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ÉC O L E  P O L Y T E C H N I Q U E
FÉ DÉR A L E  D E  L A U S A N N E

Solutions to Exercise Session, March 14, 2016

1. Level curves. Find the equation of the level curve of the function f(x, y) that passes
through the given point.

(a) f(x, y) = 16− x2 − y2, (2
√

2,
√

2)

Solution. f(2
√

2,
√

2) = 6, So the level curve have the equation x2 + y2 = 10.

(b) f(x, y) =
√
x2 − 1, (1, 0)

Solution. f(1, 0) = 0, so the level curve have the equation x2 = 1 which consist of
two lines x = 1 and x = −1.

(c) f(x, y) =
∫ y
x

dθ√
1−θ2 , (0, 1)

Solution. We have that ∫ y

x

dθ√
1− θ2

= arc siny − arc sinx

where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. We also have that f(0, 1) = π/2. In order for
arc siny − arc sinx to be equal to π/2 we must have 0 ≤ arc siny ≤ π/2 and −π/2 ≤
arc sinx ≤ 0 meaning 0 ≤ y ≤ 1 and −1 ≤ x ≤ 0. So the equation of the curve is given by

arc siny − arc sinx =
π

2
=⇒ y = sin(

π

2
− arc sinx) =⇒ y =

√
1− x2, x ≤ 0

2. Continuous functions.

(a) Let a,b ∈ Rn, a,b 6= 0. Show that the function f(x) = 〈a,x〉 · 〈b,x〉 is continuous for
all x ∈ Rn.

Solution . It is the product of two continuous functions (linear forms), so we get the
continuity of f . Indeed, let x,xj ∈ Rn s.t. lim

j→∞
xj = x. Then, by continuity of linear

forms
lim
j→∞
〈a,xj〉 = 〈a,x〉, lim

j→∞
〈b,xj〉 = 〈b,x〉,

hence lim
j→∞

f(xj) = f(x) since it is the product of two convergent numerical sequences.

(b) For A ∈ Mn,n(R) let b : Rn × Rn → R be a bilinear form given by b(x,y) = 〈x, Ay〉.

Show that b is continuous for all

(
x
y

)
∈ R2n.
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Solution-1. For all sequences of vectors

(
xj
yj

)
∈ R2n that converge to

(
x
y

)
∈

R2n, we have lim
j→∞

xj = x and lim
j→∞

yj = y in Rn, ie lim
j→∞
||xj−x||2 = 0, lim

j→∞
||yj−y||2 =

0 (with the Euclidean norm in Rn). In particular, ||xj ||2, ||yj ||2 are bounded. By
bilinearity of b:

b(xj ,yj)− b(x,y) = b(xj − x,yj) + b(x,yj − y).

By Cauchy-Schwarz’s inequality and the inequality ||Ax||2 ≤ ||A||2||x||2 (see lecture,
ch.1.6.1, p.14) we get:

|b(xj ,yj)− b(x,y)| ≤ ||A||2||yj ||2||xj − x||2 + ||A||2||x||2||yj − y||2 → 0

hence the result.

Solution-2. The game ε − δ. We have to show that for all ε < 0 there exists δ < 0

such that for all vectors

(
h
k

)
∈ R2n of Euclidean norm smaller than δ we get

|b(x + h,y + k)− b(x,y)| < ε.

Note that for the Euclidean norm in R2n:

||
(

h
k

)
||22 = ||h||22 + ||k||22

with the norms on the right taken in Rn . By estimation of the solution 1 above, for
all x,y,h,k ∈ Rn:

|b(x + h,y + k)− b(x,y)| ≤ ||A||2||y + k||2||h||2 + ||A||2||x||2||k||2.

We can assume that ||y + k||2 < C, ||x||2 < C for a constant C > 0. Then,

|b(x + h,y + k)− b(x,y)| ≤ C||A||2(||h||2 + ||k||2) ≤ C||A||2
√

2||h||22 + 2||k||22

by the inequality a+ b ≤
√

2a2 + 2b2 for all a, b ≥ 0. We choose δ =
ε√

2C||A||2
.

(c) Let g : R → R be a continuous function. Show that f : Rn → R given by f(x) =
n∑
k=1

g(xk), where xk denotes the kth component of the vector x, xk = 〈ek,x〉, is a

continuous function for all x ∈ Rn.

Solution. Either by sequences or by

f(x + h)− f(x) =

n∑
k=1

g(xk + hk)− g(xk)

and |hk| ≤ ||h||2, applying the continuity of g:

lim
h→0

f(x + h)− f(x) =

n∑
k=1

lim
hk→0

g(xk + hk)− g(xk) = 0.

Alternatively we can argue that the functions hk : Rn → R defined by hk(x) = g(〈ek,x〉)
are continuous on Rn (it is the composition of a continuous function with a continuous
linear form- see exercise under) and f is a finite sum of continuous functions.

(d) Let g : R → R, h : Rn → R be continuous functions. Show that f : Rn → R given by
f(x) = g(h(x)) is a continuous function for all x ∈ Rn.
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Solution. Let x,xj ∈ Rn s.t. lim
j→∞

xj = x. Then, by continuity of h, the numerical

sequence aj := (h(xj))j is convergent and has for limit a := h(x). By the continuity of
g: lim

j→∞
g(aj) = g(a), ie

lim
j→∞

f(xj) = f(x).

3. Limits of real functions.

(a) Calculate

lim
(x,y)→(0,0)

x2 − y2

x2 + y2

Solution. The limit doesn’t exist since f(0, y) = −1 for y 6= 0 and f(x, 0) = 1 if
x 6= 0.

(b) Calculate

lim
(x,y)→(0,0)

xy
x2 − y2

x2 + y2

Solution. Note that ∣∣∣∣xy x2 − y2x2 + y2

∣∣∣∣ ≤ |xy| ≤ x2 + y2

Hence

lim
(x,y)→(0,0)

xy
x2 − y2

x2 + y2
= 0

(c) Calculate

lim
(x,y)→(0,0)

e
− 1√

x2+y2

x2 + y2

Solution. We use polar coordinates. We substitute x = r cos θ and y = r sin θ and
investigate the limit of resulting expression as r → 0.

lim
(x,y)→(0,0)

e
− 1√

x2+y2

x2 + y2
= lim
r→0

e−
1
r

r2
= 0

(d) Show that the function

f(x, y) =
2x2y

x4 + y2

has no limit as (x, y) approaches (0, 0). In particular show the value of the limit take
varies between −1 and 1 along curves y = kx2.

Solution. We take the limit along the curve y = kx. If x 6= 0

f(x, y)
∣∣∣
y=kx2

=
2kx4

(1 + k2)x4
=

2k

1 + k2

So

lim
along y=kx2

f(x, y) = lim
(x,y)→(0,0)

f(x, y)
∣∣∣
y=kx2

=
2k

1 + k2

This limit varies with the path of approach. Now take k = tan θ then

2k

1 + k2
=

2 tan θ

1 + tan2 θ
= sin 2θ

And sin 2θ varies between −1 and 1.
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(e) Let f : R2 −→ R be the continuous function defined by

f(x, y) =

{
sin(xy)
xy if xy 6= 0,

1 if xy = 0.

Show that f is partially differentiable and give its partial derivatives.

Solution. If xy 6= 0, then

Dx
sin(xy)

xy
=
xy2 cos(xy)− y sin(xy)

x2y2

Dy
sin(xy)

xy
=
x2y cos(xy)− x sin(xy)

x2y2

If xy = 0, there are three cases: x = 0, y 6= 0 or x 6= 0, y = 0 or also x = 0, y = 0. For
example, for the first case:

Dxf(0, y) = lim
h→0

f(h, y)− f(0, y)

h
= 0

and

Dyf(0, y) = lim
h→0

f(0, y + h)− f(0, y)

h
= 0

4. Continuity. Study continuity of following functions as a function of α > 0.

(a)

f(x, y) =


x2α

x2 + y2
, if (x, y) 6= 0

0 if (x, y) = (0, 0)

Solution. For (x, y) 6= (0, 0) the denominator is non-zero and f is a combination of
continuous functions. Therefor for all α > 0, f(x, y) is continuous ∀(x, y) 6= (0, 0).
We check the continuity at (x, y) = (0, 0). Using polar coordinates x = r cos θ and
y = r sin θ we have

lim
(x,y)→(0,0)

x2α

x2 + y2
= lim
r→0

r2α cos2α θ

r2

The value of the limit depends on α:

• case α > 1: The limit is 0 because |r2α cos2α θ| ≤ |r2α| → 0

• case α = 1: The value of the limit is 1 · cos θ

• case 0 < α < 1: The limit is +∞ if cos θ 6= 0 and the limit is 0 if cos θ = 0.

So f is continuous on R2 if α > 1 and is continuous on R2\(0, 0) when 0 < α ≤ 1

(b)

f(x, y) =


xy

(x2 + y2)α
, if (x, y) 6= 0

0 if (x, y) = (0, 0)

Solution. For (x, y) 6= (0, 0) the denominator is non-zero and f is a combination of
continuous functions. Therefor for all α > 0, f(x, y) is continuous ∀(x, y) 6= (0, 0).
We check the continuity at (x, y) = (0, 0). Using polar coordinates x = r cos θ and
y = r sin θ we have

lim
(x,y)→(0,0)

xy

(x2 + y2)α
= lim
r→0

r2(1−α) cos θ sin θ

The value of the limit depends on α:
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• α = 1: the limit is cos θ sin θ.

• 0 < α < 1: the limit is 0.

• α > 1: depending on θ it can be 0, +∞ and −∞.

So f is continuous on R2 if 0 < α < 1 and is continuous on R2\(0, 0) when α ≥ 1

5. Partial derivatives.

(a) Let a,b ∈ Rn, a,b 6= 0. Show that the function f(x) = 〈a,x〉 · 〈b,x〉 is partially
differentiable for all x ∈ Rn and give its gradient.

Solution-1. f = g · h is the product of two partially differentiable functions g(x) =
〈a,x〉 and h(x) = 〈b,x〉. By the product rule:

∇f(x) = ∇(gh)(x) = h(x)∇g(x) + g(x)∇h(x). (1)

It follows that ∇g(x) = a, ∇h(x) = b:

∇f(x) = 〈b,x〉a + 〈a,x〉b.

Solution-2. For all k = 1, . . . , n, t ∈ R and x ∈ Rn:

f(x + tek)− f(x) = t〈a, ek〉〈b,x + tek〉+ t〈a,x〉〈b, ek〉

hence
t−1(f(x + tek)− f(x)) = ak〈b,x〉+ bk〈a,x〉+ takbk.

By letting t go to zero, we get the result.

(b) For A ∈Mn,n(R), let b : Rn ×Rn → R be the bilinear form given by b(x,y) = 〈x, Ay〉.

Show that b is partially differentiable for all

(
x
y

)
∈ R2n and give its gradient.

Solution . For the partial derivatives of xk, the argument y is constant, hence it
is the study of the linear form x 7→ 〈x, Ay〉. We find ∇xb(x,y) = Ay. For the
partial derivatives of yk the argument x is constant, hence it is the study of the linear
form y 7→ 〈ATx,y〉 (we have to put the matrix in the constant argument). We find
∇yb(x,y) = ATx. The gradient of b is the vector in R2n given by

∇b(x,y) = ∇x,yb(x,y) =

(
Ay
ATx

)
.

(c) Let g : R → R be a differentiable function. Show that f : Rn → R given by f(x) =
n∑
k=1

g(xk), where xk denotes the kth component of the vector x, xk = 〈ek,x〉, is a

partially differentiable function for all x ∈ Rn. Give its gradient.

Solution. By the definition of partial derivatives:

∂f(x)

∂xj
= lim
h→0

f(x + hej)− f(x)

h
= lim
h→0

g(xj + h)− g(xj)

h
= g′(xj)

for all x ∈ Rn and g′ denotes the derivative function of g. Hence,

∇f(x) =

n∑
k=1

g′(xk)ek.

(d) Let g : R→ R be differentiable for all t ∈ R, h : Rn → R partially differentiable for all
x ∈ Rn. Show that f : Rn → R given by f(x) = g(h(x)) is a partially differentiable
function for all x ∈ Rn. Give its gradient.
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Solution . The function ρ(t) := h(x+tek) is differentiable in t = 0 and ρ′(0) =
∂h(x)

∂xk
.

The composite function g(ρ(t)) is differentiable at t = 0 and

∂f(x)

∂xk
=

d

dt

∣∣∣∣
t=0

g(ρ(t)) = g′(ρ(0))ρ′(0) = g′(h(x))
∂h(x)

∂xk
,

hence ∇f(x) = g′(h(x))∇h(x).

6. Let f : R2 −→ R be the function defined by

f(x, y) =

{
(x2 + y2) sin( 1√

x2+y2
) if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Show that f is differentiable at (0, 0) but is not of class C1 at this point.

Solution. Let r =
√
x2 + y2, r ≥ 0. f is differentiable at (0, 0) and d0f(x, y) = 0 since

lim
r→0+

f(x, y)− f(0, 0)

r
= r
r→0

sin(
1

r
) = 0

If (x, y) 6= (0, 0) the function f is partially differentiable (even differentiable) and noting
that f is radially symmetric:

∂f(x, y)

∂x
=
x

r

(
2r sin r−1 − cos r−1

)
,

∂f(x, y)

∂y
=
y

r

(
2r sin r−1 − cos r−1

)
These functions don’t have any limits when (x, y)→ (0, 0) (because of cos r−1).

7. For x ∈ R and t > 0 we consider the function f(x, t) defined by

f(x, t) =
1√
4πt

exp(−x
2

4t
).

(a) Show that f verifies the heat equation, i.e.

∂f

∂t
(x, t)− ∂2f

∂x2
(x, t) = 0

Solution.
∂f

∂x
(x, t) = − x

2t
f(x, t)

and

∂2f

∂x2
(x, t) = − 1

2t
f(x, t)− x

2t

∂f

∂x
(x, t) = (− 1

2t
+
x2

4t2
)f(x, t) =

∂f

∂t
(x, t)

(b) Calculate ∫
R
f(x, t) dx
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Solution. By the change of variable y = x/
√

2t i.e. dx/dy =
√

2t, we get the Gauss
integral : ∫

R
f(x, t) dx =

∫ ∞
−∞

1√
2π

e−
y2

2 dy = 1

(c) Let g(x, y, t) given by g(x, y, t) = f(x, t)f(y, t). Calculate

∂g

∂t
(x, y, t)− ∂2g

∂x2
(x, y, t)− ∂2g

∂y2
(x, y, t).

Remark: ∂2

∂x2 = Dxx etc.

Solution. By the product rule and the result in (a) we get

∂g

∂t
(x, y, t)− ∂2g

∂x2
(x, y, t)− ∂2g

∂y2
(x, y, t) =

∂f

∂t
(x, t)f(y, t) + f(x, t)

∂f

∂t
(y, t)− ∂2f

∂x2
(x, t)f(y, t)− f(x, t)

∂2f

∂y2
(y, t) =

f(x, t)

(
∂f

∂t
(y, t)− ∂2f

∂y2
(y, t)

)
+ f(y, t)

(
∂f

∂t
(x, t)− ∂2f

∂x2
(x, t)

)
= 0.

8. True of False.

(a) A continuous function is partially differentiable.

� True � False

Solution. False, for example take f(x) = ‖x‖2 which is a continuous function and not
differentiable.

(b) If all the directional derivatives of f exist, then all the partial derivatives also exist.

� True � False

Solution. True, Just take the directions to be the basis of the space.

(c) If all the partial derivatives of f exist, then all the directional derivative also exit.

� True � False

Solution. True, write any vector v as a linear combination of basis vectors then the
statement follows immediately.

(d) If all the partial derivatives of f exist, then f is continuous.

� True � False

Solution. False, take the following function for example

f(x, y) =

{
0, xy 6= 0

1, xy = 0

all partial derivatives exist but is not continuous.
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