\right)-f(\mathbf{x})=t\left\langle\mathbf{a}, \mathbf{e}_{k}\right\rangle\left\langle\mathbf{b}, \mathbf{x}+t \mathbf{e}_{k}\right\rangle+t\langle\mathbf{a}, \mathbf{x}\rangle\left\langle\mathbf{b}, \mathbf{e}_{k}\right\rangle
$$

hence

$$
t^{-1}\left(f\left(\mathbf{x}+t \mathbf{e}_{k}\right)-f(\mathbf{x})\right)=a_{k}\langle\mathbf{b}, \mathbf{x}\rangle+b_{k}\langle\mathbf{a}, \mathbf{x}\rangle+t a_{k} b_{k}
$$

By letting t go to zero, we get the result.
(b) For $A \in M_{n, n}(\mathbb{R})$, let $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the bilinear form given by $b(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, A \mathbf{y}\rangle$. Show that b is partially differentiable for all $\binom{\mathbf{x}}{\mathbf{y}} \in \mathbb{R}^{2 n}$ and give its gradient.

Solution . For the partial derivatives of x_{k}, the argument \mathbf{y} is constant, hence it is the study of the linear form $\mathbf{x} \mapsto\langle\mathbf{x}, A \mathbf{y}\rangle$. We find $\nabla_{\mathbf{x}} b(\mathbf{x}, \mathbf{y})=A \mathbf{y}$. For the partial derivatives of y_{k} the argument \mathbf{x} is constant, hence it is the study of the linear form $\mathbf{y} \mapsto\left\langle A^{T} \mathbf{x}, \mathbf{y}\right\rangle$ (we have to put the matrix in the constant argument). We find $\nabla_{\mathbf{y}} b(\mathbf{x}, \mathbf{y})=A^{T} \mathbf{x}$. The gradient of b is the vector in $\mathbb{R}^{2 n}$ given by

$$
\nabla b(\mathbf{x}, \mathbf{y})=\nabla_{\mathbf{x}, \mathbf{y}} b(\mathbf{x}, \mathbf{y})=\binom{A \mathbf{y}}{A^{T} \mathbf{x}}
$$

(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=$ $\sum_{k=1}^{n} g\left(x_{k}\right)$, where x_{k} denotes the $\mathrm{k}^{t h}$ component of the vector $\mathbf{x}, x_{k}=\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle$, is a partially differentiable function for all $\mathbf{x} \in \mathbb{R}^{n}$. Give its gradient.

Solution. By the definition of partial derivatives:

$$
\frac{\partial f(\mathbf{x})}{\partial x_{j}}=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}+h \mathbf{e}_{j}\right)-f(\mathbf{x})}{h}=\lim _{h \rightarrow 0} \frac{g\left(x_{j}+h\right)-g\left(x_{j}\right)}{h}=g^{\prime}\left(x_{j}\right)
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$ and g^{\prime} denotes the derivative function of g. Hence,

$$
\nabla f(\mathbf{x})=\sum_{k=1}^{n} g^{\prime}\left(x_{k}\right) \mathbf{e}_{k}
$$

(d) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for all $t \in \mathbb{R}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ partially differentiable for all $\mathbf{x} \in \mathbb{R}^{n}$. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=g(h(\mathbf{x}))$ is a partially differentiable function for all $\mathbf{x} \in \mathbb{R}^{n}$. Give its gradient.

Solution . The function $\rho(t):=h\left(\mathbf{x}+t \mathbf{e}_{k}\right)$ is differentiable in $t=0$ and $\rho^{\prime}(0)=\frac{\partial h(\mathbf{x})}{\partial x_{k}}$.
The composite function $g(\rho(t))$ is differentiable at $t=0$ and

$$
\frac{\partial f(\mathbf{x})}{\partial x_{k}}=\left.\frac{d}{d t}\right|_{t=0} g(\rho(t))=g^{\prime}(\rho(0)) \rho^{\prime}(0)=g^{\prime}(h(\mathbf{x})) \frac{\partial h(\mathbf{x})}{\partial x_{k}}
$$

hence $\nabla f(\mathbf{x})=g^{\prime}(h(\mathbf{x})) \nabla h(\mathbf{x})$.
6. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$ but is not of class C^{1} at this point.

Solution. Let $r=\sqrt{x^{2}+y^{2}}, r \geq 0 . f$ is differentiable at $(0,0)$ and $d_{0} f(x, y)=0$ since

If $(x, y) \neq(0,0)$ the function f is partially differentiable (even differentiable) and noting that f is radially symmetric:

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}=\frac{x}{r}\left(2 r \sin r^{-1}-\cos r^{-1}\right) \\
& \frac{\partial f(x, y)}{\partial y}=\frac{y}{r}\left(2 r \sin r^{-1}-\cos r^{-1}\right)
\end{aligned}
$$

These functions don't have any limits when $(x, y) \rightarrow(0,0)$ (because of $\cos r^{-1}$).
7. For $x \in \mathbb{R}$ and $t>0$ we consider the function $f(x, t)$ defined by

$$
f(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{x^{2}}{4 t}\right)
$$

(a) Show that f verifies the heat equation, i.e.

$$
\frac{\partial f}{\partial t}(x, t)-\frac{\partial^{2} f}{\partial x^{2}}(x, t)=0
$$

Solution.

$$
\frac{\partial f}{\partial x}(x, t)=-\frac{x}{2 t} f(x, t)
$$

and

$$
\frac{\partial^{2} f}{\partial x^{2}}(x, t)=-\frac{1}{2 t} f(x, t)-\frac{x}{2 t} \frac{\partial f}{\partial x}(x, t)=\left(-\frac{1}{2 t}+\frac{x^{2}}{4 t^{2}}\right) f(x, t)=\frac{\partial f}{\partial t}(x, t)
$$

(b) Calculate

$$
\int_{\mathbb{R}} f(x, t) d x
$$

Solution. By the change of variable $y=x / \sqrt{2 t}$ i.e. $d x / d y=\sqrt{2 t}$, we get the Gauss integral :

$$
\int_{\mathbb{R}} f(x, t) d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=1
$$

(c) Let $g(x, y, t)$ given by $g(x, y, t)=f(x, t) f(y, t)$. Calculate

$$
\frac{\partial g}{\partial t}(x, y, t)-\frac{\partial^{2} g}{\partial x^{2}}(x, y, t)-\frac{\partial^{2} g}{\partial y^{2}}(x, y, t)
$$

Remark: $\frac{\partial^{2}}{\partial x^{2}}=D_{x x}$ etc.

Solution. By the product rule and the result in (a) we get

$$
\begin{aligned}
& \frac{\partial g}{\partial t}(x, y, t)-\frac{\partial^{2} g}{\partial x^{2}}(x, y, t)-\frac{\partial^{2} g}{\partial y^{2}}(x, y, t)= \\
& \frac{\partial f}{\partial t}(x, t) f(y, t)+f(x, t) \frac{\partial f}{\partial t}(y, t)-\frac{\partial^{2} f}{\partial x^{2}}(x, t) f(y, t)-f(x, t) \frac{\partial^{2} f}{\partial y^{2}}(y, t)= \\
& f(x, t)\left(\frac{\partial f}{\partial t}(y, t)-\frac{\partial^{2} f}{\partial y^{2}}(y, t)\right)+f(y, t)\left(\frac{\partial f}{\partial t}(x, t)-\frac{\partial^{2} f}{\partial x^{2}}(x, t)\right)=0 .
\end{aligned}
$$

8. True of False.
(a) A continuous function is partially differentiable.

Solution. False, for example take $f(x)=\|x\|_{2}$ which is a continuous function and not differentiable.
(b) If all the directional derivatives of f exist, then all the partial derivatives also exist.True
Solution. True, Just take the directions to be the basis of the space.
(c) If all the partial derivatives of f exist, then all the directional derivative also exit.

Solution. True, write any vector v as a linear combination of basis vectors then the statement follows immediately.
(d) If all the partial derivatives of f exist, then f is continuous.TrueFalse
Solution. False, take the following function for example

$$
f(x, y)= \begin{cases}0, & x y \neq 0 \\ 1, & x y=0\end{cases}
$$

all partial derivatives exist but is not continuous.

